
GEDAE: A TOOL FOR IMPLEMENTING SOFTWARE RADIO ON
HETEROGENEOUS SYSTEMS

James Steed (Gedae, Inc., Mount Laurel, NJ; jim@gedae.com),

William Lundgren (Gedae, Inc. Mount Laurel, NJ; bill@gedae.com),
Kerry Barnes (Gedae, Inc., Mount Laurel, NJ; kerry@gedae.com)

ABSTRACT

This paper discusses recent language extensions to
the Gedae programming environment. The first
language extension allows application developers to
more easily develop modal software in Gedae’s data
flow programming language. By breaking Gedae’s
infinite data streams into finite length segments,
mode changes become natural parts of the languages,
implemented as side effects on segment boundaries.
The second language extension expands the range of
targets Gedae can support. Developed to support
firmware targets such as FPGAs, Gedae-RTL allows
developers to specify algorithms using a graphical
single sample language and export that specification
into code in a target language such as VHDL.
Although developed for VHDL and FPGAs, the
Gedae-RTL capability is generic enough that any
language can be targeted. With these two language
extensions, Gedae developers can more easily
develop full modal software radio systems and port
them to heterogeneous targets.

1. INTRODUCTION

In order to achieve the throughput and latency
requirements of many software radio (SWR)
applications, multiple processors must be used.
Gedae is an integrated design environment for
deployed systems and advanced demonstrators based
on boards of digital signal processors (DSP) (e.g.,
AltiVec, PowerPC, TigerSHARC) or distributed
networks (e.g., Linux clusters). Its rich block
diagram language streamlines and simplifies the task
of building applications for distributed systems. The
block diagram provides a highly compartmentalized
depiction of the algorithm, suitable for partitioning.
This block diagram created by the developer specifies
only the functionality of the graph, without regard to
the target system. Under the direction and control of
the user, Gedae is able to use its knowledge of the
target (e.g., its processor layout, transfer methods,
and optimized routines) to transform the graph into

an efficient implementation of the application on the
target processors.

Several language features make Gedae particularly
powerful for SWR applications. For example, data
streams are easily specified in Gedae, and the
language allows developers to mark segments of
streams. These developer-specified markers on the
beginning and end of stream segments can produce
side effects that affect graph behavior. An excellent
example of such a change in graph behavior is a
mode change in a SWR application. Gedae also has a
full suite of analysis tools for observing and
debugging execution on the host and DSPs, such as
the Trace Table where all execution, transfers, and
mode changes are displayed.

Increasingly, field programmable gate arrays
(FPGAs) are being used alongside DSPs as a method
for meeting these data flow requirements. These
FPGAs are often used to implement front-end signal
processing that must be processed at a high
throughput. With the increased focus on targets such
as FPGAs, the Gedae block diagram language has
recently been extended to also enable porting to
firmware. Unlike the AltiVec, PowerPC, and
TigerSHARC these new targets generally do not
allow cross-compilation of C-code. To support other
languages, Gedae has been augmented with a single
sample graphical meta-language based on the theory
of register transfer languages called Gedae-RTL.
This language is capable of exporting VHDL code
for FPGAs as well as Ansi-C code optimized for a
DSP. Much like Gedae’s core language, the Gedae-
RTL graph specifies only the functionality of the
graph without regard to the target or its programming
language. Through Gedae’s knowledge of the target
processor, the graph is transformed to generate
correct results on the target and for optimized
performance on the target. Then target code is
exported to implement the application. Components
implemented in Gedae-RTL interact seamlessly with
core Gedae components, allowing an entire

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

mailto:jim@gedae.com
mailto:bill@gedae.com
mailto:kerry@gedae.com

heterogeneous system to be specified in the Gedae
programming environment.

