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ABSTRACT# 

 

In this paper we develop multiple antenna space-time 
decoding techniques that enable very high capacities in 
mobile wireless systems.  The method can be implemented 
in small form factor handheld software defined radios.  We 
derive a low-complexity iterative decoding scheme based on 
diagonal or Cayley differential encoders for multi-input 
multi-output (MIMO) flat-fading channels.  We show that 
our decoding method guarantees full spatial diversity.  More 
importantly, it bridges the gap between differential and 
coherent receivers.  Simulation results corroborate our 
theoretical analysis. 
 

1. INTRODUCTION 
 

Multi-antenna wireless communication links provide spatial 
diversity to combat fading. However, as the number of 
transmit antennas increases, channel estimation becomes 
more challenging.  Among the difficulty in channel 
estimation is in the design of optimal training sequences and 
the associated channel estimation complexity at the receiver 
as the number of transmitter antennas increase.  A natural 
means of bypassing channel estimation is to utilize 
differential modulation, which in the MIMO context has 
been pursued in [1][2][3][4][5]. 

One of the advantages of the orthogonal differential 
codes in [4] is their low decoding complexity.  However, 
when the number of antennas is large, orthogonal 
differential space-time (ST) codes lose rate.  Diagonal 
differential ST codes on the other hand, are relatively simple 
and flexible to generate [2] [3], and can be decoded fast with 
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the near maximum-likelihood (ML) algorithm of [1].  
Cayley codes have also been proposed for a variety of rates 
and number of transmit antennas [5], and can be decoded 
efficiently using the near ML algorithm of [6].  

Notwithstanding, existing MIMO differential decoders 
do not outperform non-coherent ML decoders, which are 
known to be inferior (by about 3 dB) relative to their 
coherent counterparts.  In this paper, we derive iterative 
decoders to bridge the gap of differential and non-coherent 
receivers and bring them closer to the performance of 
coherent MIMO receivers. 
 

2. DIFFERENTIAL DESIGNS 
 

At the transmitter, we adopt the diagonal [2] and Cayley [5] 
differential designs for a multi-antenna system with Nt 
transmit- and Nr receive-antennas.  Supposing that the NtNr 
channels are independently complex Gaussian distributed 
with zero mean and unit variance, here we focus on quasi-
static flat-fading channels; i.e., the channels are flat in 
frequency-domain and time-invariant during at least two 
blocks.  At the νth receive antenna, we denote the nth 
received block as an Nt × 1 vector yν(n) (see [2] and [5] for 
details).  Suppose that hν,µ defines the channel response 
from the µth transmit-antenna to the νth receive-antenna. 
The input-output relationship for the nth block is 
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for the νth receive-antenna, wν is the additive white Gaussian 
noise with zero mean and unit variance, ρ is the expected 
SNR at each receive antenna, and the unitary matrix Ds(n) is 
defined as 
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with unitary matrix Vn drawn from a constellation υ  of 
unitary-diagonal codes [2] or -Cayley codes [5] of size 

tRN2 .  R denotes the transmission rate and I is the identity 
matrix.  

Based on the model in (1) and (2), two ML decoders 
follow readily: the first is the non-coherent one defined as 
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while the second is the coherent one (which requires channel 
knowledge at the receiver) 
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V and D are code matrices in the set of all possible 
candidate constellation codes in (3) an (4), respectively.  
Apparently, when Nt is large, the size of υ is large, and the 
decoding complexity for both the non-coherent and the 

coherent option is as high as )2( RNtO .  Another issue is that 

the performance of non-coherent decoder in (3) can be as 
much as 3 dB worse than the coherent counterpart in (4).  To 
solve this “3 dB” issue we propose iterative decoding for 
both diagonal and Cayley codes, which reduces the 
performance gap between the coherent and non-coherent 
decoders.  In addition, to address the issue of complexity, 
we apply a lattice reduction (LR) algorithm for the iterative 
decoding of the diagonal codes.  We note that sphere 
decoding can readily be utilized to reduce the complexity of 
iterative Cayley decoding, but is not presented in this paper. 

