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ABSTRACT  
 
Software-defined radios and cognitive radios offer 
tremendous promise, while having great need for user 
authentication. Authenticating users is essential to ensuring 
authorized access and actions in private and secure 
communications networks. User authentication for 
software-defined radios and cognitive radios is our focus 
here. We present various means of authenticating users to 
their radios and networks, authentication architectures, and 
the complementary combination of authenticators and 
architectures. Although devices can be strongly 
authenticated (e.g., cryptographically), reliably 
authenticating users is a challenge. To meet this challenge, 
we capitalize on new forms of user authentication combined 
with new authentication architectures to support features 
such as continuous user authentication and varying levels of 
trust-based authentication. We generalize biometrics to 
include recognizing user behaviors and use them in concert 
with knowledge- and token-based authenticators. An 
integrated approach to user authentication and user 
authentication architectures is presented here to enhance 
trusted radio communications networks. 
 
 

1. INTRODUCTION 
 
Software-defined radios (SDR) and cognitive radios (CR) 
[1] are expected to provide powerful new capabilities. To 
realize this promise, these radios and their networks will 
need user authentication. Authenticating users ensures that 
only authorized personnel have access to their radios and 
networks. Furthermore, sensitive radio-operations and 
access to resources will be limited to authorized personnel. 
 Users can be authenticated based on something they 
know, have, do and/or are. Recognition based upon 
something you are is conventionally known as biometrics—

automatically recognizing a person using distinguishing 
traits. We generalize biometrics to include recognizing user 
behaviors, which can be used with conventional knowledge- 
and token-based authenticators. Some of these 
authenticators naturally operate continuously and 
transparently to the user. 
 The authentication architecture supports user 
authentication by communicating authentication information 
between various processes and by orchestrating the overall 
authentication processes. We generalize conventional 
authentication architectures to support varying levels of 
authentication or trust and continuous user authentication. 
 In the following sections, we develop means for 
authenticating users, a compatible architecture, and we 
discuss their combination in SDR and CR. 
 

2. USER AUTHENTICATION 
 
We present various means of user authentication, introduce 
generalized biometrics, and illustrate continuous and 
confidence-based user authentication. As shown in Figure 1, 
the four pillars of user authentication are: knowledge (e.g., 
PIN or password), tokens (e.g., key or badge), behaviors 
(e.g., usage patterns or outcomes), and traits (e.g., voice or 

fingerprint). The combination of all four pillars provides the 
strongest user authentication. Biometrics authenticates 
users, as opposed to something they know (which can be 
forgotten or compromised) or possess (which can be lost or 
stolen). Unlike knowledge- and token-based authenticators, 
however, the inability of users to transfer biometrics can 
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Figure 1: The four pillars of user authentication. 
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lead to difficulties, e.g., emergency transfer of operation of 
a radio with biometric access control to an unenrolled user. 
Knowledge- and token-based authenticators can be used to 
authenticate users in these situations to solve this difficulty. 
 Popular biometrics include voice, face, fingerprint, and 
iris (see http://www.biometrics.org/ for others). Voice and 
face biometrics (possibly in combination) are well suited to 
radios that already incorporate microphones and cameras. 
Some biometrics lend themselves to continuous user 
authentication (e.g., to guard against lost or captured radios) 
and varying levels of trust. For example, voice verification 
can be used to continuously authenticate a user while they 
are talking (this can be useful if the voice quality makes it 
difficult for the interlocutor to determine a change in 
operators). Figure 2 shows an example of an authentication 
process over time with varying levels of trust [2]. This 
example begins in a state of provisional trust and, over time, 
proceeds in continued states of provisional trust and then to 
a trusted or untrusted state. While in a state of provisional 
trust, benign operations can be performed, whereas sensitive 
operations would require a trusted state. 

Biometrics can provide user conveniences, such as 
recalling preferences, biometric logins, and screen locks, 
which can also guard against compromised equipment 
losses (e.g., disable a radio that is left behind). We 
generalize conventional biometrics by learning the users and 
recognizing their distinctive behaviors. 