Gedae’s primitive language is based on C with
functional and variable-based extensions to allow the
developer to interface with Gedae’s data structures.
This C-code is grouped into methods, e.g., the
Start method is executed at start-up, the Apply
method is executed when the primitive has data to
process, etc. The example two-mode application is
shown in Figure 1. Two subgraphs implement the
two modes, ModeA and ModeB. The segmenter
creates two branches of data and uses the
segment() function to place the segment markers
on the two streams. As the markers are encountered
in downstream primitives, the Reset and
EndOfSegment methods are invoked, creating side
effects and forming distinct boundaries between
modes.

2. MODAL SOFTWARE

Gedae’s language is based on data flow. A flow
graph implements an application, and each primitive
node in the flow graph defines the data flow
relationship between its inputs and outputs. The
three core types of data flow relationships are

• Static: the number of tokens produced and
consumed is constant and determined at
application start-up.

• Dynamic: the number of tokens produced
and consumed is determined at runtime, and
the node cannot execute unless full input
queues are ready to be processed and empty
output queues are ready to be written to.

2.1. Segmentation

• Nondeterministic: the number of tokens
produced and consumed is determined at
runtime, and there are no restrictions on
when the node can execute.

To implement segmenter primitive, only two
language features are needed on top of Gedae’s
standard primitive language: the ability to mark
streams as segmented and the ability to place markers
on the segmented streams. The input/output list for a
Gedae primitive specifies the data type, token type,
data flow parameters, and name of all the primitive’s
inputs and outputs. Streams are declared using the
stream modifier. For example, the input list to the
segmenter primitive is declared as

While these basic types of data flow are sufficient to
implement any application, complex modal
applications would require large amounts of
application control to be implemented in an ad hoc
manner alongside the signal and data processing. To
reduce this overhead and provide a general solution
to the problem of modal software development, the
Gedae language has been extended to allow
developers to mark segments of streams. These user-
specified markers on the beginning and end of stream
segments can produce side effects that alter graph
behavior, such as switching to tracking mode after a
target has been found in a stream of radar data.

Input: {
 stream float in;
 stream int c;
}

The output out to the segmenter primitive groups
together two output streams in a family, as indicated
by the shadowed border to the output in Figure 1 as
well as the index i beside the output port. Both
outputs are segmented streams so their declaration
marks them as such:

Output: {
 segmented dynamic stream
 float [N]out;
}

The pre-index [N] indicates the output is a set of N
streams (or family of size N), and the modifier
segmented marks the outputs as segmented
streams. Thus, to declare an output stream as
segmented, the developer only needs to add the
modifier segmented to the declaration. This
example segments a dynamic stream. Mode control
is inherently dynamic or nondeterministic as mode
Figure 1 - Two-mode application implemented

using segmentation
Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

changes are not preplanned but
occur due to changes in the
environment. During part of the
operation, data is being processed
through one part (mode) of the
graph and not through others. (In
other words, a static output stream
cannot be segmented.)

Marking the beginning and end of
segments is just as natural. The
Apply method processes data in
queues. On each execution of the
Apply method, the segmenter
primtive loops through the input
queue and copies tokens from the
input to one of the output queues
according to the control tokens in
the c queue (or drops the token, if
desired). Inside that loop, the
developer can put begin and end of
segment markers on segmented
output streams by using the
segment() function. In most
examples, the developer only need place the end
marker, as it is assumed that the first token produced
after an end marker is the beginning of a new
segment (the one counterexample where the begin
marker is required is the case of zero-length
segments). Thus, the for-loop inside segmenter’s
Apply method is

Figure 2 - External state allows retaining state information between
segments

Output: {
 exclusive segmented dynamic
 stream float [N]out;
}

No other programming is required to utilize the
resource sharing.

for (i=0; i<size(in); i++) {
2.3. External State if (c[i] != last) {

 segment(out[last],
One of the essential features of segmentation is that
state information is cleared and reset at the segment
boundary, allowing for the execution of the next
instance of the mode to begin just as if it was the first
instance. While this behavior is fundamental to many
applications of segmentation, there are also examples
where state must be retained across segment
boundaries. For example, a simple low-pass filter
retains the last output token for use in computing the
next output token. This last token is stored in the
state vector of the primitive. If the token is stored in
the internal state of the primitive, it will be cleared at
segment boundaries.

