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ABSTRACT 
 
Orthogonal frequency division multiplexing (OFDM) based 
communication is increasingly being used in environments 
that exhibit severe multipath. While there are ASSP 
solutions for many common (e.g. 802.11a) and emerging 
standards, many communication systems, for example a 
military software radio, demand flexibility. The arithmetic 
requirements of an OFDM system can be very demanding.  
Even the ubiquitous 802.11a WLAN system has arithmetic 
requirements in the billions-of-operations per second region 
and cannot be satisfied even by high-end DSP 
microprocessors. This paper reports on the FPGA 
implementation of an OFDM transceiver. In addition to the 
FFT based modulator and demodulator, receiver 
synchronization and channel estimation is discussed. The 
FPGA resource requirements of the various sub-systems is 
reported and the design methodology employed for system 
design, verification and FPGA implementation is described. 
 

1. INTRODUCTION 
 
Orthogonal frequency division multiplexing (OFDM) is 
shaping up to be the communication technology of choice 
for many communication environments spanning the 
commercial and military sectors. However, even the garden 
variety 802.11a OFDM WLAN (wireless local area 
network) standard requires arithmetic resourcing that far 
exceeds state-of-the-art configurable DSP technologies like 
high-speed DSP processors. Field programmable gate arrays 
[3] (FPGAs), with their highly parallel architecture are able 
to capitalize on the inherent parallelism of the various 
algorithms that are used in communication technologies like 
OFDM. While device technology and intellectual property 
libraries are important for enabling high-performance and 
reduced product development cycles, increasingly, FPGA 
vendors are placing an emphasis on design flows that allow 
communication and signal processing engineers work in the 
language of the problem, rather than the language of the chip 
designer, e.g. VHDL or Verilog. 
 This paper provide a high-level overview of the FPGA 
implementation of certain aspects of  OFDM physical layer 
processing. FPGA implementations of the modulator, 
demodulator, packet detector and fine timing estimation 

algorithms are described. The use of a high-level design tool 
called System Generator for DSPTM [4] is highlighted during 
the course of the paper. 

 
2. DESIGN FLOW 

 
The Xilinx System Generator for DSP [4] tool suite was 
employed to implement the OFDM transceiver physical 
layer processing. System Generator is a visual dataflow 
design environment based on The Mathworks Simulink [6] 
visual modeling tool set. This programming interface allows 
the system developer to work at a suitable level of 
abstraction from the target hardware platform, and use the 
same model not only for simulation and verification, but for 
FPGA implementation. System Generator blocks are bit- and 
cycle-true behavioral models of FPGA intellectual property 
components, or library elements. The library based approach 
results in design cycle compression in addition to  
generating area efficient high-performance circuits. Together 
with model features such as datatype propagation and the 
extensive virtual instruments that are part of the Simulink 
libraries, the environment facilitates rapid design space 
exploration together with powerful mechanisms for model 
debugging. 
 A large amount of arithmetic is performed in the process 
of acquiring and demodulating and OFDM symbol. 
Simulation time for this class of problem is an issue for 
conventional HDL (hardware description language) 
simulators as well as Simulink based design flows. To 
accelerate the simulation process, the  

