
 

 

 
DISTRIBUTED, CONFIDENCE-BASED LOCALIZATION FOR MOBILE SDRS 

 
David Brady (ECE Dept, brady@ece.neu.edu) 

Mieczyslaw Kokar (ECE Dept, mkokar@coe.neu.edu) 
Kenneth Baclawski (College of CS, kenb@ccs.neu.edu) 

Northeastern University, Boston, MA, USA
ABSTRACT 

 
Traditional multilateration is extended in this work to 
account for uncertainty in the location of ranging nodes, and 
used to localize an ad hoc network of mobile SDRs.  The 
technique is first described and then demonstrated in a 
simulation study.  Simulation results show that network 
localization time is reduced substantially using this 
technique over conventional multilateration. 
 

1. INTRODUCTION 
 

One goal of a Software-Defined Radio (SDR) architecture is 
the maximal replacement of hardware functionality by a 
software equivalent. Effort toward this goal would result in 
reconfigurable software modules and would enable a 
'universal radio' platform. The creation of software modules 
requires the structured amalgamation of data for parameter 
passing (primitives) through services between network 
protocol layers as well as different stages of processing 
within each layer.  These data structures also provide a 
framework for a 'cognitive radio', one which can develop 
and respond to queries about its own state and the state of 
other SDRs.  One component of SDR state that we address 
in this talk is the physical location of the SDR. 
 
The first problem we address is localization of a mobile 
SDR, through packets received from other in-range SDRs 
and physical layer measurements.  By 'localization' we refer 
not only to the estimation of a coordinate trajectory, but also 
to a volume of confidence, within which the node is likely 
to be.  We envision a general setting, in which nodes have a 
wide range of certainty about their location, due to differing 
levels of observations, neighbor density, mobility, and 
sensing capabilities (GPS, proximity sensors, etc.).  Each 
SDR maintains an estimate of its coordinate trajectory, as 
well as a confidence volume. This confidence volume 
describes the current accuracy of the estimate of current 
position, and is described by a confidence probability  and a 
radius.  If the confidence volume of a node is below a 
critical value known to the node, it broadcasts short beacon 
packets with exponentially distributed interarrival times at a 
common rate λ.  These packets contain the identifier of the 
transmitter, its estimated coordinate trajectory, and an 

estimate of the size of its confidence volume (at common 
probability p).  These packets are transmitted on a common 
carrier sense multiple access channel.  Alternatively, if the 
SDR wishes to reduce the size of its confidence volume, it 
detects the contention-free packets within its range on the 
beacon channel,  extracts the information as well as the 
received signal strength indicator (RSSI).  The method of 
incorporating this information into an improved location 
estimate will be described in this work, and comparisons 
will be made to traditional methods which do not utilize 
confidence volumes. 
 
Localization has been an active area of research for over 
four decades, and there is much literature on this subject.  
The accuracy of multilateration methods has been explored 
by numerous authors (see [1,2] and the references therein), 
using time-based range estimators.  Efficient closed-form 
methods for 3-D position estimation for the special case of 
three nodes (trilateration) has been known for some time 
[4]. Received power-based ranging methods have also been 
proposed and analyzed (see [3-6] and the references 
therein).    Further, many field trial have been conducted, 
both for indoor localization [7] and for mobile cellular 
applications [3,6].  To the best of our knowledge, no 
previous work has considered the incorporation of the 
accuracy of position estimation along with the estimate 
itself into the localization algorithm.  That is, the usual 
assumption is of perfect coordinate estimates among all 
reporting nodes.  While this may be the case for certain 
applications, it is not true for position estimation by the 
Global Positioning System (GPS) and most other methods.  
The degree to which improvements may be made by using 
the confidence of estimates is the focus of this work.  
 

2. SYSTEM MODEL 
 
Figure 1 illustrates a network of mobile SDRs at time t in a 
plane.  The true location of node i is denoted by a dot with 
the label i.  The true location of each node is in turn 
centered in a confidence volume, described here as a two-
dimensional sphere, within which the location estimate, or 
apparent location (shown by the shaded dots) is expected to 
lie with a common probability p.  As time progresses the 
confidence volume follows the node and changes in size 
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according to the reliability of the location estimate.  We 
describe the confidence volume as a sphere which for node i 
had a radius Re,i(t).  The confidence volume and the location 
are both estimated by the node, and this information may be 
used by other nodes to update estimates and reliability of 
their own locations. 
 
