

FPGA IMPLEMENTATION OF AN OFDM PHY

Chris Dick (Signal Processing Group, Xilinx Inc.San Jose USA, chris.dick@xilinx.com)

fred harris (CUBIC Signal Processing Chair, College of Engineering, San Diego State University, San
Diego CA USA, fred.harris@sdsu.edu)

ABSTRACT

Orthogonal frequency division multiplexing (OFDM) based
communication is increasingly being used in environments
that exhibit severe multipath. While there are ASSP
solutions for many common (e.g. 802.11a) and emerging
standards, many communication systems, for example a
military software radio, demand flexibility. The arithmetic
requirements of an OFDM system can be very demanding.
Even the ubiquitous 802.11a WLAN system has arithmetic
requirements in the billions-of-operations per second region
and cannot be satisfied even by high-end DSP
microprocessors. This paper reports on the FPGA
implementation of an OFDM transceiver. In addition to the
FFT based modulator and demodulator, receiver
synchronization and channel estimation is discussed. The
FPGA resource requirements of the various sub-systems is
reported and the design methodology employed for system
design, verification and FPGA implementation is described.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
shaping up to be the communication technology of choice
for many communication environments spanning the
commercial and military sectors. However, even the garden
variety 802.11a OFDM WLAN (wireless local area
network) standard requires arithmetic resourcing that far
exceeds state-of-the-art configurable DSP technologies like
high-speed DSP processors. Field programmable gate arrays
[3] (FPGAs), with their highly parallel architecture are able
to capitalize on the inherent parallelism of the various
algorithms that are used in communication technologies like
OFDM. While device technology and intellectual property
libraries are important for enabling high-performance and
reduced product development cycles, increasingly, FPGA
vendors are placing an emphasis on design flows that allow
communication and signal processing engineers work in the
language of the problem, rather than the language of the chip
designer, e.g. VHDL or Verilog.
 This paper provide a high-level overview of the FPGA
implementation of certain aspects of OFDM physical layer
processing. FPGA implementations of the modulator,
demodulator, packet detector and fine timing estimation

algorithms are described. The use of a high-level design tool
called System Generator for DSPTM [4] is highlighted during
the course of the paper.

2. DESIGN FLOW

The Xilinx System Generator for DSP [4] tool suite was
employed to implement the OFDM transceiver physical
layer processing. System Generator is a visual dataflow
design environment based on The Mathworks Simulink [6]
visual modeling tool set. This programming interface allows
the system developer to work at a suitable level of
abstraction from the target hardware platform, and use the
same model not only for simulation and verification, but for
FPGA implementation. System Generator blocks are bit- and
cycle-true behavioral models of FPGA intellectual property
components, or library elements. The library based approach
results in design cycle compression in addition to
generating area efficient high-performance circuits. Together
with model features such as datatype propagation and the
extensive virtual instruments that are part of the Simulink
libraries, the environment facilitates rapid design space
exploration together with powerful mechanisms for model
debugging.
 A large amount of arithmetic is performed in the process
of acquiring and demodulating and OFDM symbol.
Simulation time for this class of problem is an issue for
conventional HDL (hardware description language)
simulators as well as Simulink based design flows. To
accelerate the simulation process, the

3. PHYSICAL LAYER SIGNAL PROCESSING

3.1. Modulator/De-modulator

The heart of an OFDM modulator and demodulator are the
inverse FFT (IFFT) and FFT respectively. 802.11a WLAN
systems employ a 64-point transform with 52 of the sub-
carriers actually used for carrying user data from a BPSK,
QPSK, 16-QAM or 64-QAM alphabet. The symbol rate for
802.11a systems is 20 MSym./sec. The OFDM symbol
period is 4 µs., with 3.2 µs of this interval occupied by the
64-point FFT symbol and the additional 0.8 µs used for the
cyclic prefix [1]. Among the many library elements in the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