 
3. PHYSICAL LAYER SIGNAL PROCESSING 

 
3.1. Modulator/De-modulator 
 
The heart of an OFDM modulator and demodulator are the 
inverse FFT (IFFT) and FFT respectively. 802.11a WLAN 
systems employ a 64-point transform with 52 of the sub-
carriers actually used for carrying user data from a BPSK, 
QPSK, 16-QAM or 64-QAM alphabet. The symbol rate for 
802.11a systems is 20 MSym./sec. The OFDM symbol 
period is 4 µs., with 3.2 µs  of this interval occupied by the 
64-point FFT symbol and the additional 0.8 µs used for the 
cyclic prefix [1].  Among the many library elements in the 
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System Generator block set are multiple FFT 
implementations (System Generator version 6.1). A radix-4 
based FFT was used for our implementation, this design 
requires 192 clock cycles to complete a transform – ignoring 
the cost of initializing the FFT datapath pipeline. While not 
essential, it is convenient to use an FPGA processing clock 
that is an integer multiple of the symbol rate (20 MHz). A 
100 MHz master clock was selected, which results in a 64-
point (I)FFT transform time of 1.92 µs, which is well within 
the requirements of a transform completion rate of  1 
transform every 4 µs. There is actually ample time for the 
one FFT engine to be time division multiplexed between the 
OFDM transmitter and receiver. Simulation of our OFDM 
transceiver was performed at baseband. In a complete 
implementation the OFDM data would typically be up-
sampled and transposed to a digital IF (intermediate 
frequency). The frequency domain input data to the 
modulator (IFFT) was supplied in a bursty manner 
(synchronous with the 100 MHz clock), and the resulting 
time series from the transform was similarly generated in a 
bursty fashion. The FFT symbol time-series was delivered to 
on-chip dual-port block memory [3]. One memory port is 
synchronized with the IFFT result bus, with the second port 
running at the 20 MHz symbol rate. The cyclic prefix is 
inserted by virtue of a simple address sequencer that reads 
out the final 25% (16 samples) of the FFT symbol and pre-
appends this data to the 64 element FFT symbol to generate 
an 80-sample sequence that is delivered to the channel. The 
transmitter memory is double buffered in order to support 
simultaneous data transmission and IFFT operation.   

 
3.2. Synchronization 
 
There are many challenging synchronization tasks to address 
in an OFDM-based communication system. In fact, this is 
frequently the aspect of the system that distinguishes 
implementations, and the algorithms involved are more often 
than not proprietary in nature. Prior to performing channel 
estimation equalization and demodulation, OFDM symbol 
timing must be acquired. The approach to timing estimation 
will be different for broadcast and packet switched 
networks. Here we will consider a random access packet 
switched system similar to that employed in 802.11a 
networks. 
 The receiver does not know when a packet starts, and so 
the first synchronization task is packet detection. Once a 
packet has been detected the remaining synchronization 
functions include course and fine timing recovery and carrier 
recovery.  
 Figure 1 shows the structure of the IEEE 802.11a 
standard preamble. The 10 short preambles (A1-A10) are 
identical 16-sample duration sequences. The cyclic prefix 
(CP) is a 32-sample sequence and the long preambles (C1 

and C2) are identical 64-sample sequences. As indicated in 
the figure, the various fields are used for packet detection, 
automatic gain control (AGC), diversity selection, coarse 
and fine frequency offset estimation, fine symbol timing 
estimation and channel estimation. 
 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 CP C1 C2

Packet Detect
AGC
Diversity Selection

Course
frequency
offset
estimation

Channel estimation
Fine frequency
offset estimation

Short preambles Long preambles

CP = Cyclic prefix  
Figure 1: IEEE 802.11a standard preamble. 

3.2.1 Packet Detection 
 
The packet detector is based on the Schimdl and Cox [2] 
delay and correlate algorithm commonly used for acquiring 
symbol timing. As shown in The decision statistic is 
computed as 
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, the algorithm is essentially a sliding window correlator 
combined with an energy detector used to normalize the 
decision statistic and hence guard against fluctuations of the 
input signal power level.  
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Figure 2: Schimdl and Cox delay and correlate algorithm. 
 
