

RECONFIGURABLE ANTENNA PROCESSING WITH MATRIX

DECOMPOSITION USING
FPGA BASED APPLICATION SPECIFIC INTEGRATED PROCESSORS

M.P.Fitton, S.Perry and R.Jackson

Altera European Technology Centre,
Holmers Farm Way, HighWycombe, Bucks HP12 4XF, UK

mfitton@altera.com, sperry@altera.com, rjackson@altera.com

ABSTRACT
The flexibility of FPGAs makes them ideal for application
within Software Defined Radio (SDR). In this contribution,
the implementation of Application Specific Integrated
Processors (ASIP) is demonstrated on the FPGA,
specifically targeting QR matrix decomposition. The ASIP
comprises a number of functional units, controlled by a
simple processor and associated program, and dedicated for
one or more specific algorithms or operations. SDR
Reconfiguration simply requires modification of the
program of the ASIP, without full or partial reconfiguration
of the device to meet different requirements. QR
Decomposition based RLS (QRD-RLS) is suitable for a
wide variety of wireless applications, including antenna
processing and amplifier digital predistortion. Using the
ASIP approach, it is possible to trade off size and
performance to reach the optimum architecture for a
particular set of requirements.

1. INTRODUCTION

Programmable logic is widely seen as a suitable solution
Software Defined Radio and reconfiguration. Here, a novel
Application Specific Integrated Processor approach is
employed in FPGA, facilitating the processing of
computationally intensive tasks without requiring complete
or partial reconfiguration of the device to meet different
requirements.
 In contrast to other work [1], this contribution
considers the ASIP technique specifically for matrix
manipulation. Although the resulting hardware can be
generally applied in adaptive filtering (e.g. Polynomial
based Digital predistortion), the application area considered
here is primarily antenna processing. QR decomposition is
a numerically stable technique that is employed in spatio-
temporal or spatial beamforming and Multiple-Input
Multiple-Output (MIMO) techniques [2]. In particular, in
this contribution we consider the QR decomposition-based
Recursive Least Squares (QR-RLS) algorithm [3].
 From a practical point-of-view, this approach
would allow a system to be readily configured “on-the-fly”

for a number of different requirements. Multiple modes of
SDR operation and radio standards could be supported in a
scalable way. Moreover, within a single mode the system
can be intelligently configured to varying wireless channel
conditions and external requirements, trading off hardware,
processing time (e.g. update rate) and quality (e.g. number
of antennas). For example, the same hardware could
support spatial beamforming, spatio-temporal beamforming
(to combat time dispersion in the wireless channel) and
Layered Space Time reception, depending on the prevailing
channel conditions, interference, regulatory requirements,
etc.
 Using the Application Specific Integrated
Processors (ASIPs) technique the FPGA is configured to
provide a number of functional units, and controlled by a
simple processor and associated program. Reconfiguration
then merely requires modification of the program of the
ASIP and can therefore be performed quickly and simply.
This approach facilitates high-level synthesis and a more
software-oriented approach than conventional hardware
design. Moreover, this technique permits a straightforward
migration from programmable logic to ASIC without
compromising the reconfiguration.

2. APPLICATION SPECIFIC INTEGRATED
PROCESSORS IN FPGA

Conventionally, architectures address different ends of the
performance spectrum, from a general purpose processor
implementing software algorithms to fixed dedicated
custom pipelines. Often, what is required is a balance of the
high level performance associated with dedicated hardware,
coupled with the flexibility of a processor running standard
software.
 Figure 1 shows the general form of an FPGA based
ASIP. A pipelined program memory and program counter
supply the machine with an encoded instruction word. The
program memory is typically included within the processor
and exploits the dual-port facilities of the memories to allow
external sources to load program code.
 The encoded instruction word feeds a decode block that
decodes the data to provide a set of control signals for the
processor. Control signals include: immediate values such

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

MEM1

RF1

FU2

Program
Memory

Decoder

Program
Counter

IO

Mux

FU1

Mux

Figure 1 Application Specific Integrated Processor.

as literals, register file read and write addresses; function
unit enable and operation select signals; multiplexor
operand-select codes.
 The processing core includes a set of function units and
the multiplexors that route data between them. The function
units include memories, registers, basic arithmetic and logic
units, and multiply-add blocks. These blocks may exploit
specific features of the FPGA device or may rely on
standard libraries such as LPM [4]. In addition, custom
application specific units may be included.
 Function units implementing bus-masters, slaves,
general purpose I/O, and streaming point-to-point protocols
provide I/O functionality.