 SEGMENT_END)
 produce(out[last],n[last]);
 n[last] = 0;
 last = c[i];
 }
 out[last][n[last]++] = in[i];
}

2.2. Exclusivity

Often in mode-based applications, the modes execute
exclusively, that is only one mode is actively
processing data at any given time. When a family of
segmented streams is used to implement mode
control, as in the example above, the streams can be
declared as exclusive. An exclusive output allows
Gedae to transform the implementation such that the
modes share resources such as memory. As before,
the declaration only requires an extra modifier in the
output list,

To support this retention of state information across
segment boundaries, external state variables can be
declared. In Figure 2, the float_state primitive
provides an external state variable that is shared
between segments in the filterS subgraph (which
implements this low-pass filter). The scope shows

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

EndOfSegment invokedReset invoked End markerBegin marker

Figure 3 - The Trace Table provides visibility to all events, including segmentation

correct data with smooth transition between
segments. Segment markers in the stream do not
affect the value of external state variables. These
variables can also be shared between modes so that
all modes share some of the same state information.

2.4. Visibility

Gedae’s suite of analysis tools has been extended to
support the new segmentation language features.
Gedae displays timing information in the Trace
Table, allowing developers to see precisely where
each box executed, including boxes inserted by
Gedae like sends and receives, as well as analyze
processor load. The Trace Table has been extended
to also display segmentation related events. Figure 3
shows some of these events. The small magenta box
on the line beside the in input to the lpf primitive
indicates a begin marker to a stream segment. This
begin marker causes the mode to reset
by executing all the Reset methods of
all the primitives in the schedules for
this mode. In this example, the short
magenta area on the line beside
“Schedule 2” shows the Reset methods
of the primitives in this mode resetting.
Similarly, the small gray box near the
end of the in event line represents an
end marker to the stream segment. The
short gray bar on the “Schedule 2”
event line shows the EndOfSegment
methods of the primitives executing.
Similarly detailed information has been
added to the flow graph editor and the

flattened view of the graph to aid debugging and
analysis.

3. FIRMWARE TARGETS

In embedded systems, FPGAs are often used
alongside DSPs to implement front-end signal
processing that must be processed at a high
throughput. With the increased focus on targets such
as FPGAs, the Gedae block diagram language has
been extended to enable porting to firmware. Unlike
the AltiVec, PowerPC, and TigerSHARC, these new
targets generally do not allow cross-compilation of
C-code. To support other languages, Gedae has been
augmented with a single sample meta-language based
on the theory of register transfer languages called
Gedae-RTL. This language is capable of exporting
VHDL code for FPGAs as well as Ansi-C code
optimized for a DSP.

Figure 4 – FIR filter implemented in Gedae-RTL using 16-bit
fixed-point arithmetic

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

Functionality built using Gedae-RTL uses the new
single sample primitive type. Conceptually, a graph
of single sample primitives forms a processing
pipeline that is enabled by a clock. These single
sample primitives are built upon seven fundamental
functions: register, assignment, decimate, clock,
memory, memory read, and memory write.

The register function (R(in,out,clk)) copies the
input variable to the output with a delay of one clock
pulse. A register stores the state information in a
graph. When a Gedae-RTL graph is reset, the
registers return to their initial value.

The assignment function (A(expr,out)) evaluates
an expression and assigns its value to a variable. For
example, an addition primitive may be programmed
with the line A(a+b,out). To allow more
flexibility in programming single sample primitives,
the function function
(F(in0,in1,…)(out0,out1,…)
{lines_of_code}) extends the assignment
function by allowing the developer to put multiple
lines in a single function.

The memory function (M(out,len,bytes))
declares a memory buffer. The definition of memory
buffer here is very generic; it could be a QDR SRAM
bank attached to the FPGA, an output pin with an
address space of 1 bit, a block RAM generated on the
FPGA, etc. The memory read (MR(addr,out))
and write functions (MW(in,addr)) access a buffer
declared by the M-function.