mailto:chris.dick@xilinx.com

System Generator block set are multiple FFT
implementations (System Generator version 6.1). A radix-4
based FFT was used for our implementation, this design
requires 192 clock cycles to complete a transform – ignoring
the cost of initializing the FFT datapath pipeline. While not
essential, it is convenient to use an FPGA processing clock
that is an integer multiple of the symbol rate (20 MHz). A
100 MHz master clock was selected, which results in a 64-
point (I)FFT transform time of 1.92 µs, which is well within
the requirements of a transform completion rate of 1
transform every 4 µs. There is actually ample time for the
one FFT engine to be time division multiplexed between the
OFDM transmitter and receiver. Simulation of our OFDM
transceiver was performed at baseband. In a complete
implementation the OFDM data would typically be up-
sampled and transposed to a digital IF (intermediate
frequency). The frequency domain input data to the
modulator (IFFT) was supplied in a bursty manner
(synchronous with the 100 MHz clock), and the resulting
time series from the transform was similarly generated in a
bursty fashion. The FFT symbol time-series was delivered to
on-chip dual-port block memory [3]. One memory port is
synchronized with the IFFT result bus, with the second port
running at the 20 MHz symbol rate. The cyclic prefix is
inserted by virtue of a simple address sequencer that reads
out the final 25% (16 samples) of the FFT symbol and pre-
appends this data to the 64 element FFT symbol to generate
an 80-sample sequence that is delivered to the channel. The
transmitter memory is double buffered in order to support
simultaneous data transmission and IFFT operation.

3.2. Synchronization

There are many challenging synchronization tasks to address
in an OFDM-based communication system. In fact, this is
frequently the aspect of the system that distinguishes
implementations, and the algorithms involved are more often
than not proprietary in nature. Prior to performing channel
estimation equalization and demodulation, OFDM symbol
timing must be acquired. The approach to timing estimation
will be different for broadcast and packet switched
networks. Here we will consider a random access packet
switched system similar to that employed in 802.11a
networks.
 The receiver does not know when a packet starts, and so
the first synchronization task is packet detection. Once a
packet has been detected the remaining synchronization
functions include course and fine timing recovery and carrier
recovery.
 Figure 1 shows the structure of the IEEE 802.11a
standard preamble. The 10 short preambles (A1-A10) are
identical 16-sample duration sequences. The cyclic prefix
(CP) is a 32-sample sequence and the long preambles (C1

and C2) are identical 64-sample sequences. As indicated in
the figure, the various fields are used for packet detection,
automatic gain control (AGC), diversity selection, coarse
and fine frequency offset estimation, fine symbol timing
estimation and channel estimation.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 CP C1 C2

Packet Detect
AGC
Diversity Selection

Course
frequency
offset
estimation

Channel estimation
Fine frequency
offset estimation

Short preambles Long preambles

CP = Cyclic prefix
Figure 1: IEEE 802.11a standard preamble.

3.2.1 Packet Detection

The packet detector is based on the Schimdl and Cox [2]
delay and correlate algorithm commonly used for acquiring
symbol timing. As shown in The decision statistic is
computed as

()

2

2

()
()

()
P n

M n
R n

= (3)

, the algorithm is essentially a sliding window correlator
combined with an energy detector used to normalize the
decision statistic and hence guard against fluctuations of the
input signal power level.

r(n)

z-D R

| |2P

()2

÷

P(n)

R(n)
M(n)

B1 B2

B2

()*

Figure 2: Schimdl and Cox delay and correlate algorithm.

The sliding window P computes a cross-correlation between
the input signal and a version of the input signal delayed in
time by one short preamble interval - 16D = samples in this
case. The second sliding window R is used to compute the
received signal energy in the cross-correlation interval. The
cross-correlation ()P n and autocorrelation ()R n are
calculated according to Eq. (1) and Eq. (2) respectively.