The sliding window P computes a cross-correlation between 
the input signal and a version of the input signal delayed in 
time by one short preamble interval - 16D =  samples in this 
case. The second sliding window R is used to compute the 
received signal energy in the cross-correlation interval. The 
cross-correlation ( )P n and autocorrelation ( )R n  are 
calculated according to Eq. (1) and Eq. (2) respectively. 
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The decision statistic is computed as 
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FPGA architectural features like the shift register logic 16 
(SRL16) primitive found in the Virtex-II and Virtex-II Pro 
[3] series of Xilinx devices contribute to producing an 
efficient and compact FPGA implementation. Figure 3 
provides a high-level view of basic component that is used 
to construct an  FPGA – the logic slice [3]. There are many 
tens-of-thousands of these elemental units available in a 
single device. Without going into details, the slice basically 
consists of two lookup-tables (LUTs), two flip-flops (FFs), 
and additional circuitry for performing high-speed 
arithmetic. The LUTs are multi-functional components that 
can be used for computing logic equations, configured as 
user-application 16x1 RAM or ROM (referred to as 
distributed memory), or used as SRL16 elements. All of 
these modes are extremely useful for signal processing 
applications.   
 

 
 

Figure 3: Virtex-II (Pro) logic slice – high-level view. 

Functionally, the SRL16 can be viewed as a series 
arrangement of 16 flip-flops with a dynamically 
programmable tap point, as shown in Figure 4.  
 

Multiplexer

D Q D QD QD Q D QD QD Q D QD QD Q D QD QD Q

Clock

Data In

Data Out

Select

0 1 2 3 15

CE

D QD QD Q

Flip-flop (FF) with clock enable  
Figure 4: Functional view of the SRL16 LUT configuration. 

The RAM and ROM configurations can be used for storing 
filter coefficients or data vectors in a signal processing 
system. The utility and versatility of the SRL16 

configuration may not immediately be obvious with respect 
to signal processing applications, but this unique aspect of 
Xilinx FPGAs is extremely powerful for building very 
efficient time-division multiplexed hardware that, for 
example, can be used to process multiple channels of data. 
An example is the pulse shaping and up-sampling of the in-
phase (I) and quadrature (Q) components of the baseband 
signal in a transmitter shaping filter or receiver matched 
filter.  
 As highlighted in [2] ( )P n  and ( )R n can be calculated 
iteratively. It is useful to observe that the cascaded integrator 
comb (CIC) filter shown in conveniently implements the 
iterations. 

 

z-1 z-D

 
Figure 5: CIC filter used for computing the ( )P n  and ( ).R n   

 
SRL16s were used extensively for implementing the packet 
detector. A delay equal to one short preamble (16 samples in 
this case) is required to compute the cross-correlation (Figure 
2). The CIC filters for computing ( )P n  and ( )R n  similarly 
require a 16-sample delay in the differentiator section of 
these filters. Using the node precisions indicated in Figure 2, 
and recalling that that the input sequence is complex valued, 

1 22 4D B D B× × + × × bits of storage are needed. An 
obvious implementation might use the slice FFs to resource 
this storage. In our implementation 16,D = 1 16B =  and 

