

Reconfigurable Antenna Processing with Matrix Decomposition Using FPGA-Based Application-Specific Integrated Processors

Mike Fitton Rob Jackson Steve Perry Altera European Technology Centre

© 2004 Altera Corporation

- Motivation
- Application-Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

Motivation: System Concept

- Reconfiguration for
 - -SDR: Different Standards/Specifications
 - -Optimization: Adapt to the Wireless Environment
 - Multiple Input Multiple Output ⇔ Space Time
 Coding ⇔ Adaptive Antennas
- Provide a Methodology to Give:
 - -Reconfiguration
 - -Cost/Performance Trade-off
 - –Usability: Present a Software-Like Interface

Accessing the Optimal Point

Agenda

- Motivation
- Application-Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

ASIP Approach

- Build Application-Specific Processors
 - Easy to Think of Them as Custom Processors
- Application-Specific Integrated Processor Has
 - Flexible Number of Functional Units
 - Connections Between Function Units as Defined by the Algorithm
 - Program to Allow Flexible (& Dynamic) Control
 - Software-Based Design Flow

Software Process Brings Productivity vs. RTL

Example ASIP

Hierarchical Composition

- Processors That Are Built Can Be Used As Functional Units Within Another Processor
- Users Can Add Functional Units to Their Processors

Agenda

- Motivation
- Application-Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

QR Decomposition Overview

- $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{vmatrix} = \begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{vmatrix}$ Given Observation X, Desired Out Solve for Optimum Coefficients w Given Observation X, Desired Output z,

$$\begin{bmatrix} -0.1 & 0.9 & 0.4 \\ -0.5 & 0.3 & -0.8 \\ -0.8 & -0.3 & 0.4 \end{bmatrix} \begin{bmatrix} -8 & -10 & -11 \\ 0 & 0.9 & 1.8 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{bmatrix}$$

Decompose X Into QR, Where Q Is Unitary (Q $Q^T=1$) & R Is **Upper-Triangular**

$$\begin{bmatrix} -8 & -10 & -11 \\ 0 & 0.9 & 1.8 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -0.1 & -0.5 & -0.8 \\ 0.9 & 0.3 & -0.3 \\ 0.4 & -0.8 & 0.4 \end{bmatrix} \begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{bmatrix}$$

Solve for w By Rearranging Q to RHS, Where $Q^{-1} = Q^{T}$

 $7' = 0^T 7$ Use Backsubstitution to Solve for w

Adaptive Filter Techniques

- Track Variations in the Data to Give Optimum Filter Coefficients
- Least Mean Squares (LMS) Algorithms
 - Advantage: Simple to Implement
 - Disadvantage: Relatively Slow Convergence Time
- Least Squares (LS) Algorithms
 - Advantage: Faster Rate of Convergence Over LMS
 - Disadvantage: Computationally Intensive
 Can Exhibit Divergence, Due to
 Finite Wordlength

Adaptive Filter Techniques (Cont.)

- Recursive Least Squares (RLS) Is LS Algorithm
 - QR Decomposition (QRD) Can Be Used to Implement RLS
 - Square-Root Formulation of RLS
 - Advantage: Numerically Stable as Operates on Incoming Data not Time-Averaged Correlation Matrix of Input As Used in Standard RLS
 - Uses Parallel Processing Elements → Suited for Hardware Implementation

Systolic Array Architecture

- Use Systolic Array to Perform QR Decomposition
 - Efficient Hardware Implementation
- Array of Parallel Processing Cells
- Inputs & Outputs Fed Into Different Columns of Array
- 2 Types of Processing Cells
 - Boundary Cell
 - Internal Cell
- Result in Each Cell Forms R Matrix & Z' Matrix Values

Systolic Array Architecture (Cont.)