1

*

0

()
L

n m n m D
m

P n r r
−

+ + +
=

=∑ (1)

1

*

0

()
L

n m D n m D
m

R n r r
−

+ + + +
=

=∑ (2)

The decision statistic is computed as

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

()

2

2

()
()

()
P n

M n
R n

= (3)

FPGA architectural features like the shift register logic 16
(SRL16) primitive found in the Virtex-II and Virtex-II Pro
[3] series of Xilinx devices contribute to producing an
efficient and compact FPGA implementation. Figure 3
provides a high-level view of basic component that is used
to construct an FPGA – the logic slice [3]. There are many
tens-of-thousands of these elemental units available in a
single device. Without going into details, the slice basically
consists of two lookup-tables (LUTs), two flip-flops (FFs),
and additional circuitry for performing high-speed
arithmetic. The LUTs are multi-functional components that
can be used for computing logic equations, configured as
user-application 16x1 RAM or ROM (referred to as
distributed memory), or used as SRL16 elements. All of
these modes are extremely useful for signal processing
applications.

Figure 3: Virtex-II (Pro) logic slice – high-level view.

Functionally, the SRL16 can be viewed as a series
arrangement of 16 flip-flops with a dynamically
programmable tap point, as shown in Figure 4.

Multiplexer

D Q D QD QD Q D QD QD Q D QD QD Q D QD QD Q

Clock

Data In

Data Out

Select

0 1 2 3 15

CE

D QD QD Q

Flip-flop (FF) with clock enable
Figure 4: Functional view of the SRL16 LUT configuration.

The RAM and ROM configurations can be used for storing
filter coefficients or data vectors in a signal processing
system. The utility and versatility of the SRL16

configuration may not immediately be obvious with respect
to signal processing applications, but this unique aspect of
Xilinx FPGAs is extremely powerful for building very
efficient time-division multiplexed hardware that, for
example, can be used to process multiple channels of data.
An example is the pulse shaping and up-sampling of the in-
phase (I) and quadrature (Q) components of the baseband
signal in a transmitter shaping filter or receiver matched
filter.
 As highlighted in [2] ()P n and ()R n can be calculated
iteratively. It is useful to observe that the cascaded integrator
comb (CIC) filter shown in conveniently implements the
iterations.

z-1 z-D

Figure 5: CIC filter used for computing the ()P n and ().R n

SRL16s were used extensively for implementing the packet
detector. A delay equal to one short preamble (16 samples in
this case) is required to compute the cross-correlation (Figure
2). The CIC filters for computing ()P n and ()R n similarly
require a 16-sample delay in the differentiator section of
these filters. Using the node precisions indicated in Figure 2,
and recalling that that the input sequence is complex valued,

1 22 4D B D B× × + × × bits of storage are needed. An
obvious implementation might use the slice FFs to resource
this storage. In our implementation 16,D = 1 16B = and

2 16,B = so 1536 FFs would be required support the delays.
This equates to 1536/2=768 logic slices. If the SRL16
configuration of a LUT is engaged, the slice requirement is
reduced to 48, which is 6.25% the area of a flip-flop based
implementation. The SRL16 LUT configuration is easily
targeted from hardware description languages like VHDL
and Verilog, in addition to the visual programming
environment System Generator for DSP as the addressable
shift register library component.
 To compute the decision statistic ()M n (Eq. (3)) a
division is required. There are many techniques for
implementing a divider, in our implementation the linear
mode of the CORDIC algorithm [5] was employed. The
procedure for computing 0 0/y x is outlined in Eq. (4).
 Given an iteration counter ,i the operand register y and
an additional state register z are updated at each iteration
using conditional additions (subtractions) and logical shifts.
These functions are particularly simple and compact to
implement in an FPGA. Each iteration contributes
approximately one additional bit of precision to the result.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Thus the approach permits a simple mechanism for making a
tradeoff between hardware cost and numerical precision.