2 16,B =  so 1536 FFs would be required support the delays. 
This equates to 1536/2=768 logic slices. If the SRL16 
configuration of a LUT is engaged, the slice requirement is 
reduced to 48, which is 6.25% the area of a flip-flop based 
implementation. The SRL16 LUT configuration is easily 
targeted from hardware description languages like VHDL 
and Verilog, in addition to the visual programming 
environment System Generator for DSP as the addressable 
shift register library component. 
 To compute the decision statistic ( )M n (Eq. (3)) a 
division is required. There are many techniques for 
implementing a divider, in our implementation  the linear 
mode of the CORDIC algorithm [5] was employed. The 
procedure for computing 0 0/y x  is outlined in Eq. (4).  
 Given an iteration counter ,i the operand register y and 
an additional state register z are updated at each iteration 
using conditional additions (subtractions) and logical shifts. 
These functions are particularly simple and compact to 
implement in an FPGA. Each iteration contributes 
approximately one additional bit of precision to the result. 
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Thus the approach permits a simple mechanism for making a 
tradeoff between hardware cost and numerical precision. 
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 As highlighted in Section 2, System Generator is a 
particularly productive design environment that, amongst 
other things, enables rapid design exploration. Key nodes in 
the design can be monitored and analyzed (with Matlab m-
file scripts for example) to compute performance metrics 
that determine if the design satisfies specified requirements.  
 The ability to invoke Matlab functions at various stages 
of a simulation is extremely powerful.  For example, matlab 
functions can be invoked to define the precision of a node in 
the signal flowgraph based on parameters in the Matlab 
workspace. This approach could be used to correctly size the 
accumulator in a filter to preclude arithmetic overflow based 
on the integration interval, regressor vector precision and the 
filter coefficient precision. Datatype propagation in System 
Generator can also be considered a mechanism for 
modifying model characteristics in response to performance 
(design) requirements. Matlab also provides mechanisms to 
modify the structure of a model in response to system 
parameters.   
 While the Simulink graphical block editor is commonly 
used for schematic capture of a system, it appears less 
widely appreciated that Simulink models can be constructed 
programmatically through a Matlab API that supports block 
and signal instantiation, customization, deletion, and other 
construction methods [6].  It is particularly productive and 
efficient to use the Matlab API to customize Simulink 
models in situ.  Simulink supports block-specific callback 
functions during model initialization, the start of simulation, 
at every simulation step, and when parameters are changed 
(there are in fact many others).  By judicious invocation of 
the Matlab API, the topology of a Simulink model can be 
customized during the initialization of a subsystem.  This 
allows the user to customize a model in ways normally 
considered impossible in a graphical environment. 
 This approach was used for the realizing the CORDIC 
divider in the packet detector, making it particularly simple 
to perform rapid design iterations based on re-definitions of 
every aspect of the packet detector. In fact, the entire packet 
detector is easily defined is a masked-subsystem that permits 
a graphical interface to specify construction of the 
ocomplete module. Of course this same approach is also 
useful in other parts of the system, for example, the long pre-

amble correlator. Figures 6 and 7 show two examples of the 
CORDIC divider with 7 and 10 iterations respectively. 
 

 
Figure 6: 7-PE CORDIC divider implemented in System 

Generator. The Matlab API is used to construct the graph at model 
execution time. 

 

 
 

Figure 7: 10-PE CORDIC divider implemented in System 
Generator. The Matlab API is used to construct the graph at model 

execution time. 
 
To move between the two models does not require the 
manual addition (deletion) of arcs or blocks, the complete 
sub-system is generated using the Matlab API referenced 
earlier. The point here of course is that this mechanism is 
extremely valuable in terms of accelerating design turns. 
Another, probably obvious, use of the approach is to 
produce modules that are parameterized in every sense of 
the term, which in turn can be considered a useful method 
for incorporating design reuse within or across 
organizations. 
 Using 16-bit input samples, and maintaining 16-bit 
precision at all nodes within the correlator, the FPGA 
implementation consumes 12 embedded multipliers and 462 
logic slices. 
 
3.2.2 Long Preamble Correlator 
 
In WLAN systems the preamble is known at the receiver. 
This allows the use of a simple cross-correlation algorithm 
for acquiring symbol timing. After the packet detector has 
provided an estimate of the starting time for an OFDM 
transmission, the symbol timing can be resolved to sample- 
level precision by cross-correlating between the received 
sequence and a local version of the preamble. In our 
implementation a cross-correlation is performed between the 
received signal and the long preamble sequence. Using a 
signaling rate of 20 MHz, and recalling that both the 
received signal and long preamble are complex valued time-
series, the arithmetic requirements to support the correlator 
is a little over 5 MOPs, where a MOP is assumed here to 
include all of the operations for computing one output 
sample – data addressing and arithmetic (multiply-
accumulate (MAC)). To place this value in context, it is 
almost all of the real-time cycles of a state-of-the art 
instruction-set based DSP microprocessor: and we have not 
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even begun to consider resourcing the carrier recovery, 
channel estimation and equalization, demodulation, sample 
clock frequency compensation and forward error correction 
components of the receiver. 
 One useful observation that can be exploited to 
implement a compact FPGA implementation (small slice 
count, minimal number of embedded multipliers) is that the 
cross-correlation can be performed using the sign of both the 
input sequence and the locally stored reference template. 
That is, a clipped cross-correlator is more than adequate for 
acquiring symbol timing. This completely removes the need 
for using any of the FPGA embedded multipliers in this 
case. Figures 8(a) and (b) provide a comparison between a 
full-precision and clipped correlator implementation 
respectively. The correlation peaks, indicating the two long 
pre-ambles are clearly evident in both cases. Of course the 
hardware cost of the clipped correlator is substantially less 
than that of the full-precision correlator. 
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Figure 8: Long preamble correlator output: (a) Full precision 
datapath. (b) Clipped correlator using only sign of the input 