Behavior-based user authentication recognizes users via 
their actions, interests, tendencies, preferences, and other 
patterns. Examples of distinctive behaviors include 1) how a 
user does something (e.g., speed and pattern of typing, 
stylus angle and intensity, use of menus vs. keyboard 
shortcuts), 2) what a user does (e.g., patterns of applications 
use, program features used, patterns of collaboration), and 
3) what a user causes to happen (e.g., sequences of system 
calls, patterns of resource access). These behaviors not only 
include a user’s local actions, but also network interactions 
and outcomes. Behavior-based user authentication, like 
voice verification, has minimal adverse impact on mission. 
The authentication is inherent and transparent; there is 
continuous mode operation and modest resource utilization; 

and user acceptance is likely to be high. Monitoring these 
behaviors can be combined with situational awareness to 
fuse multiple factors into the authentication process. 

A cognitive approach allows for many interesting 
possibilities. First, the threshold to reach the trusted state of 
user authentication can be adapted based upon situational, 
environmental, and mission awareness and the risk of the 
requested operation (e.g., benign volume adjustment to 
sensitive security operations). Second, authentication can be 
performed over time combining available information—
voice communication, mouse/stylus movement, dialogue 
structure, etc. 

Some issues and questions in biometric deployments 
are 1) remote vs. distributed vs. network enrollment and 
verification, 2) where are user models created and stored, 3) 
how are models maintained and updated, 4) how is 
enrollment conducted, 5) how are models bound to users, 6) 
what is the tolerable verification time or rate, 7) how are 
models of new users distributed and their integrity assured, 
8) are there accuracy or policy requirements, and 9) what is 
the architecture to support the biometrics. 

 The integration of the user authentication pillars 
with an authentication architecture for software-defined 
radios and networks is explored and discussed next. 
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Figure 2: Continuous user authentication and trust. 

 
3. ARCHITECTURE 

 
Reconfigurable software-defined radio (SDR) 
implementations must be based on an architecture that 
supports many different functions in addition to the core 
functionality of providing adaptive and dynamic 
communication services. Some of these functions include: 

• Discovery, negotiation and adaptation. It must 
be possible to locate radios and services, and to 
determine which users are controlling each radio. 
Clients also need to be able to negotiate for access 
to services and limited resources and to specify the 
quality of service (QoS) required to adequately 
support the current task. The platform as a whole 
must adapt to status changes and faults, both 
malicious and benign. 

• Management. System administrators must be able 
to manage terminals, services, applications, users 
and their profiles, and security information (such 
as credentials and privileges) from a central 
location. Users and system administrators may 
need to manage some of these entities locally as 
well. 

• Upgrades and configuration management. It 
must be possible to reconfigure entire networks 
and individual radios by changing settings and by 
adding/modifying functionality using 
downloadable software modules. Configuration 
changes must be performed in a controlled and 
secure manner. 
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• Security. Radios and networks need to mutually 
authenticate, and users need to authenticate to 
radios. Radios must also “authenticate” to users – 
users must have confidence that the radio they are 
using is theirs, and that is has not been physically 
compromised or tampered with; however, we do 
not address the authentication of radios to users 
since the necessary assurances are generally 
provided through non-cyber means, such as tamper 
resistant hardware. Since all of the authentication 
relationships are transitive, these basic forms of 
authentication implicitly authenticate users to 
networks and the services that reside on those 
networks, and provide radio to radio and user to 
user authentication. In addition to authentication, 
resource access must be managed, and data 
confidentiality and integrity must be ensured. 

