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ABSTRACT 
 
SDR systems require flexibility, long-lifecycles, and low-
costs and power. An optimal implementation architecture 
leverages the advantages of processors and field 
programmable gate arrays (FPGAs) which provides a fully 
programmable architecture capable of delivering the high 
signal processing performance demands of SDR. In these 
heterogeneous architectures, the control processing is 
implemented on the processor and the dataflow processing 
is implemented on the FPGA fabric. In many cases, this can 
be considered a co-processing architecture as defined by the 
3 permutations of co-processors: pre-processing, post-
processing, and co-processing. Altera supports these three 
architectures with development tools enabling co-processing 
design and integration. 
 

1. INTRODUCTION 
 
When designing a cellular baseband SDR system, long-term 
system flexibility is always a particular concern. SDR 
systems must be able to operate under present conditions, 
but also be easily enhanced to meet changing future 
requirements. As a result, in SDR design implementing an 
architecture that can meet reconfigurability requirements, as 
well as cost, power and performance demands is always a 
key challenge. These reconfigurabilty requirements can be 
implemented in hardware using processor-based 
components, FPGA components, or a combination of the 
two. The author believes that, in general, optimal SDR 
system architectures are best implemented using a 
combination of these two types of semiconductor 
technologies. 
 

2. SDR CONCEPTUAL ARCHITECTURE – 
DYNAMIC FUNCTIONS 

 
As has been discussed elsewhere, [1] three different 
techniques can be used to implement system 
reconfigurabilty: using parameterized radio and protocol 
modules, exchanging a single component within a module, 
or exchanging complete radio modules or protocol levels. 
 In the case of parameterized radio modules, the module 
design must take into account all the permutations necessary 
to implement the system. This approach is feasible and even 

required for a narrow range of operations, such as within 
global system for mobile communications (GSM)- or 
universal mobile telecommunication system (UMTS)-based 
standards. Typically, wireless communications standards are 
defined with a variety of operational modes that must be 
dynamically supported in real-time to take advantage of 
operating conditions, such as data throughput demands or to 
compensate for physical system impairments, such as 
multipath and user loading. Parameterized modules, 
however, are not a practical approach for supporting 
reconfiguration requirements across complex standards. In 
the case of GSM and UMTS implementations, for example, 
the physical layer communications are so complex and 
radically different technologically that in commercial 
implementations they are almost invariably designed 
separately in hardware and software and then merged at a 
higher level of software and hardware integration. Because 
of this inability to support reconfiguration across complex 
standards, parameterized modules do not offer an optimal 
approach for supporting future, and as yet undefined, radio 
standards.  
 The second technique—exchanging a single 
component—is useful where particular algorithms do not 
overlap in implementation, but serve similar functions. This 
can be seen, for example in forward error correction with 
Viterbi and Turbo decoding, where either algorithm can be 
chosen within the same standard, but where the physical 
implementation is significantly different. Texas Instruments, 
for example, has embedded two hardware co-processors on 
its TIC6416 device that implement these two algorithms as 
separate parameterized functions to support a variety of 
requirements across different wireless systems. Even these 
parameterized co-processors, however, are only capable of 
limited variations in reconfigurability and may not support 
new features that emerge as wireless standards evolve as has 
occurred, for example, in the 3GPP WCDMA standard with 
high-speed downlink packet access (HSDPA). 
 The third approach, exchanging complete radio 
modules or protocol layers, works well if the majority of the 
system’s operations are significantly different. In GSM and 
UMTS where some components are effectively identical or 
simply permutations of the other, the physical layer is 
entirely different. In another example, GSM to cdma2000 
requires a complete replacement of both the physical and 
network layer implementations because not only are the 
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physical layers entirely different, the upper layer protocols, 
GSM-MAP and ANSI-41 are also too different to use the 
same software implementation across both. 
 A combination of these approaches is required to 
implement existing and future radio standards. Based on the 
requirements for SDR to support both narrowband and 
wideband systems an architecture composed of a 
combination of processors and FPGAs can handle these 
three reconfigurable approaches across all required 
processing loads quite effectively. The processor can be 
used to switch dynamically between major sections of 
software when switching between standards. At the same 
time, the FPGA can be completely reconfigured, as 
necessary, to implement the architecture that has been 
customized for the particular standard currently in use. This 
particular approach meets the design demands for SDR by 
enabling the implementation of radio configurations that can 
be independently developed, tested and loaded onto radios. 
 