1

1

1

0
sgn()

2

2
1

i

i i
i

i i i i
i

i i i

i
d y
x x
y y d x
z z d
i i

+

−
+

−
+

=
=
=

= −

= +
= +

 (4)

 As highlighted in Section 2, System Generator is a
particularly productive design environment that, amongst
other things, enables rapid design exploration. Key nodes in
the design can be monitored and analyzed (with Matlab m-
file scripts for example) to compute performance metrics
that determine if the design satisfies specified requirements.
 The ability to invoke Matlab functions at various stages
of a simulation is extremely powerful. For example, matlab
functions can be invoked to define the precision of a node in
the signal flowgraph based on parameters in the Matlab
workspace. This approach could be used to correctly size the
accumulator in a filter to preclude arithmetic overflow based
on the integration interval, regressor vector precision and the
filter coefficient precision. Datatype propagation in System
Generator can also be considered a mechanism for
modifying model characteristics in response to performance
(design) requirements. Matlab also provides mechanisms to
modify the structure of a model in response to system
parameters.
 While the Simulink graphical block editor is commonly
used for schematic capture of a system, it appears less
widely appreciated that Simulink models can be constructed
programmatically through a Matlab API that supports block
and signal instantiation, customization, deletion, and other
construction methods [6]. It is particularly productive and
efficient to use the Matlab API to customize Simulink
models in situ. Simulink supports block-specific callback
functions during model initialization, the start of simulation,
at every simulation step, and when parameters are changed
(there are in fact many others). By judicious invocation of
the Matlab API, the topology of a Simulink model can be
customized during the initialization of a subsystem. This
allows the user to customize a model in ways normally
considered impossible in a graphical environment.
 This approach was used for the realizing the CORDIC
divider in the packet detector, making it particularly simple
to perform rapid design iterations based on re-definitions of
every aspect of the packet detector. In fact, the entire packet
detector is easily defined is a masked-subsystem that permits
a graphical interface to specify construction of the
ocomplete module. Of course this same approach is also
useful in other parts of the system, for example, the long pre-

amble correlator. Figures 6 and 7 show two examples of the
CORDIC divider with 7 and 10 iterations respectively.

Figure 6: 7-PE CORDIC divider implemented in System

Generator. The Matlab API is used to construct the graph at model
execution time.

Figure 7: 10-PE CORDIC divider implemented in System
Generator. The Matlab API is used to construct the graph at model

execution time.

To move between the two models does not require the
manual addition (deletion) of arcs or blocks, the complete
sub-system is generated using the Matlab API referenced
earlier. The point here of course is that this mechanism is
extremely valuable in terms of accelerating design turns.
Another, probably obvious, use of the approach is to
produce modules that are parameterized in every sense of
the term, which in turn can be considered a useful method
for incorporating design reuse within or across
organizations.
 Using 16-bit input samples, and maintaining 16-bit
precision at all nodes within the correlator, the FPGA
implementation consumes 12 embedded multipliers and 462
logic slices.

3.2.2 Long Preamble Correlator

In WLAN systems the preamble is known at the receiver.
This allows the use of a simple cross-correlation algorithm
for acquiring symbol timing. After the packet detector has
provided an estimate of the starting time for an OFDM
transmission, the symbol timing can be resolved to sample-
level precision by cross-correlating between the received
sequence and a local version of the preamble. In our
implementation a cross-correlation is performed between the
received signal and the long preamble sequence. Using a
signaling rate of 20 MHz, and recalling that both the
received signal and long preamble are complex valued time-
series, the arithmetic requirements to support the correlator
is a little over 5 MOPs, where a MOP is assumed here to
include all of the operations for computing one output
sample – data addressing and arithmetic (multiply-
accumulate (MAC)). To place this value in context, it is
almost all of the real-time cycles of a state-of-the art
instruction-set based DSP microprocessor: and we have not

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

even begun to consider resourcing the carrier recovery,
channel estimation and equalization, demodulation, sample
clock frequency compensation and forward error correction
components of the receiver.
 One useful observation that can be exploited to
implement a compact FPGA implementation (small slice
count, minimal number of embedded multipliers) is that the
cross-correlation can be performed using the sign of both the
input sequence and the locally stored reference template.
That is, a clipped cross-correlator is more than adequate for
acquiring symbol timing. This completely removes the need
for using any of the FPGA embedded multipliers in this
case. Figures 8(a) and (b) provide a comparison between a
full-precision and clipped correlator implementation
respectively. The correlation peaks, indicating the two long
pre-ambles are clearly evident in both cases. Of course the
hardware cost of the clipped correlator is substantially less
than that of the full-precision correlator.