In a real-world SDR implementation, these functions will 
not necessarily be implemented as discrete components that 
have a well-defined location in the instantiation of the SDR 
architecture. Rather, components responsible for 
implementing these functions can be distributed throughout 
the network and across the radios relying on the network; in 
fact, the implementation of these functions can be 
partitioned among multiple components that cooperate from 
distributed locations to provide the required functionality. A 
key difference between SDR architectures and the standard 
architectures used by wired computing hosts is that an SDR 
network has true functionality and can contribute to all of 
these functions, whereas a traditional wired network 
impacts only discovery and negotiation.1 
 While all of these functions are important and impact 
the overall SDR architecture, here we focus on the 
authentication-related aspects of the architecture. Note that 
many of the functions listed impact authentication in one 
way or another. For example, devices and networks must 
negotiate to learn requirements and supported protocols, 
users and their tokens must be managed, and new security 
functionality may be dynamically added to an in-use SDR 
system. 
 
3.1. Network Security Architecture 
 
Whereas the network architecture is of paramount 
importance for enabling general SDR functionality, the 
network itself plays a relatively small role in the realization 
of secure authentication. However, it is likely that the 
network would play a major role in implementing related 
                                                 
1 Some networks contribute to security through the use of 
hardware link encryptors, but these architectures are generally 
used only for networks with special security requirements since the 
deployment and management costs of software-based or per-host 
security (e.g., through encryption) outweigh the incremental 
benefits gained from integrating security with the network 
infrastructure. 

functionality, such as user and privilege management and 
providing data confidentiality. 
 The network architecture directly supports the function 
of authenticating radios and networks. Radios and networks 
must mutually authenticate in order to form a trusted-base 
on which other levels of authentication can be layered and 
to ensure that the most basic network services (such as 
resource discovery) are accessed only by parties that are 
trusted at least nominally. It is especially important that the 
user not be part of the lowest level of authentication since 
user authentication relies on services that must be afforded 
at least a basic level of protection; since the user is not yet 
authenticated when these services are used, trust must come 
from the authentication of other entities. 
 For networks with closed user communities, such as 
those found in certain military environments, this 
requirement can be met implicitly through the use of shared 
symmetric keys. Using this approach, each authorized 
device is seeded with a common key and the network also 
has knowledge of this key. Senders encrypt the data they 
send using their key, and receivers attempt to decrypt it 
using their key. If the decryption yields a well-formed 
message, then the data must have been encrypted and 
decrypted using the same key, which implies that the data 
was transmitted by an authorized party. While this approach 
has limitations (for example, it creates the opportunity for 
an adversary to use certain styles of denial-of-service 
attacks, and it does not provide per-client data 
confidentiality), it is a simple and efficient solution to 
authenticating closed user communities. A significant 
problem with this approach is that it is impossible to 
securely remove a client from the group of trusted clients 
using in-band communication. Removing a client requires 
distributing a new key to the other clients (that will remain 
trusted), which cannot be done in-band without the key 
being accessible to the client that is no longer trusted; using 
the shared symmetric key approach, rekeying requires an 
out-of-band channel (such as physical access) to each 
machine that is to remain trusted – a daunting proposition in 
large communities. Although it is not possible to remove an 
individual client from the network with this single-
community approach, a client can be designated as 
untrusted. However, that does not prevent the client from 
intercepting all traffic on the network, nor does it prevent 
the untrusted host from masquerading as a trusted host. 
 On open networks with diverse user communities, it is 
not feasible to use a shared symmetric key approach. In 
these environments, approaches relying on public-key 
encryption can be used. With such schemes, the network 
has a public/private key pair, and each client has a unique 
public/private key pair. When the network wants to send 
data to a client, it encodes it using the client’s public key, 
and the client can then decode it with its private key. 
Communication from a client to the network occurs in a 
similar manner. Client-to-client communication occurs 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



through the network; that is, the sender encrypts the data 
using the network’s public key sends the encrypted data to 
the network along with the necessary addressing 
information. The network then decrypts the data, encrypts it 
using the receiver’s public key, and forwards the encrypted 
data to the receiver, which can decrypt it using its private 
key. Note that this approach assumes that the network can 
be trusted to route messages appropriately, since there is no 
direct sender-to-receiver authentication. A disadvantage of 
this approach is that secure broadcast is not possible, since 
clients do not share any common secrets. This requires 
broadcast to be implemented as a series of point-to-point 
communications, which wastes bandwidth and power, since 
multiple physical sends are required when one logical send 
would suffice.2 The key advantages of this approach are that 
clients do not need to trust each other and that a single client 
can easily be removed from the pool of trusted hosts, simply 
by invalidating its public key (a task the network is well-
positioned to handle). The public-key encryption approach 
can also be used for closed communities. 