3. IMPLEMENTING THE ARCHITECTURE 
 

Having decided to use a combination of processors and co-
processors, the next step in implementing a reconfigurable 
architecture is to identify the different types of operations 
required by the system and the type of processing best 
suited to each of the operations. These operations can be 
divided into two groups: first, system control and 
configuration and second, signal processing data path and 
control. 
 System control and configuration are related functions 
focused on maintaining and controlling the state of the 
system. System control is the dynamic operation within a 
wireless standard, while dynamic configuration changes the 
system from one wireless standard to another. These two 
control-intensive tasks require complex software 
implementations with a light computational load. In SDR 
they are generally written on top of CORBA [2] and the 
SCA [2]. In general, these system control and configuration 
functions are performed by control processors running large 
C-based or similar programs requiring both high levels of 

memory efficiency and maintenance by high-level C 
language tools. These system functions will likely reside on 
control processors. 
 Typically, the bulk of the processing load is taken up 
by the signal processing data path and control tasks. The 
physical layer communications in TDMA-, code-division 
multiple access (CDMA)- and OFDM-based systems along 
with encryption and some of the networking functions are 
all excellent examples. The concentrated computational load 
in signal processing makes it amenable to parallel and 
cascaded data path elements. In cases where data path 
elements are used, the related active real-time control 
function may also require that dedicated control logic be 
integrated with the data path processing. In those cases, 
such as TDMA and FM systems, where the signal 
processing does not consume significant processing 
capabilities, the signal processing and related control 
functions can be software implemented. 
 Depending on the wireless communications standard 
being supported, processing demands can vary significantly. 
Those with light processing demands may be best 
implemented as software-only systems, while those with 
higher processing demands are best implemented as 
software-plus-hardware based systems. The latter will be 
implemented in a combination of digital signal processors 
and FPGA-based dedicated logic architectures. 

Figure 1. Data sourced from and synched to a processor. Figure 2. Data sourced from a high-speed interface through 
the co-processor to the processor.
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4. USING CO-PROCESSORS TO OPTIMIZE 

PERFORMANCE 
In many SDR systems a small percentage of the program 
code consumes the majority of the MIPS in time-
consuming, error-prone and difficult-to-maintain recursive 
algorithms that are used to increase overall system 
performance. The majority of the code, which consumes 
only a small percentage of the MIPS, still reflects the 
majority of the system complexity. 
 FPGAS co-processors can be an efficient means to 
reduce the process load and minimize latency in the system. 
Benefiting from this approach, however, requires knowing 
how to determine whether any individual system design will 
benefit from a co-processor implementation. A poor choice, 
rather than improving system performance, adds 
unnecessary system complexity. 
 There are three very common system configurations 
where a co-processing implementation is very likely to 
enhance overall system performance. The first is a system 
where data is sourced from and then synched to a processor 
(figure 1). The second and third respectively are systems 
where data is either sourced from a high-speed interface 
through the co-processor to the processor (figure 2), or this 
path is reversed (figure 3). In all three of these 
configurations, the processor controls both the co-
processor’s functionality and operating parameters. 
 
 Examples of this first type of configuration include 
forward correction or channel equalization in narrowband 
systems for wireless applications. Examples of the second 
and third types include filtering, digital down-conversion or 
pre-distortion in wireless systems. 
 

 
5. AUTOMATING CO-PROCESSOR INTEGRATION 

. 
Traditionally, co-processor integration has been a very 
manual task, but today there are some tools on the market 
that can be used to automate the integration process. One of 
the most robust is Altera’s system-on-a-programmable-chip 
(SOPC) Builder (figure 4).  
 SOPC Builder has an established history of several 
years use integrating complex peripherals into single- and 
multi-processor-based FPGAs. Applying SOPC Builder to 
support co-processor integration actually simply involved 
an evolution of how the tool was applied to address 
performance issues in customer systems. It did not require 
any technical changes. The tool supports a broad range of 
processors, peripherals and now co-processors. Using 
SOPC Builder’s interactive menus, designers are able to set 
the parameters of the components they intend to use and 
then can choose the optimal Avalon switch architecture to 
connect the selected components. The tool will then 
automatically assemble the system in register transfer level 
(RTL) very high density language (VHDL) or Verilog, after 
which it generates a software driver file called Excalibur.h. 
Excalibur.h contains all the software interfaces for the 
blocks used in the system. It also includes software 
directions for the register and a memory map defined by the 
user’s architectural selection. This correct-by-construction 

