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ABSTRACT 

This paper discusses recent language extensions to 
the Gedae programming environment.  The first 
language extension allows application developers to 
more easily develop modal software in Gedae’s data 
flow programming language.  By breaking Gedae’s 
infinite data streams into finite length segments, 
mode changes become natural parts of the languages, 
implemented as side effects on segment boundaries.  
The second language extension expands the range of 
targets Gedae can support.  Developed to support 
firmware targets such as FPGAs, Gedae-RTL allows 
developers to specify algorithms using a graphical 
single sample language and export that specification 
into code in a target language such as VHDL.  
Although developed for VHDL and FPGAs, the 
Gedae-RTL capability is generic enough that any 
language can be targeted.  With these two language 
extensions, Gedae developers can more easily 
develop full modal software radio systems and port 
them to heterogeneous targets. 

1. INTRODUCTION 

In order to achieve the throughput and latency 
requirements of many software radio (SWR) 
applications, multiple processors must be used.  
Gedae is an integrated design environment for 
deployed systems and advanced demonstrators based 
on boards of digital signal processors (DSP) (e.g., 
AltiVec, PowerPC, TigerSHARC) or distributed 
networks (e.g., Linux clusters).  Its rich block 
diagram language streamlines and simplifies the task 
of building applications for distributed systems.  The 
block diagram provides a highly compartmentalized 
depiction of the algorithm, suitable for partitioning.  
This block diagram created by the developer specifies 
only the functionality of the graph, without regard to 
the target system.  Under the direction and control of 
the user, Gedae is able to use its knowledge of the 
target (e.g., its processor layout, transfer methods, 
and optimized routines) to transform the graph into 

an efficient implementation of the application on the 
target processors.   
 
Several language features make Gedae particularly 
powerful for SWR applications.  For example, data 
streams are easily specified in Gedae, and the 
language allows developers to mark segments of 
streams.  These developer-specified markers on the 
beginning and end of stream segments can produce 
side effects that affect graph behavior.  An excellent 
example of such a change in graph behavior is a 
mode change in a SWR application.  Gedae also has a 
full suite of analysis tools for observing and 
debugging execution on the host and DSPs, such as 
the Trace Table where all execution, transfers, and 
mode changes are displayed. 
 
Increasingly, field programmable gate arrays 
(FPGAs) are being used alongside DSPs as a method 
for meeting these data flow requirements.   These 
FPGAs are often used to implement front-end signal 
processing that must be processed at a high 
throughput.  With the increased focus on targets such 
as FPGAs, the Gedae block diagram language has 
recently been extended to also enable porting to 
firmware.  Unlike the AltiVec, PowerPC, and 
TigerSHARC these new targets generally do not 
allow cross-compilation of C-code.  To support other 
languages, Gedae has been augmented with a single 
sample graphical meta-language based on the theory 
of register transfer languages called Gedae-RTL.  
This language is capable of exporting VHDL code 
for FPGAs as well as Ansi-C code optimized for a 
DSP.  Much like Gedae’s core language, the Gedae-
RTL graph specifies only the functionality of the 
graph without regard to the target or its programming 
language.  Through Gedae’s knowledge of the target 
processor, the graph is transformed to generate 
correct results on the target and for optimized 
performance on the target. Then target code is 
exported to implement the application.   Components 
implemented in Gedae-RTL interact seamlessly with 
core Gedae components, allowing an entire 
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heterogeneous system to be specified in the Gedae 
programming environment.   

Gedae’s primitive language is based on C with 
functional and variable-based extensions to allow the 
developer to interface with Gedae’s data structures.  
This C-code is grouped into methods, e.g., the 
Start method is executed at start-up, the Apply 
method is executed when the primitive has data to 
process, etc.  The example two-mode application is 
shown in Figure 1.  Two subgraphs implement the 
two modes, ModeA and ModeB.  The segmenter 
creates two branches of data and uses the 
segment() function to place the segment markers 
on the two streams. As the markers are encountered 
in downstream primitives, the Reset and 
EndOfSegment methods are invoked, creating side 
effects and forming distinct boundaries between 
modes. 