 3. QR DECOMPOSITION BASED
RECURSIVE LEAST SQUARES

3.1 Background
QR-Decomposition is a well-accepted technique employed
in matrix calculations. The matrix A is decomposed into Q
and R:

A=Q.R
Where R is upper triangular and Q is orthogonal, that is:

QT.Q=1
In this example, Q is formed of a sequence of Givens
rotations [3], each designed to annihilate a particular
element of the matrix. QR-Decomposition can be used to

solve systems of linear equations [6]; i.e. to solve for
optimum solution w, given output vector z, first form QT.b:

A.w = z
R.w = QT.z

Then solve for x using backsubstitution, as shown below for
N coefficients.

1,...,1

1

1

'

'

−=

−=

=

∑
+=

Nifor

wRz
R

w

R
zw

N

ij
jiji

ii
i

NN

N
N

It is often appropriate to solve a succession of linear
systems, each slightly different from the previous one.
Calculating the optimum solution afresh for each iteration is
prohibitively expensive in terms of complexity, as each
calculation is O(N3). However, it is possible to update the
matrix decomposition in O(N2) operations.

In particular, the Recursive Least Squares form of QR
decomposition (QRD-RLS) is used to compute and update
the least-squares weight vector of a finite impulse response
filter. Standard Recursive Least Squares uses the time-
averaged correlation matrix of the data; in comparison
QRD-RLS operates directly on the input data matrix. This
approach is more computationally complex, but has the
advantage that it is more numerically stable than standard
RLS [3]. With QRD-RLS, the decomposed matrices that are
formed are iteratively updated with a forgetting factor λ, as
shown in subsequent details on implementation.

R11R11 R12R12

R22R22

R13R13

R33R33

R23R23

R14R14

R44R44

z’1z’1

z’2z’2R24R24

R34R34 z’3z’3

z’4z’4

Inputs Output

X1(0) 0 0 0 0
X1(1) X2(0) 0 0 0
X1(2) X2(1) X3(0) 0 0
X1(3) X2(2) X3(1) X4(0) 0
X1(4) X2(3) X3(2) X4(1) z(0)

Inputs Output

X1(0) 0 0 0 0
X1(1) X2(0) 0 0 0
X1(2) X2(1) X3(0) 0 0
X1(3) X2(2) X3(1) X4(0) 0
X1(4) X2(3) X3(2) X4(1) z(0)

Figure 2 Systolic Array Implementation

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

R34

R44

Z2

Z3

Z4

R33

R13R34 R44

Z2 Z3 Z4 R33

R13R34 R44

Z2 Z3 Z4 R33

R13R34 R44

Z2 Z3 Z4 R33

R11 R12 R13 R14 Z1

R22 R23 R24

R33

Figure 3 Discrete mapping of systolic array

3.2 Application areas
There are a number of areas where it is appropriate to apply
QR-decomposition, and particularly QR-decomposition
based RLS that provides a method for iteratively updating
the optimum solution, based on new inputs.
 The technique can be applied in general signal
processing problems (i.e. time domain equalization),
although complexity may prevent this. However, it may be
appropriate to apply the technique in antenna beamforming.
 The algorithm can also be exploited in Multi-Input
Multiple Output techniques [2], in particular to solve the
channel covariance matrix, allowing the parallel data
streams to be extracted.
 Another example of where this technique can be used is
polynomial-based amplifier digital predistortion. Here an
adaptive filter is applied on a number of higher-order
polynomials of the input data, for example to apply an
inverse of the transfer characteristic of a subsequent power
amplifier. In this case, QRD-RLS can be used to calculate
and iteratively update the optimum filter coefficients that
are applied.