 

Figure 3: Notional radio security architecture. 

 Although beyond the scope of this discussion, note that 
these encryption-based authentication schemes also provide 
a degree of data confidentiality and integrity that may be 
adequate for many applications. 
 
3.2. Radio Security Architecture 
 3.2.1. Secure Communication Interface 
The radio plays a greater role than the network in the 
realization of end-to-end system security. This is largely due 
to the fact that the radio is responsible for authentication on 
both the network and user sides. A notional radio security 
architecture is depicted in Figure 3. Note that this 
architecture is not meant for direct instantiation; rather, it 
shows the logical structure of a system built using our 
cognitive authentication approach. 

The overall security of the SDR platform is predicated on 
the security of the data flowing to and from the radio. As 
such, protecting information in transit is critical to meeting 
the system security needs. Furthermore, as discussed earlier, 
secure communication can be used to perform the 
authentication that is required between the radio and the 
network. The implementation of this secure communication 
channel is beyond the scope of this paper since the details of 
its implementation are not pertinent to user-level 
authentication, so long as the expected functionality is 
provided. 

 The high-level security-related components of the SDR 
security architecture we propose are: a secure 
communication interface; a biometric subsystem, comprised 
of one or more biometric sensor and biometric processor 
pairs; an authentication API; an authentication user 
interface; a security manager; and a security API. These 
components collaborate to provide end-to-end security 
between all of the participating entities in the overall 
system, including the network, radio, applications and 
services, and users.  

 
3.2.2. Biometric Sensors 
Section 2 discussed a number of biometric approaches to 
user authentication. These approaches all require some form 
of hardware input device to gather the required information 
about the user to be authenticated. For example, fingerprint 
recognition requires a fingerprint scanner, user voice 
recognition requires a microphone, and user behavior 
monitoring requires a traditional user input device (e.g., a 
keyboard or mouse). These hardware devices must be an 
integral part of the SDR platform and must communicate 
with their software counterparts over a secure channel. 
Many of these devices are high-bandwidth (although the 
utilization is frequently very bursty) so the channel 
connecting the hardware and software must be capable of 
supporting the data transfer requirements without an undue 
performance impact on the device’s core functionality. 

 The sections that follow provide details pertinent to 
each component of the security architecture, as well as to 
the applications, which are a consumer of the services 
offered by these components. 

                                                 
2 If the network provides a broadcast service instead of requiring 
clients to generate the multiple point-to-point messages, bandwidth 
is still wasted but the power-consumption issue is diminished in 
severity since the network infrastructure itself it usually not power-
constrained. 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



 
3.2.3. Biometric Processors 
Once data has been gathered from a biometric sensor, it 
must be processed to determine user identity (or other user 
characteristics that the sensor has been designed to assess). 
Such processing can occur either in specialized hardware or 
in software. Although the use of specialized hardware 
provides the advantages of increased tamper-proofing and 
higher performance, the complexity of managing updates 
and modifications to the functionality of the hardware often 
outweighs these benefits. Given that the overall security of 
the radios and the services provided by radios and the 
network is built on other software components, 
implementing the biometric processor in software does not 
fundamentally diminish the overall security of the system. 
Although not shown in Figure 3, most biometric processors 
require access to a database that contains information 
required to authenticate users, such as biometric models or 
templates, profiles, or logs of past behavior. 
 