2. MODAL SOFTWARE 

Gedae’s language is based on data flow.  A flow 
graph implements an application, and each primitive 
node in the flow graph defines the data flow 
relationship between its inputs and outputs.  The 
three core types of data flow relationships are  
 

• Static: the number of tokens produced and 
consumed is constant and determined at 
application start-up. 

• Dynamic:  the number of tokens produced 
and consumed is determined at runtime, and 
the node cannot execute unless full input 
queues are ready to be processed and empty 
output queues are ready to be written to. 

2.1. Segmentation 

• Nondeterministic:  the number of tokens 
produced and consumed is determined at 
runtime, and there are no restrictions on 
when the node can execute. 

To implement segmenter primitive, only two 
language features are needed on top of Gedae’s 
standard primitive language: the ability to mark 
streams as segmented and the ability to place markers 
on the segmented streams.  The input/output list for a 
Gedae primitive specifies the data type, token type, 
data flow parameters, and name of all the primitive’s 
inputs and outputs.  Streams are declared using the 
stream modifier.  For example, the input list to the 
segmenter primitive is declared as 

 
While these basic types of data flow are sufficient to 
implement any application, complex modal 
applications would require large amounts of 
application control to be implemented in an ad hoc 
manner alongside the signal and data processing.  To 
reduce this overhead and provide a general solution 
to the problem of modal software development, the 
Gedae language has been extended to allow 
developers to mark segments of streams.  These user-
specified markers on the beginning and end of stream 
segments can produce side effects that alter graph 
behavior, such as switching to tracking mode after a 
target has been found in a stream of radar data. 

 
Input: { 
  stream float in; 
  stream int c; 
} 
 
The output out to the segmenter primitive groups 
together two output streams in a family, as indicated 
by the shadowed border to the output in Figure 1 as 
well as the index i beside the output port.  Both 
outputs are segmented streams so their declaration 
marks them as such: 

 

 
Output: { 
  segmented dynamic stream  
          float [N]out; 
} 
 
The pre-index [N] indicates the output is a set of N 
streams (or family of size N), and the modifier 
segmented marks the outputs as segmented 
streams.  Thus, to declare an output stream as 
segmented, the developer only needs to add the 
modifier segmented to the declaration.  This 
example segments a dynamic stream.  Mode control 
is inherently dynamic or nondeterministic as mode 
Figure 1 - Two-mode application implemented 

using segmentation 
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changes are not preplanned but 
occur due to changes in the 
environment. During part of the 
operation, data is being processed 
through one part (mode) of the 
graph and not through others.  (In 
other words, a static output stream 
cannot be segmented.) 
 
Marking the beginning and end of 
segments is just as natural.  The 
Apply method processes data in 
queues.  On each execution of the 
Apply method, the segmenter 
primtive loops through the input 
queue and copies tokens from the 
input to one of the output queues 
according to the control tokens in 
the c queue (or drops the token, if 
desired). Inside that loop, the 
developer can put begin and end of 
segment markers on segmented 
output streams by using the 
segment() function.    In most 
examples, the developer only need place the end 
marker, as it is assumed that the first token produced 
after an end marker is the beginning of a new 
segment (the one counterexample where the begin 
marker is required is the case of zero-length 
segments).  Thus, the for-loop inside segmenter’s 
Apply method is 

Figure 2 - External state allows retaining state information between 
segments

 
Output: { 
  exclusive segmented dynamic 
         stream float [N]out; 
} 
 
No other programming is required to utilize the 
resource sharing.  

for (i=0; i<size(in); i++) { 
2.3. External State   if (c[i] != last) { 

    segment(out[last],  
One of the essential features of segmentation is that 
state information is cleared and reset at the segment 
boundary, allowing for the execution of the next 
instance of the mode to begin just as if it was the first 
instance.  While this behavior is fundamental to many 
applications of segmentation, there are also examples 
where state must be retained across segment 
boundaries.  For example, a simple low-pass filter 
retains the last output token for use in computing the 
next output token.  This last token is stored in the 
state vector of the primitive.  If the token is stored in 
the internal state of the primitive, it will be cleared at 
segment boundaries. 