0 500 1000
0

5

10

15

Sample Index

Am
pl

itu
de

(a)

0 500 1000
0

10

20

30

40

50

Sample Index

Am
pl

itu
de

(b)

Figure 8: Long preamble correlator output: (a) Full precision
datapath. (b) Clipped correlator using only sign of the input

samples and 1-bit reference template.

The long preambles C1 and C2 are identical 64-sample
sequences. While the data is presented to the long preamble
correlator at a rate of 20 MHz, it is useful to run the
correlator itself at the 100 MHz clock that is available in the
receiver – recall that the FFT used in the demodulator is
clocked at this higher rate. The correlator is decomposed
into a number of shorter length sub-correlations, with the
output of each of these processing elements (PEs) combined
using a binary tree to form the final result. Each sub-
correlator PE will be responsible for computing 100/20=5
terms of the final result. This requires 64 / 5 13=   such

PEs. The correlation PE is shown in Figure 9. Distributed
memory is used to store the sign of 5 elements of the long
preamble. During each 50 ns interval a 5 term inner-product
is computed between 5 1-bit precision correlation
coefficients read from memory and 5 2-bit regressor vector
elements stored in an SRL16-based shift register. Two bits
are required to represent 1± using a two’s complement
representation. The 1-bit precision correlation coefficients
are effectively encoded in the control-plane of the correlator

PE since they are directly connected to add/sub control port
of the accumulator (de-cumulator) in the processing engine.

Coefficient
Memory

Regressor
Vector

Address
Sequencer

2
+/-

Add/Sub
Control

z-12

1

Coefficient
Address

Regressor
Vector
Address

To Combining
Tree

4
Re-Quantized
Received Signal

Centralized Control Shared
Between all Correlator PEs

Figure 9: One cell of the long preamble correlator.

 It is interesting to note that were it not possible to
employ a clipped correlator in the implementation
4 13 46× = (a non trivial number) embedded multipliers
would have been required. This is an example of one of the
many value propositions of FPGA signal processing:
datapath right sizing. In other configurable signal processing
technologies, like DSP processors, every aspect of the
datapath is pre-determined at device fabrication time. This
includes the type, number and connectivity of the functional
units. If the native datapath of the processor is, say, 32-bits,
32-bits will be used to implement the equivalent of 1- or 2-
bit arithmetic as is the case in our current example. The
FPGA approach to computing is like having a desktop
silicon foundry with a turn around time measured in minutes
or hours instead of months or years as it is for many
complex ASICs and DSP processors.
 Once final performance metric to comment on relates to
memory bandwidth. One high-level view of FPGA signal
processing is as a technology that is essentially a highly
parallel memory array with distributed processing resources
– or vice-versa. The on-chip memory bandwidth can reach
many tera-bytes/second in some cases. The long preamble
correlator is a simple example of a parallel memory
subsystem at work. During each processing clock interval
(100 MHz) each correlator PE reads 3-bits of information –
the 1-bit reference template sample and the 2-bit re-
quantized input sample stream. There are 13 such PEs
operating concurrently in each of 4 correlator segments
(complex data, complex template). Therefore, the read
memory bandwidth is 64 3 13 100 15.6e× × × = Giga-
bits/second or 1.95 Giga-bytes/second. And this is achieved
with an effective FPGA memory footprint of about 100
slices – and remember, there are many tens-of-thousands of
slices in a current generation FPGA.
 The complete long preamble correlator consumes 1100
slices and two embedded multipliers. The two multipliers
are used to compute the magnitude-squared of the complex
correlation sequence whose output is subsequently
processed by a peak detector.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

 The 100 MHz processing clock used here has its roots
in the earlier decisions on the OFDM signaling rates (20
Msym./sec.) and single butterfly (I)FFT architecture. In fact,
the correlator will support a clock frequency of 200 MHz.
This is equivalent to a computation rate of 10.4 GOPs/sec.
Here of course an “OP” is referenced to the elemental
computation of the clipped correlator PE.