4. QRD-RLS ARCHITECTURE IMPLEMENTATION

QR-RLS is suitable for a parallel implementation in the
form of a systolic array [3], which is ideal for a hardware
solution. However, the resulting architecture can be
difficult to reconfigure or scale, and may become too large,
especially for a large number of inputs or limited hardware
requirement. In this case, the mapping of the systolic array
processing cells to available hardware resources necessitates
complex control from a conventional RTL perspective. In
contrast, using the application specific processor facilitates

control and re-use of hardware, permitting a readily scalable
and reconfigurable solution. This is complementary to a
conventional general-purpose processor approach, as an
ASIP solution permits efficient use of the available
hardware, targeted for a specific set of requirements [1].

4.1 Systolic Array
An illustration of a systolic array for QRD-RLS is included
in figure 2; the example uses four input streams (i.e. N=4)
as well as the (desired) output data (z). Data flows from top
to bottom in the structure, and data is inputted in a time-
skewed; the calculations for a particular decomposed matrix
(R) propagate through the array on a diagonal wavefront.
 Two types of systolic node processing elements are
employed here: internal cells and boundary cells. Boundary
cells are used to calculate the Givens rotation that is applied
across a particular row in the matrix. As such, the new
(complex valued) input is compared to the stored data value
(denoted Rij), and a unitary transform is calculated which
annihilates the previous value (which is the conceptual
output) and calculates the new value of this element. This
value corresponds to the magnitude of a vector made up of
the input value and the previous value (scaled by the
forgetting factor λ).
 The unitary transform (Givens rotation), which is
calculated in the boundary cell, is outputted and applied to
the remainder of the row by internal cells (with an index
Rij, where i≤j). These processing elements apply the
transform to input values, and previous (stored) values, to
calculate a new (stored) value, and an output. The
transform is also outputted, to be used by the next boundary
cell in the row.

4.2 Discrete mapping
In section 4.1, we summarize the operation of the nodes
within the systolic array. In the fully parallel configuration,
each node would mapped onto discrete hardware, giving a
fast but large solution. In reality, there maybe insufficient
hardware resources, or a different balance may be required.
In general, this can be achieved by mapping multiple nodes

CORDIC 1

Real(Xin) Imag(Xin)

øout

θ outCORDIC 2

Real(R) |Xin|

øoutCORDIC 1

CORDIC 3

Real(X out) Imag(Xout)

Real(X in) Imag(X in)

øin

θ in

θ out

CORDIC 2

Real(R)
Imag(R)

 (a) Boundary node (b) Internal node

Figure 4 Use of CORDIC in the systolic Array

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

onto a single instantiation of hardware. One method is
time-multiplexing nodes onto a number of node processors
is using discrete mapping [7].
 The nodes in the array are re-arranged, as shown in
figure 3. This technique maps the same number of nodes
onto each diagonal and regularizes the connections between
the nodes. One diagonal is then processed in each time-
slots, requiring five time slots and three processors (2
internal and 1 boundary) in this example.
 There are obviously a wide variety of configurations
that can be explored ranging from a fully parallel
implementation to a single processor which performs all the
required operations for all nodes. It is the strength of the
Application Specific Processor approach that these trade-
offs can be easily explored.

4.3 The use of CORDIC in QR Decomposition
The operation of the processing nodes has been described,
but no specific information on implementation has been
supplied thus far. One method to calculate and apply the
unitary transformation is to use Coordinate Rotation by
Digital Computer (CORDIC). In general, this technique is
employed to transform between Cartesian and Polar
coordinates (vector translation) or to apply a vector rotation.
 This maps well to the requirements of a systolic array
performing QRD-RLS. The boundary cells calculate the
rotation required to annihilate the lower triangular elements
of the decomposed matrix; the internal cells can then apply
these rotations.
 The operation is somewhat complicated if complex data
is used, as shown in figure 4. In the boundary cell, it is
firstly necessary to rotate the (complex) input vector so that
the quadrature component is zero; another CORDIC block
is then used to annihilate the previously stored component
(with a phase rotation of θ). Both of these phase rotations
are then applied in the internal node. In this case, as the
output and stored values are both complex, three CORDIC
blocks are required.