3.2.4. Authentication API 
Once the biometric processor has assessed the identity of 
the user, it needs to inform the operating system so that the 
appropriate resource use policy can be enforced by the 
operating system; this is done using an authorization API. 
Whereas this interface is quite simple in most operating 
systems, a system supporting the robust functionality we 
desire to exploit in our cognitive system must extend 
traditional authentication APIs by making authentication 
continuous and by providing a confidence measure. 
 Modern operating systems perform authentication in a 
discrete and binary manner. A user authenticates once, at 
the beginning of his session, and remains authenticated until 
the session is terminated, or an intervening event occurs, 
such as the activation of a screensaver. In addition, user 
authentication is binary; there are only two outcomes to a 
user authentication request – either authentication succeeds 
and the user receives the full rights and privileges 
associated with his identity, or the authentication fails and 
the user receives no privileges. Our cognitive approach to 
authentication, in contrast, authenticates a user throughout 
his session, either on a periodic basis, or in direct response 
to a security-critical user request or an external stimulus that 
indicates a possible compromise of security. Further, each 
time a user is authenticated, a confidence metric is assigned 
to the outcome authentication event. This measure of 
confidence can be used by an application to vary the 
functionality afforded to a user depending on the confidence 
of the authentication. For example, if the voice 
authentication system is only 70% sure that a user is who he 
claims to be, the system may restrict that user from using 
the most sensitive functions on the radio until a more solid 
authentication can be performed, perhaps using a second 
authentication factor. 
 

3.2.5. Authentication User Interface 
Throughout the authentication process, it may be necessary 
to prompt the user for addition information or to take an 
additional action. In addition, in some environments, the 
user should be kept informed of his authentication status 
(note that there are risks with disclosing information about 
the authentication system; for example, an adversary could 
learn a user’s identity by “shoulder surfing” or an adversary 
who has gained control of a device could use the displayed 
information to determine how the authentication system 
operates in order to exploit it). This interface could be 
integrated with the standard interface of the computing 
platform, or it could be a standalone interface tailored for 
authentication status reporting. 
 
3.2.6. Security Manager 
Once the user has been authenticated, the authentication 
API reports the outcome to the security manager. The 
security manager is responsible for maintaining a mapping 
between operating system objects (e.g., files, processes, 
sockets, etc.) and the privileges that each user can exercise 
on those objects. One of our goals is to build atop COTS 
operating systems; thus, we do not specify how the mapping 
between objects and user privileges should be made or how 
checks on these privileges should be performed before a 
user is allowed to access a resource. 
 However, both continuous authentication and 
confidence-based authentication require modification to the 
standard security subsystems found on common operating 
systems. These modifications can be integrated with the 
existing security subsystem, or can be added as a translation 
layer that mediates between clients and the security system 
(this could be done using software wrappers, for example). 
Confidence-based authentication requires that privileges be 
mapped to objects considering not only the authenticated 
principal (i.e., user) but also the confidence of the 
authentication. Thus, instead of maintaining {object, 
principal, privileges} tuples, the operating system must 
maintain {object, principal, confidence, privileges} tuples. 
When the security system needs to determine the privileges 
a principal has for a given object, it finds the tuple with the 
highest confidence value below the user’s currently 
assigned confidence level, which can vary throughout the 
session. While this may seem to complicate privilege 
management unduly, we do not believe this to be the case; 
appropriate assignment of fine-grained privileges to certain 
high-level objects (e.g., key data stores and applications) 
implicitly impacts the privileges that a principal has for 
dependent resources. 
 The mechanics of implementing continuous 
authentication are not terribly difficult, although it raises a 
number of semantic questions we have not yet completely 
explored. When a user’s authentication status changes, the 
security manager is notified, and future resource access 
requests will be made based on that information. For 
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example, a user could open a file for editing. When he does 
so, the security subsystem verifies that the client has 
permission to open, read, and write to the file, and, 
assuming he does, it allows the operation to proceed – the 
file is opened, the current contents are displayed, and the 
user is allowed to edit the file. Suppose that while editing 
the file, the user’s permission to write to the file is revoked. 
Now, the user will be unable to save his work, which is a 
suboptimal scenario and does not meet the user’s 
expectations (he should not have been allowed to edit the 
file if he cannot save his changes). This simple scenario is 
illustrative of the challenges associated with dynamic 
privileges. These difficulties could be dealt with gracefully 
by applications that were written with consideration of the 
possibility of dynamic privilege updates, but we want to run 
existing applications on our SDR platform. Note that similar 
situations can arise on systems that do not use continuous 
authentication, since the privileges granted to a principal for 
a given resource can be changed at any time, and most 
systems respect the current privileges when making an 
allow/deny decision on an action (instead of relying on the 
privileges in effect when the object was opened for access). 
However, the issues associated with dynamically changing 
permissions are much more important when considered in 
the context of our cognitive SDR platform because changes 
in privilege are expected to be common, whereas they are 
very uncommon in traditional operating environments. 
 When a resource access fails due to inadequate 
confidence in the authentication (as opposed to failing 
because a principal is not authorized to access a resource), 
the application should not be immediately notified of the 
failure. Instead, the security manager should work to 
establish the required credentials. Using the authentication 
API, it can request stronger authentication of the user; this 
may trigger an explicit request to the user via the 
authentication interface. If the proper level of authentication 
can be established, the resource access can proceed as 
expected, transparent to the application. If the appropriate 
confidence cannot be established, then the operation can be 
failed (hopefully the application will handle the failure 
gracefully, but this is not always the case, especially when 
the application pre-asserts that certain privileges exist 
before exercising them), or the system can attempt to 
establish the required confidence after a suitable delay, 
perhaps once external conditions change such that they are 
more conducive to authentication. 
 