Agenda

- Motivation
- Application-Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

Discrete Mapping

- Method of Mapping Nodes to Limited Hardware Resources
 - One Performs Only Boundary Cell Operations
 - Others Perform Internal Cell Operations
 - Allows Optimizations of Processors
 - Minimum Amount of Memory Required
- Other Resource-Sharing Techniques Possible

Discrete Mapping

- Method of Mapping Nodes to Limited Hardware Resources
 - One Performs Only Boundary Cell Operations
 - Others Perform Internal Cell Operations
 - Allows Optimizations of Processors
 - Minimum Amount of Memory Required
- Other Resource-Sharing Techniques Possible

Discrete Mapping

- Method of Mapping Nodes to Limited Hardware Resources
 - One Performs Only Boundary Cell Operations
 - Others Perform Internal Cell Operations
 - Allows Optimizations of Processors
 - Minimum Amount of Memory Required
- Other Resource-Sharing Techniques Possible

CORDIC as Processor Cell for Real Inputs

Complex Operations With CORDIC

- Time Share Processors Between Nodes
- Time Share Within Processor (e.g., Use a Single CORDIC)

Mixed Cartesian/Polar Processing

- Different Implementation of Node Processor
 - Transparent to Higher-Level Architecture
- Exploit Hard Multipliers in Internal Cells

Implementation of Back Substitution

- Soft Nios[®] II Processor:
 - Flexibility in Changing R Matrix Size
 - 5,623 Cycles for 20 Coefficients
- Dedicated Hardware
 - Faster than Processor Solution
 - 728 Cycles for 20 Coefficients
- Application-Specific Integrated Processor
 - Can Optimize for Speed or Size
 - Between 460 & 1,144 Cycles for 20 Coefficients

Results & Resource Utilization (i)

- 20 Coefficients, 18 bit, with 2,048 Iterations
- Full CORDIC Implementation Shown Here
 - Multipliers to Remove CORDIC Scaling

Results & Resource Utilization (ii)

- Similar Top-Level Architecture With Mixed Polar & Cartesian Processing
- Higher Multiplier Utilisation, Less Logic
 - Design Space Exploration Allows Speed & Size Trade-Off

Agenda

- Motivation
- Application-Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

Reconfiguration & ASIPs

- ASIPs Use a Program
 - Sequential Instruction-Level Parallelism
 - Can be Quickly & Easily Reprogrammed by Changing the Contents of Program Memory
- Conventional Hardware Description
 - Behavior Encoded in a Number of Parallel Processes
 - Reconfiguration Requires new FPGA Image Literally Rewiring the Device
- ASIPs Can Combine Flexibility of DSPs with Processing Power of FPGAs
- Migrate to Structured ASIC (e.g. Altera Hardcopy Structured ASIC)
 - Does Not Compromise the Reconfigurability

SDR Aspects

- Different Levels of Reconfiguration
- Parameterization
 - Dynamically Change Update Rate, Size, Adaptation, etc.
 - Change the Cost-Performance Trade-Off
- Algorithmic Reconfiguration
 - MIMO for Multipath-Rich Channels & High Data Rates
 - Space-Time Coding for Robustness
 - Adaptive Beamforming to Increase Signal-to-Noise Ratio
- Application Reconfiguration
 - QRD for Polynomial-Based Digital Predistortion
 - QRD for Channel Estimation
 - QRD for Antenna Beamforming

Agenda

- Motivation
- Application Specific Integrated Processors (ASIPs)
- QR Decomposition & QRD-RLS
 - Introduction
 - Systolic Array
- ASIP Implementation of QRD-RLS
 - Architecture
 - Results
- SDR Aspects
- Summary

Summary

- Methodology for Constructing Customized Application-Specific Processors on FPGA
 - Used Here for QRD-Decomposition-Based RLS
 - Appropriate Algorithm for Many Wireless Applications
- Exploit ASIP Methodology
 - Encapsulation & Abstraction
 - Time Multiplexing on Different Levels
- Efficient, Scalable Design Produced
- Straightforward to Reconfigure & Parameterize
- ASIPs Remain Reprogrammable if FPGA Design is Converted to ASIC (e.g., HardCopy Structured ASIC)