            SEGMENT_END) 
    produce(out[last],n[last]); 
    n[last] = 0; 
    last = c[i]; 
  } 
  out[last][n[last]++] = in[i]; 
} 

2.2. Exclusivity 

Often in mode-based applications, the modes execute 
exclusively, that is only one mode is actively 
processing data at any given time.  When a family of 
segmented streams is used to implement mode 
control, as in the example above, the streams can be 
declared as exclusive.  An exclusive output allows 
Gedae to transform the implementation such that the 
modes share resources such as memory.  As before, 
the declaration only requires an extra modifier in the 
output list, 

 
To support this retention of state information across 
segment boundaries, external state variables can be 
declared.  In Figure 2, the float_state primitive 
provides an external state variable that is shared 
between segments in the filterS subgraph (which 
implements this low-pass filter).  The scope shows 
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EndOfSegment invokedReset invoked End markerBegin marker 

Figure 3 - The Trace Table provides visibility to all events, including segmentation 

correct data with smooth transition between 
segments.  Segment markers in the stream do not 
affect the value of external state variables.  These 
variables can also be shared between modes so that 
all modes share some of the same state information. 

2.4. Visibility 

Gedae’s suite of analysis tools has been extended to 
support the new segmentation language features.  
Gedae displays timing information in the Trace 
Table, allowing developers to see precisely where 
each box executed, including boxes inserted by 
Gedae like sends and receives, as well as analyze 
processor load.  The Trace Table has been extended 
to also display segmentation related events.  Figure 3 
shows some of these events.  The small magenta box 
on the line beside the in input to the lpf primitive 
indicates a begin marker to a stream segment.  This 
begin marker causes the mode to reset 
by executing all the Reset methods of 
all the primitives in the schedules for 
this mode.  In this example, the short 
magenta area on the line beside 
“Schedule 2” shows the Reset methods 
of the primitives in this mode resetting.  
Similarly, the small gray box near the 
end of the in event line represents an 
end marker to the stream segment.  The 
short gray bar on the “Schedule 2” 
event line shows the EndOfSegment 
methods of the primitives executing.  
Similarly detailed information has been 
added to the flow graph editor and the 

flattened view of the graph to aid debugging and 
analysis. 

3. FIRMWARE TARGETS 

In embedded systems, FPGAs are often used 
alongside DSPs to implement front-end signal 
processing that must be processed at a high 
throughput.  With the increased focus on targets such 
as FPGAs, the Gedae block diagram language has 
been extended to enable porting to firmware.  Unlike 
the AltiVec, PowerPC, and TigerSHARC, these new 
targets generally do not allow cross-compilation of 
C-code.  To support other languages, Gedae has been 
augmented with a single sample meta-language based 
on the theory of register transfer languages called 
Gedae-RTL.  This language is capable of exporting 
VHDL code for FPGAs as well as Ansi-C code 
optimized for a DSP.   

Figure 4 – FIR filter implemented in Gedae-RTL using 16-bit
fixed-point arithmetic
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Functionality built using Gedae-RTL uses the new 
single sample primitive type.  Conceptually, a graph 
of single sample primitives forms a processing 
pipeline that is enabled by a clock.  These single 
sample primitives are built upon seven fundamental 
functions:  register, assignment, decimate, clock, 
memory, memory read, and memory write.   
 
The register function (R(in,out,clk)) copies the 
input variable to the output with a delay of one clock 
pulse.  A register stores the state information in a 
graph.  When a Gedae-RTL graph is reset, the 
registers return to their initial value. 
 
The assignment function (A(expr,out)) evaluates 
an expression and assigns its value to a variable.  For 
example, an addition primitive may be programmed 
with the line A(a+b,out).  To allow more 
flexibility in programming single sample primitives, 
the function function 
(F(in0,in1,…)(out0,out1,…) 
{lines_of_code}) extends the assignment 
function by allowing the developer to put multiple 
lines in a single function. 
 
The memory function (M(out,len,bytes)) 
declares a memory buffer.  The definition of memory 
buffer here is very generic; it could be a QDR SRAM 
bank attached to the FPGA, an output pin with an 
address space of 1 bit, a block RAM generated on the 
FPGA, etc.  The memory read (MR(addr,out)) 
and write functions (MW(in,addr)) access a buffer 
declared by the M-function.  
 