3.2.7. Security API 
Applications designed for the cognitive SDR platform can 
be written to leverage the advanced functionality provided 
by our continuous, confidence-based authentication. In 
addition, they can improve overall system performance by 
communicating their authentication needs so that the 
platform does not expend resources providing a degree of 
authentication not required and so that the platform can 

work to ensure that the required authentication has been 
performed by the time it is needed. For example, a device 
may be configured to provide 100% confidence in 
authentication using two factors, such as voice and typing 
pattern. However, if no application being used demands the 
extra confidence afforded by the voice authentication 
system, then the microphone can be disabled and speech 
data does not need to be processed, freeing memory and 
CPU cycles for other tasks, as well as extending battery life. 
The security API enables applications to express such 
information to the security manager. The security API also 
needs to interact with the secure communication subsystem 
so that it can inform the security manager when the trust 
relationship with the network has been broken. 
 
3.2.8. Applications 
Although our platform has been designed to accommodate 
existing applications without modification, new applications 
can be designed to leverage the capabilities exposed by the 
security API to improve the user experience and to improve 
overall system performance. We have not yet explored the 
full set of these possibilities, but designing applications to 
leverage this architecture is critical to its success. 
 Legacy applications will automatically benefit from 
continuous authentication, but will be completely unaware 
of confidence-based authentication. Therefore, the platform 
will need to define a confidence level at which the user is 
considered authenticated, and any level of confidence below 
that will cause the user to be considered completely 
unauthenticated by legacy applications. Applications that 
are aware of confidence-aware authentication, in contrast, 
can enable functionality or access to data based on the 
confidence in the user’s identity. 
 

4. CONCLUSIONS AND IMPLICATIONS FOR CR 
 
We presented an integrated approach to user authentication 
and architecture to enhance trusted radio communications 
networks. User authentication, via generalized biometrics, 
can be combined with other authenticators to provide 
continuous, flexible, and strong user authentication. This 
biometrically enhanced authentication system approach can 
be extended to become part of a cognitive radio system 
which learns about users, situations, and surroundings and 
takes appropriate proactive or reactive actions. The area of 
learning emphasized here has been generalized biometric 
authentication, where the users’ distinctive behaviors and 
traits are learned and recognized. An advanced cognitive 
radio will also learn about and take action based upon user 
preferences, availability of network resources, and other 
elements of the situation and surroundings. 
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