4.4 ASIP implementation of QRD Systolic Array
Previous sections describe the operation if a QRD-RLS
systolic array calculation; here we consider the peculiarities
of an ASIP implementation of the functionality.
 An ASIP architecture lends itself particularly well to
this algorithm, as it is possible to share resources within a
node and between nodes. Furthermore, it is straightforward
to support encapsulation and abstraction, easing the design
process.
 To illustrate these concepts, and to balance the use of
Logic Elements and hard multipliers in an Altera Stratix
device, a mixed Cartesian-Polar calculation is performed.
Here, the unitary transform is calculated in the boundary
cells using CORDIC, as described in section 4.3. However,
the transform is then applied using complex multipliers,

which can be configured in the Stratix device to accept a
new complex calculation every cycle.
 The scheduling and operations in the systolic array are
then controlled by the processor program, which directs
input data to the appropriate functional units, initiates
processing and deals with the outputs of a particular
calculation. In the case of a single processing element
performing all calculations for all nodes, the program
merely inputs appropriates data to the data path hardware
for each calculation. With more hardware, more nodes can
be processed in parallel; in this case the ASIP program
controls the ordering of the calculations and the routing of
input and output data.
 From a memory architecture perspective, the
architecture encapsulates the memory associated with a
particular processing element within that element. This
reduces the memory bandwidth requirements, as compared
to a single large memory for all processing elements.
Furthermore, using a discrete mapping regularizes the
connection between nodes (and therefore processing
elements) such that a maximum of one value is written into
each memory, each iterations regardless of the size of the
array.

4.5 Back substitution
Once the matrix has been decomposed, it is necessary to
perform back-substitution to solve for the optimum adaptive
filter weights, as described in section 3.1. A custom logic
implementation can be used;. the resource utilization
required will depend on the number of variables. The
advantage of this approach is that it is possible to provide
an updated weight vector for each new calculation of the
decomposed matrix.
 Alternatively, a Nios II soft processor core is applied to
perform backsubstitution. The Nios II soft processor family
from Altera is a parameterisable set of general-purpose
RISC processor cores providing as standard:

• 32 bit instruction set architecture
• 32 bit data path and address space
• 32 general-purpose registers
• 32 × 32 multiply and divide instructions
• Generic data and instructions caches
As such, it is likely that a Nios II core may be present

to perform other control functionality and could be reused
to perform backsubstitution.
 If we consider an array with 20 coefficients, , the Nios
processor takes approximately 5623 clock cycles or 37µs at
150MHz (the clock speed for fast Nios II implementations).
Although slower than a pure hardware approach, the
presence of the Nios processor lends flexibility to the
system. Moreover, the Nios processor can be used to
implement other data and control functions on the FPGA.
This facilitates a complete System on a Programmable Chip
(SOPC) solution without the need for an external processor.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

0

10

20

30

40

50

60

70

0 2 4 6 8

Calculation time (ms)

R
es

ou
rc

es

kLEs
Multipliers

0

10

20

30

40

50

60

0 2 4 6 8

Calculation time (ms)

R
esources

kLEs
Multipliers

(a) Configuration A (Polar) (b): Configuration B (Polar/Cartesian)

Figure 5: Size-speed trade-off for Configuration B (Polar/Cartesian)

 The final approach considered here is to use an
additional ASIP for the backsubstitution calculation. Here
it is assumed that this calculation will occur periodically
rather than after every update of the decomposed matrix.
In this case, an additional 460 cycles are required to
perform the back substitution (only 2.3µs at 200MHz).