 
3. ITERATIVE DECODING 

 

To enable the use of the decoding in (4) requires channel 
knowledge, and when we differentially encode we do not 
explicitly send channel training information.  We note that 
differential encoding may be preferable for channels that 
change sufficiently fast such that periodic training would 
require excessive training overhead, thus reducing user 
transmitted bit rate, and in addition excessive channel 
estimation complexity in the receiver.  Thus in this work, we 
use the first block for differential decoding as a training 
block and then rely on decision directed channel estimation 
to subsequently track further channel variation. Specifically, 
in the first block, we rely on the linear minimum mean 
square error (LMMSE) channel estimator as: 
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Based on this coarse channel estimate in (5), we can detect 
the information blocks using any algorithm for coherent 
detection. Surprisingly, we observe that if the channel is 
time-invariant, this method (coherent decoding with either a 
ML or LR algorithm with estimated channel) achieves 
almost the same performance as that achieved by the non-
coherent ML decoder in (3) (shown by simulation later). 
However, as we expect, the performance gap between the 
coherent and non-coherent decoders is approximately 3 dB. 
To bridge the performance gap, we need to further improve 
the performance of the non-coherent receiver. To this end, 
we employ a decision-directed approach. Since the channels 
are quasi-static, using the estimated blocks, we can obtain a 
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Figure 1: Discrete-time baseband system models for 
Diagonal and Cayley space-time codes. 
 
refined MMSE channel estimate as: 
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where Nb is the number of blocks, )(ˆ n*
sD  denotes the 

estimate of )(nsD , and superscript * stands for conjugation. 

The number of blocks Nb controls the tradeoff between 
decoding delay and channel estimation performance.  

With a refined channel estimate available, we can more 
accurately detect the transmitted information blocks. 
Counting one channel estimation and symbol detection 
process as a single iteration, we have confirmed by 
simulations that with a small number (2 or 3) of iterations, 
the performance of our iterative decoder approaches the 
performance of the coherent ML decoder.  The transceiver 
design is shown in Figure 1, with the iterative algorithmic 
process described below. 
 

Iterative Algorithmic Process:  
1. Use the first receive block to estimate channel based on (5);  

2.  Perform decoding algorithm (LLL for Diagonal scheme, ML 
for Cayley scheme) as shown in (4) with estimated channels;  

3.  After decoding Nb blocks of transmitted symbols, refine 
estimated channels as in (6);  

4.  If achieves the required number of iterations, then stop; 
otherwise go back to step 2 using updated channel in step 3. 

 
4. EFFICIENT NEAR ML DECODING 

 

A computationally efficient near-ML solution is possible via 
a lattice reduction (LR) algorithm. For non-coherent 
decoding (3) has been proposed in [1]. Inspired by [1], we 
modify the LLL algorithm in [7] by replacing yν(n-1) as the 
channel knowledge hν and deriving a low-complexity LR 
algorithm approaching ML performance of the coherent 
decoder in (4). This algorithm is ready by following the 
steps in [1]. However, here we assume the channel is not 
known at either transmitter or receiver. Thus, to exploit this 
low-complexity coherent decoder, we need to get channel 
information  first.  Just previously (steps 1 – 4 above), we 
developed  an  alternative  decoding  scheme  that  provides  
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Figure 2:  Cayley code iterative differential encoding / 
decoding performance. 
 
near-coherent ML performance, without channel knowledge.  
It can be used with any decoding method (ML-, LLL-, or 
sphere-decoding). 

For diagonal codes we use our coherent LR algorithm to 
provide near ML coherent performance, but with low 
complexity. 
 

5. SIMULATION RESULTS 
 

In this work we consider Nt = 2 transmit- and Nr = 1 receive-
antennas, with a transmission rate R = 1 bit per channel use.  
Below we describe each respective scheme used for Cayley 
and diagonal space-time codes.  For both codes, we set the 
time-invariant length of the channel to be Nb = 20 blocks. 
 

5.1. Cayley Codes with Iterative Decoding 
 

The design of the Cayley unitary differential codes can be 
found in [5].  Specifically, we utilize the code for the Nt = 2 
transmit antenna case provided in (42) of [5].  For the 
Cayley codes, the code structure does not belong to a group 
constellation (in the same sense as the diagonal codes), and 
thus cannot be coherently detected using the LLL algorithm  
as with the diagonal codes.  Thus we use (2) for differential 
operation.  Typically for coherent operation, training 
symbols must be sent so that the receiver can provide an 
estimate of the channel to the coherent ML decoder.  We do 
not use training to enable our coherent operation, however. 