3.3. Channel Estimation and Equalization

802.11a compliant WLAN systems are burst communication
systems. The preamble sequence is used not only to detect a
transmission and acquire timing as discussed earlier, but it is
used as a channel probe. The channel is assumed to remain
static over the whole burst, so that once the channel is
estimated, the inverse of the channel response can be
employed in the receiver for channel equalization. If
required, certain sub-carriers may be reserved as pilot
channels that carry specially constructed sequences that
permit the receiver to track the channel in addition to other
time varying parameters such as carrier frequency offset.
 The received signal after the FFT in the demodulator is

 () () () ()Y k C k X k Z k= + (5)

where k is the sub-carrier index, and (), ()C k X k and ()Z k

0, ,63,k = … are the complex channel response, transform
of the long preamble sequence and noise vectors
respectively. Since the long preamble is known at the
receiver, a simple channel estimate can be obtained as

 ()ˆ ()

()
Y kC k
X k

= (6)

Since the two long preambles are identical, averaging can be
used to reduce the error in the estimate. Of course the
averaging can be performed (average of C1 and C2) before
the demodulation process since the DFT (discrete Fourier
transform) is a linear operation. The long preamble is
designed as a wideband signal that will excite the channel
across all frequencies of interest. A frequency domain
representation of the long preamble is stored locally in block
memory [3] at the receiver. Both the numerator and
denominator in Eq. (6) are complex valued quantities. Using
simple arithmetic, the channel estimate ˆ ()C k can be
computed as a real scalar divided by a complex value. This
is turn is implemented in hardware as two real-valued
divisions. The divisions were implemented using the same
CORDIC divider structure described earlier for packet
detection. Once the channel estimate, or inverse more
precisely, has been computed it is stored in memory and
applied in the frequency domain via a complex

multiplication to each element of the demodulated (FFT
output) data sequence. This complex product is implemented
in the obvious manner using the embedded multipliers in the
Virtex-II (Pro) FPGAs.
The channel estimator and frequency domain equalizer
occupy 776 logic slices, 2 block memories and 10 embedded
multipliers

4. CONCLUSION

FPGA signal processing offers system designers many new
and exciting possibilities for implementing signal processing
based applications like communication systems. This
technology enables the construction of a datapath that
precisely matches the computation and memory access
requirements of an algorithm. In addition, and unlike other
configurable technologies such as DSP processors, only the
correct, or minimum, number of bits are used to represent
signals at each point in the computation graph – so called
datapath right sizing. Since the device personality is held as
a configuration bitstream in static RAM (SRAM),
modifications, functional extensions and bug fixes can be
easily applied – even after the system has been deployed in
the field. For example, a network like the Internet could be
employed to supply new FPGA configuration data to remote
equipment.
 This paper has described the implementation of several
aspects of an OFDM PHY which could be considered as one
personality of either a commercial or military software
defined radio. In addition to describing the signal processing
algorithms in the PHY, the design flow employed to produce
the implementation, System Generator for DSP, was
highlighted. It is estimated that using this approach to
implementation reduced the design, development and
verification process from many months down to a few short
weeks.

5. REFERENCES

[1] J. Heiskala and J. Terry, OFDM LANS: A Theoretical and
Practical Guide, Sams Publishing, 2002.

[2] T. M. Schmidl and D. C. Cox, “Low-Overhead, Low
Complexity [Burst] Synchronization for OFDM,” IEEE
International Conference on Communications, Vol. 3., pp.
1301-1306, 1996.

[3] Xilinx Inc., Virtex-II Pro Platform FPGAs,
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?titl
e=Virtex-II+Pro+FPGAs

[4] Xilinx Inc., System Generator for DSP,
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=sy
stem_generato

[5] Yu Hen Hu, “CORDIC-Based VLSI Architectures for Digital
Signal Processing”, IEEE Signal Processing Magazine, pp.
16-35, July 1992.

[6] The Mathworks, Inc., Using Simulink, 2002.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generato
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generato