The decimate (D(in,clk)) function ties a clock to 
a variable.  It is different from the R-function in that 
it does not induce a delay (there is no output variable) 
and it does cause the variable to be static.  The clock 
(C(in,clk))  function retrieves the clock tied to a  
variable. 

3.1. Language Independence 

Much like Gedae’s core language, the Gedae-RTL 
graph specifies only the functionality of the graph 
without regard to the target or its programming 
language.  For example, Figure 4 shows a FIR filter 
implemented in Gedae-RTL, built from a register 
pipeline (ui16_history), multipliers 
(fx16_mult), and a tree-adder (ui16_treeadd).  
The graph in Figure 4 includes only multipliers, 
adders, and delay registers.  In other words, the graph 
is not specific to FPGAs or firmware; it is simply a 
specification of a FIR filter.  Gedae is able to export 

code in potentially any language to implement the 
functionality specified in the graph.   
 
To support any language, the Language Support 
Package (LSP) has been integrated into the Gedae-
RTL code generation process.  This process is shown 
in Figure 5.  The Gedae-RTL graph is not translated 
directly into code.  Instead it is transformed into an 
internal netlist representation and information on the 
algorithm is collated in data structures.  
Implementation settings from the graph developer 
also affect the internal data structure, allowing the 
developer to insert registers and map memories to 
hardware components to enhance the 
implementation.  Once the internal implementation is 
created, the LSP uses the information provided by 
Gedae to export code in the target language.  The 
target language could be VHDL for an FPGA, 
assembly code for another alternate architecture, or 
Ansi-C code with DSP-specific enhancements.  The 
code is then built by Gedae’s customizable make 
system. 

3.2. The Use of Cores 

In FPGA and firmware programming, developers 
often utilize processing cores – pre-constructed 
components whose efficiency and synchronization 
issues have already been addressed.  The language 
independence of a Gedae-RTL graph does not 

Code 

LSP/Code 
Generator 

Transformations 

Gedae-RTL 
Graph 

Internal 
Implementation 

Implementation 
Settings 

Hardware 
Description 

Figure 5 - Framework for code generation 
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hamper the use of cores.  Primitives in a Gedae-RTL 
graph can provide two implementations: a generic 
one that works on all processors and a target-specific 
one.  The Function method is used to specify the 
generic implementation of a Gedae-RTL primitive.  
If a pre-optimized core is available to implement the 
same function, the code to utilize this core can be 
placed in the Core method of the primitive.  

3.3. Heterogeneity 

Components implemented in Gedae-RTL interact 
seamlessly with other Gedae components in the flow 
graph, allowing an entire heterogeneous system to be 
specified in the Gedae programming environment.  If 
the Gedae-RTL component is mapped to an FPGA or 
other firmware target, the Gedae make system will 
output a binary image, and Gedae will load the FPGA 
with that image.  The DSPs are simply running 
schedules of other primitives in the Gedae graph.  
When the DSPs fill the FPGA’s input buffers, it will 
signal to the FPGA to process the data.  When the 
FPGA has filled its output buffers, it will signal to the 
DSPs when its output buffers are full.  The 
segmentation features described earlier can also drive 

Gedae-RTL-created components.  For example, when 
a mode resets, the Gedae-RTL-specified FPGA also 
resets, clearing the state in its registers, and 
reinterpreting its input parameters to determine its 
functionality in the new mode. 

4. CONCLUSION 

With the segmentation and Gedae-RTL language 
extensions, application developers can use Gedae to 
easily program modal software radio systems and can 
map those systems to heterogeneous architectures.  
Segmentation allows developers to mark segment 
boundaries on streams.  These markers cause side 
effects downstream, triggering execution of the 
Reset and EndOfSegment method, providing a 
natural way to initialize software at the start of modes 
and summarize results at the end of modes.  
Processing can also be specified in the Gedae-RTL 
single sample language, and these graphs are target 
language independent.  The LSP allows a Gedae-
RTL graph to be translated to any firmware or 
software language, including VHDL to implement a 
FPGA. 
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