The decimate (D(in,clk)) function ties a clock to
a variable. It is different from the R-function in that
it does not induce a delay (there is no output variable)
and it does cause the variable to be static. The clock
(C(in,clk)) function retrieves the clock tied to a
variable.

3.1. Language Independence

Much like Gedae’s core language, the Gedae-RTL
graph specifies only the functionality of the graph
without regard to the target or its programming
language. For example, Figure 4 shows a FIR filter
implemented in Gedae-RTL, built from a register
pipeline (ui16_history), multipliers
(fx16_mult), and a tree-adder (ui16_treeadd).
The graph in Figure 4 includes only multipliers,
adders, and delay registers. In other words, the graph
is not specific to FPGAs or firmware; it is simply a
specification of a FIR filter. Gedae is able to export

code in potentially any language to implement the
functionality specified in the graph.

To support any language, the Language Support
Package (LSP) has been integrated into the Gedae-
RTL code generation process. This process is shown
in Figure 5. The Gedae-RTL graph is not translated
directly into code. Instead it is transformed into an
internal netlist representation and information on the
algorithm is collated in data structures.
Implementation settings from the graph developer
also affect the internal data structure, allowing the
developer to insert registers and map memories to
hardware components to enhance the
implementation. Once the internal implementation is
created, the LSP uses the information provided by
Gedae to export code in the target language. The
target language could be VHDL for an FPGA,
assembly code for another alternate architecture, or
Ansi-C code with DSP-specific enhancements. The
code is then built by Gedae’s customizable make
system.

3.2. The Use of Cores

In FPGA and firmware programming, developers
often utilize processing cores – pre-constructed
components whose efficiency and synchronization
issues have already been addressed. The language
independence of a Gedae-RTL graph does not

Code

LSP/Code
Generator

Transformations

Gedae-RTL
Graph

Internal
Implementation

Implementation
Settings

Hardware
Description

Figure 5 - Framework for code generation

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

hamper the use of cores. Primitives in a Gedae-RTL
graph can provide two implementations: a generic
one that works on all processors and a target-specific
one. The Function method is used to specify the
generic implementation of a Gedae-RTL primitive.
If a pre-optimized core is available to implement the
same function, the code to utilize this core can be
placed in the Core method of the primitive.

3.3. Heterogeneity

Components implemented in Gedae-RTL interact
seamlessly with other Gedae components in the flow
graph, allowing an entire heterogeneous system to be
specified in the Gedae programming environment. If
the Gedae-RTL component is mapped to an FPGA or
other firmware target, the Gedae make system will
output a binary image, and Gedae will load the FPGA
with that image. The DSPs are simply running
schedules of other primitives in the Gedae graph.
When the DSPs fill the FPGA’s input buffers, it will
signal to the FPGA to process the data. When the
FPGA has filled its output buffers, it will signal to the
DSPs when its output buffers are full. The
segmentation features described earlier can also drive

Gedae-RTL-created components. For example, when
a mode resets, the Gedae-RTL-specified FPGA also
resets, clearing the state in its registers, and
reinterpreting its input parameters to determine its
functionality in the new mode.

4. CONCLUSION

With the segmentation and Gedae-RTL language
extensions, application developers can use Gedae to
easily program modal software radio systems and can
map those systems to heterogeneous architectures.
Segmentation allows developers to mark segment
boundaries on streams. These markers cause side
effects downstream, triggering execution of the
Reset and EndOfSegment method, providing a
natural way to initialize software at the start of modes
and summarize results at the end of modes.
Processing can also be specified in the Gedae-RTL
single sample language, and these graphs are target
language independent. The LSP allows a Gedae-
RTL graph to be translated to any firmware or
software language, including VHDL to implement a
FPGA.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

	ABSTRACT
	1. INTRODUCTION
	2. MODAL SOFTWARE
	2.1. Segmentation
	2.2. Exclusivity
	2.3. External State
	2.4. Visibility

	3. FIRMWARE TARGETS
	3.1. Language Independence
	3.2. The Use of Cores
	3.3. Heterogeneity

	4. CONCLUSION