samples and 1-bit reference template. 
 

The long preambles C1 and C2 are identical 64-sample 
sequences. While the data is presented to the long preamble 
correlator at a rate of 20 MHz, it is useful to run the 
correlator itself at the 100 MHz clock that is available in the 
receiver – recall that the FFT used in the demodulator is 
clocked at this higher rate. The correlator is decomposed 
into a number of shorter length sub-correlations, with the 
output of each of these processing elements (PEs) combined 
using a binary tree to form the final result. Each sub-
correlator PE will be responsible for computing 100/20=5 
terms of the final result. This requires 64 / 5 13=    such 

PEs. The correlation PE is shown in Figure 9. Distributed 
memory is used to store the sign of 5 elements of the long 
preamble. During each 50 ns interval a 5 term inner-product 
is computed between 5 1-bit precision correlation 
coefficients  read from memory and 5 2-bit regressor vector 
elements stored in an SRL16-based shift register. Two bits 
are required to represent 1±  using a two’s complement 
representation. The 1-bit precision correlation coefficients 
are effectively encoded in the control-plane of the correlator 

PE since they are directly connected to add/sub control port 
of the accumulator (de-cumulator) in the processing engine. 
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Figure 9: One cell of the long preamble correlator. 

 It is interesting to note that were it not possible to 
employ a clipped correlator in the implementation 
4 13 46× =  (a non trivial number) embedded multipliers 
would have been required. This is an example of one of the 
many value propositions of FPGA signal processing: 
datapath right sizing. In other configurable signal processing 
technologies, like DSP processors, every aspect of the 
datapath is pre-determined at device fabrication time. This 
includes the type, number and connectivity of the functional 
units. If the native datapath of the processor is, say, 32-bits, 
32-bits will be used to implement the equivalent of 1- or 2-
bit arithmetic as is the case in our current example. The 
FPGA approach to computing is like having a desktop 
silicon foundry with a turn around time measured in minutes 
or hours instead of months or years as it is for many 
complex ASICs and DSP processors. 
 Once final performance metric to comment on relates to 
memory bandwidth. One high-level view of FPGA signal 
processing is as a technology that is essentially a highly 
parallel memory array with distributed processing resources 
– or vice-versa. The on-chip memory bandwidth can reach 
many tera-bytes/second in some cases. The long preamble 
correlator is a simple example of a parallel memory 
subsystem at work. During each processing clock interval 
(100 MHz) each correlator PE reads 3-bits of information – 
the 1-bit reference template sample and the 2-bit re-
quantized input sample stream. There are 13 such PEs 
operating concurrently in each of 4 correlator segments 
(complex data, complex template). Therefore, the read 
memory bandwidth is 64 3 13 100 15.6e× × × =  Giga-
bits/second or 1.95 Giga-bytes/second. And this is achieved 
with an effective FPGA memory footprint of about 100 
slices – and remember, there are many tens-of-thousands of 
slices in a current generation FPGA. 
 The complete long preamble correlator consumes 1100 
slices and two embedded multipliers. The two multipliers 
are used to compute the magnitude-squared of the complex 
correlation sequence whose output is subsequently  
processed by a peak detector. 
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 The 100 MHz processing clock used here has its roots 
in the earlier decisions on the OFDM signaling rates (20 
Msym./sec.) and single butterfly (I)FFT architecture. In fact, 
the correlator will support a clock frequency of 200 MHz. 
This is equivalent to a computation rate of  10.4 GOPs/sec. 
Here of course an “OP” is  referenced to the elemental 
computation of the clipped correlator PE. 
 