Figure 3. Data sourced from the co-processor to the processor. Figure 4. Altera’s SOPC Builder. 
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approach accelerates system integration by months by 
eliminating the error prone and tedious manual development 
of low-level software drivers. In addition, once such blocks 
have been integrated into SOPC Builder they are easily 
reusable in subsequent designs. 
 While SOPC Builder enables the integration of 
complex processor-, peripheral- and co-processor-based 
systems, the co-processors used will likely be unique, 
tailored to the specific application and requiring custom 
development for each individual system. There are a 
number of options to choose from when building a co-
processor. The specifications and C code, for example, can 
be translated into a VHDL or Verilog hardware architecture 
and subsequently be recaptured in a system block diagram 
using Altera’s MathWorks Simulink interface—DSP 
Builder. On the other hand, some methodologies in 
currently in development allow behavioral synthesis of the 
source C code directly into the co-processor. SOPC Builder 
is readily able to accept the output from any of these design 
flows and likely to add intellectual property (IP) relying 
upon these more automated flows in the near future. At the 
present time, however, the most robust flows include 
VHDL, Verilog and DSP Builder. 
 DSP Builder is an extension of the MathWorks 
Simulink environment that allows block capture through 
hardware implementation. It has been closely integrated into 
SOPC Builder specifically to enable the development of co-
processors. With DSP Builder, system designers can 
assemble parameterized blocks representing a plethora of 
functions ranging from muxes through fully parameterized 
finite impulse response (FIR) filters. Once a dataflow 
system has been captured in DSP Builder, it can be exported 
for use as a co-processor in any processor-based system 
assembled by SOPC Builder. 
 

6. CONCLUSION 
 

SDR systems must be designed in a way to ensure they are 
sufficiently flexible and reconfigurable to meet both present 
and changing standards and operating requirements. A 
system architecture that combines processors and co-
processors in a hardware implementation is likely to 
produce an optimal result. 
 Three different techniques are often used to implement 
system reconfigurability, parameterized radio and protocol 
modules, exchanging a single component within a module 
or exchanging complete radio modules or protocol levels. 
Whichever technique is chosen, a combination of processors 
and FPGA-based co-processors can handle it. 
 It is critical when implementing the reconfigurable 
architecture to identify the operations required and to 
determine the best type of processing required. Generally, 
these operations can be divided into two different groups, 
system control and configuration and signal processing path 

and control. System control functions will largely reside on 
the control processor, while the signal processing data path 
and control functions are better assigned to an FPGA-based 
co-processor or DSP. 
 By off-loading MIPS-intensive algorithms to a co-
processor, a designer can derive several significant system 
benefits. Most importantly, performance can be improved 
by an order of magnitude or more since a co-processor can 
significantly outperform the DSP-based software 
implementation. Once the processing load has been reduced, 
the main processor is available handle the majority of the 
code that absorbs only a small percentage of the required 
MIPS. This allows the designer to choose a lower 
performance and less costly main processor. In general, this 
reduction in main processor cost more than compensates for 
the expense of the FPGA-based co-processor 
implementation. 
 While integrating co-processors and processors has 
traditionally been a time-consuming manual process, tools 
are now available to automate the process. One of the most 
robust is Altera’s SOPC Builder, which includes an 
extension of the MathWorks Simulink environment, known 
as DSP Builder, to facilitate co-processor integration. Using 
these automated tools, which can be expected to become 
even more powerful and flexible in the future, has greatly 
simplified co-processor implementation and can help 
significantly reduce system development time and costs. In 
addition, function blocks created using SOPC Builder can 
be stored for reuse in future designs, providing additional 
time and cost benefits. 
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NOTE:  Many of the concepts discussed in this paper 
are also covered in a chapter in the yet to be published 
Software Defined Radio:  Baseband Technology for 
Cellular Systems, Vol. 2 of the Wiley SDR Series 
“Enabling Technology”. 
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