Differential modulation, when used in conjunction with 
a ML non-coherent receiver totally bypasses any need for 
channel estimates.  In the following we provide performance 
results for both coherent and differential encoding/decoding, 
but for either case, no training is sent from the transmitter 
other than a reference block for the first transmission.  When 
performing iterative decoding with Cayley codes, the ML 
decoding in (4) can be performed either according to a 
coherent reference of differential reference.  In the coherent  

 
Figure 3:  Cayley code iterative coherent encoding / 
decoding performance. 
 
case, yν(n) is simply the transmitted code (no differential 
encoding) passed through the fading channel with noise 
added at the receiver, and D is simply all possible 
constellations in the set from (42) in [5] (without differential 
encoding).  Otherwise, for the differentially encoded case, 
we use (4) as shown. 

Figure 2 shows the results of the differentially encoded 
case using (4) as the decoder.  Note, for three iterations, the 
performance nearly reaches that of the ML non-coherent 
decoder (which uses no channel estimation whatsoever).  

Figure 3 shows results for coherent transmission of the 
Cayley codes.  For one iteration, the coherently encoded 
transmission is roughly equivalent to the differential 
transmission using the ML non-coherent decoder.  With 
three iterations, the ML coherent iterative decoder is within 
nearly 1 dB of a coherent system that has perfect channel 
knowledge (the ideal decoder). 

 
5.2 Diagonal Codes with Iterative Decoding 
 

The design of the unitary diagonal matrix set υ  is the same 
as found in [2].  Each block has length 2. The simulated 
performance is shown in Figure 4.  We observe that: i) with 
one iteration (the curve with legend “LLL, Iterations = 1”), 
the proposed decoder achieves the performance of non-
coherent ML decoding in (3) with reduced decoding 
complexity; and ii) as the number of iterations increases, the 
performance of our scheme approaches the performance of 
the coherent ML detector in (4).  In fact for two iterations, 
the performance is quickly approaching that of the ideal 
(assuming we know the channel exactly) decoder in (4). 

A comparative analysis of the ML and lattice algorithm 
decoding times for diagonal codes is now presented based 
on decoding times found in [1] as measured on a SGI 
R10000 at 195MHz.  For this analysis we assume that the 
results  presented in [1]  are applicable to  coherent and non- 
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Figure 4:  Diagonal code iterative performance using 
coherent LLL algorithm. 
 
coherent ML decoding.  When we apply iterative decoding 
to reduce the performance gap between differential and 
coherent systems, we see how the decoding time (or 
complexity) results compare for multiple iterations of each 
algorithm. 
 From our simulations (R = 1), we found near-coherent 
ML decoding performance is possible with relatively low 
complexity.  However, when the rate is increased, along 
with an additional number of transmit antennas, we show the 
importance of a low complexity decoding technique.  This 
data is taken directly from [1], extrapolated, and then plotted 
to help visualize the decoding times for multiple decoding 
iterations, as shown in Figure 5.  For R = 2 the decoding 
time is always less complex for the lattice decoder from [1].  
The decoding complexity for Nt = 4 is an order of magnitude 
lower in complexity, while for Nt = 6 the lattice decoder is 
two orders of magnitude lower complexity. 
 

6. CONCLUSIONS∗ 
 

In this paper, we proposed iterative decoding for space-time 
codes so that transmission of training symbols is not 
required.  Commonly training is used for receiver channel 
estimation, and with training unavailable we utilized  
decision  feedback to estimate the channel.  We evaluated 
the performance of two different unitary space-time coding 
structures, one where the Cayley transform is used to 
generate the code and the other based on group codes 
producing a diagonal code structure.  For both code types, 
we showed that iterative decoding sufficiently enables the 
receiver to perform channel estimation, without any training  
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Figure 5:  Lattice and ML algorithm decoding time as a 
function of M (same as Nt) and number of decoding 
iterations for Rate = 2 bits per channel use. 
 
information, such that the performance is nearly the same as 
the ideal coherent maximum likelihood (ML) receiver.  
Using the diagonal codes, we showed that a low complexity 
coherent receiver is plausible using an iterative coherent 
LLL decoder, thus minimizing complexity for higher rates 
and additional transmit antennas. This scheme also produces 
near ideal performance without channel knowledge.  
Software defined radios are becoming more common for 
multi-antenna systems which strive to produce robust-high 
capacity transmission.  The method presented in this work 
enables very high performance mobile MIMO channel 
performance in software radios that are easily portable, but 
which have limited signal processing resources. 
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