3.3. Channel Estimation and Equalization 
 
802.11a compliant WLAN systems are burst communication 
systems. The preamble sequence is used not only to detect a 
transmission and acquire timing as discussed earlier, but it is 
used as a channel probe. The channel is assumed to remain 
static over the whole burst, so that once the channel is 
estimated, the inverse of the channel response can be 
employed in the receiver for channel equalization. If 
required, certain sub-carriers may be reserved as pilot 
channels that carry specially constructed sequences that 
permit the receiver to track the channel in addition to other 
time varying parameters such as carrier frequency offset. 
 The received signal after the FFT in the demodulator is 
 
  ( ) ( ) ( ) ( )Y k C k X k Z k= +  (5) 
 
where k is the sub-carrier index, and ( ), ( )C k X k  and ( )Z k  

0, ,63,k = …  are the complex channel response, transform 
of the long preamble sequence and noise vectors 
respectively. Since the long preamble is known at the 
receiver, a simple channel estimate can be obtained as 
 
  ( )ˆ ( )

( )
Y kC k
X k

=  (6) 

 
Since the two long preambles are identical, averaging can be 
used to reduce the error in the estimate. Of course the 
averaging can be performed (average of C1 and C2) before 
the demodulation process since the DFT (discrete Fourier 
transform) is a linear operation. The long preamble is 
designed as a wideband signal that will excite the channel 
across all frequencies of interest. A frequency domain 
representation of the long preamble is stored locally in block 
memory [3] at the receiver. Both the numerator and 
denominator in Eq. (6) are complex valued quantities. Using 
simple arithmetic, the channel estimate ˆ ( )C k can be 
computed as a real scalar divided by a complex value. This 
is turn is implemented in hardware as two real-valued 
divisions. The divisions were implemented using the same 
CORDIC divider structure described earlier for packet 
detection. Once the channel estimate, or inverse more 
precisely, has been computed it is stored in memory and 
applied in the frequency domain via a complex 

multiplication to each element of the demodulated (FFT 
output) data sequence. This complex product is implemented 
in the obvious manner using the embedded multipliers in the 
Virtex-II (Pro) FPGAs.  
The channel estimator and frequency domain equalizer 
occupy 776 logic slices, 2 block memories and 10 embedded 
multipliers   

 
4. CONCLUSION 

 
FPGA signal processing offers system designers many new 
and exciting possibilities for implementing signal processing 
based applications like communication systems. This 
technology enables the construction of a datapath that 
precisely matches the computation and memory access 
requirements of an algorithm. In addition, and unlike other 
configurable technologies such as DSP processors, only the 
correct, or minimum, number of bits are used to represent 
signals at each point in the computation graph – so called 
datapath right sizing.  Since the device personality is held as 
a configuration bitstream in static RAM (SRAM), 
modifications, functional extensions and bug fixes can be 
easily applied – even after the system has been deployed in 
the field. For example, a network like the Internet could be 
employed to supply new FPGA configuration data to remote 
equipment. 
 This paper has described the implementation of several 
aspects of an OFDM PHY which could be considered as one 
personality of either a commercial or military software 
defined radio. In addition to describing the signal processing 
algorithms in the PHY, the design flow employed to produce 
the implementation, System Generator for DSP, was 
highlighted. It is estimated that using this approach to 
implementation reduced the design, development and 
verification process from many months down to a few short 
weeks. 
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