5. PERFORMANCE AND RESOURCE UTILISATION

Here we consider a number of architectures, and the
corresponding resource utilization. In general, we consider
targeting Altera Stratix technology. The Stratix device
family is based on a 1.5-V, 0.13-µm, all-layer-copper
process technology and offers up to 79,040 logic elements
(LEs), 7 Mbits of embedded memory, optimized digital
signal processing (DSP) blocks, and high-performance I/O
capabilities. However, it is also possible to utilize different
technology, including Altera Cyclone II and Stratix II
families.
 Figure 5 shows the resource utilization against
calculation time for an arbitrary requirement of 20
coefficients and 2048 updates. It is obviously possible to
support different numbers of coefficients and updates; these
values are chosen to illustrate performance and the size-
performance tradeoff. The diagrams describe resource
utilization in terms of thousands of logic elements (kLEs)
and number of 18bit multipliers.
 Configuration A uses CORDIC blocks to perform a the
QR Decomposition using polar calculations. Consequently,
a large number of Logic Elements are used in the realization
of the CORDIC block. Multipliers are used to remove the
scaling which is reduced by CORDIC; alternatively, these
can be replaced with shift-and-add circuitry to remove the
need for hard multipliers. The alternative architecture uses

CORDIC in the boundary cell calculations and applies these
with complex multiplications in the internal cells. This
provides a different size-performance tradeoff, with more
multipliers used (as shown in figure 5b).
 The lowest performance corresponds to a single
processing element, containing a single, time-shared
CORDIC block. This configuration requires 2.3kLEs, one
18-bit multiplier and 7 M4ks (4kbit memories). The time
required for 2048 iterations of 20 elements is 7ms. Another
point on the size-speed tradeoff, a calculation time of
approximately 1.3 ms is possible with a mixed Cartesian-
Polar architecture using 3.8kLEs and 27 18bit multipliers.
Alternatively, similar performance is exhibited with an all-
Polar architecture requiring approximately 21kLEs. Scaling
of CORDIC gain is required, using either shift-and-add
hardware or hard multiplies (a total of 11).
 To calculate 2048 updates of the QRD-RLS calculation,
a total of 5.16 million Multiply-and-Accumulates (MMACs)
are required. With a calculation time of 1.3ms, this
corresponds to 4000MMACs per second. As a reference,
the CORDIC-only architecture for this implementation
corresponds to 26% of the available Logic Elements in the
largest Stratix device (EP1S80), 13% of the available hard
multipliers, and less than 0.5% of the embedded memory
bits. Consequently, in this example the remaining resources
can be utilized to improve the QRD-RLS calculation time,
or used for other applications.

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

6. CONCLUSIONS

In the contribution, we have demonstrated how a QR-
Decomposition based RLS technique can be implemented
with Application Specific Integrated Processors. The FPGA
is configured as a number of custom processors, that can
efficiently re-use available resources. This approach
facilitates high-level synthesis and a more software-oriented
approach than conventional hardware design. Control of
the functionality is afforded by a simple program kept in
random access memory, allowing significant on without
modifying hardware resource. In addition, this approach
permits a straightforward migration from programmable
logic to structured ASIC Error! Reference source not
found. without compromising the reconfigurability.

Results indicate that a high performance can be exhibited, in
terms of overall calculation time. However it is also
possible to trade-off size and performance to reach the
optimum implementation for a particular set of
requirements.

7. REFERENCES

[1] “Reconfigurable Radio with Application Specific

Integrated Processors and Programmable Logic,”
submitted to SDR Technical Conference 2004

[2] B.Vucetic, J. Yuan, Space-Time Coding, Wiley
[3] S.Haykin, Adaptive Filter Theory, 4th edition, Prentice

Hall
[4] Electronic Industry Alliance, “EIA/IS-103-A Library of

Parameterized Modules” http://www.ediforg/lpmweb,
1999.

[5] Tim Zhong Mingqian, A.S.Madhukumar, and Francois
Chin, “QRD-RLS Adaptive Equalizer and its CORDIC-
Based Implementation for CDMA Systems,”
International Journal on Wireless & Optical
Communications, Volume 1, No.1 (June 2003), pages
25-39.

[6] William H. Press, et al Numerical Recipes in C
[7] R.L. Walke, R.W.M. Smith, “Architectures for

Adaptive Weight Calculation on ASIC and FPGA,”
33rd Asilomar Conference on Signals, Systems and
Computers, 1999

[8] Altera Nios II Processor,
http://www.altera.com/literature/lit-nio2.jsp

[9] Altera HardCopy Devices
www.altera.com/products/devices/hardcopy

Proceeding of the SDR 04 Technical Conference and Product Exposition. Copyright © 2004 SDR Forum. All Rights Reserved