In this work we consider a coordinate trajectory which is 
polynomial in time for each node.  For any finite 
observation interval [ts, tf], there is a polynomial order for 
which this is approximately true.  We shall denote the 
coordinates of node 0 at time t as the 2-dimensional column 
vector c0(t)=V(t)m0, where m0 is a column vector with 
horizontal and vertical displacement, velocity, acceleration, 
etc., parameters and V(t) is an appropriately dimensioned 
temporal matrix.  The results in this work are easily applied 
to any other finite-parameter motion models. 
 
While we are interested in the estimation of all coordinate 
trajectories, we develop our notation by focusing on node 0. 
We consider the estimation of c0(t) using time-stamped 
range estimates to other nodes in the network.  We will  

Figure 1.  Notation used in this paper.  The true locations of SDRs are 
denoted by labeled dots, and their estimated positions are denoted by 
the shaded dots.  The confidence volume is described by the dashed 
circle.   The estimated trajectory of each node is indicated by the 
directed arcs.  
 
denote the time stamps as ti,  i=1,...N on the observation 
interval [ts, tf]. Each node which provides a ranging signal 
to node 0 is given an index i, corresponding to the order of 
arrival of the ranging signals.  We shall describe the true 
range to node i at time ti as ri.  Also, we define the distance 

between node 0 and the reported location of node i at time ti 
as the apparent range ai.  We quantify the relationship 
between the true and reported location of node i by the 
length ∆i and rotation angle θi, both evaluated at time ti, as 
shown in Figure 1. 
 
The ranging signal provides the observation used to estimate 
the apparent range to node i.  In addition, the ranging signal 
conveys certain information from the transmitting node i, 
including the estimated location of node i at time ti, and a 
confidence radius at time ti, Re,i.  The confidence radius has 
a straightforward interpretation: for a scalar p common to all 
nodes in the network, the probability that the true location 
and the reported location of node i differ by less than Re,i 
exceeds p at time ti.  Later we will show how  Re,i  might be 
determined at node i.  Figure 1 illustrates the relationship 
between the quantities  Re,i , ai, and ri for node 1 at time t1. 
 
The relationships of ri and ai to system parameters are key 
to the multilateration problem: variable ri effects the ranging 
signal characteristics (propagation time, attenuation, etc.) to 
node 0, while ai is more closely related to the reported 
coordinates of node i, ci(ti).  In the ideal case, Re,i=0, ai=ri, 
and standard multilateration techniques apply.  However, we 
shall show that significant improvements in location 
estimates are possible when the positive nature of Re,i is 
considered.  For this reason, we are eventually interested in 
the estimate of apparent range to node i, as this is used with 
the reported coordinates in the multilateration process. 
 
We shall also assume in this work that at each time t, there 
is a uniform distribution of nodes on a disk of radius R, 
centered at node 0, which may produce a detectable RSSI 
signal.   This would be the case if, for example, node 0 were 
moving through a homogeneous field of nodes.  The value 
of R may be conservatively large and could be determined 
by the noise floor of the receiver, and the conditional 
expected value of yi given ri=R.  This uniform assumption 
yields a uniform distribution on the variable ri

2 in the 
interval [0,R2]. 
 
We assume that the sequence ri, i=1,...N is an IID sequence. 
This is a reasonable assumption provided that RSSI signals 
are emitted from each node in an IID fashion.  In Section 3 
and 4 we review and extend the traditional method of 
multilateration, by accounting for range estimates, their 
inaccuracies, and the inaccuracies of the coordinates of 
reporting nodes.  
 

3. MULTILATERATION WITH RANGE 
ESTIMATION ERRORS 

 
Traditional multilateration techniques relate estimates of 
true range ri to the reported coordinates of nodes i=1,...N 
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through a linearized least squares criterion.  In contrast, the 
approach described in this work relates estimates of 
apparent ranges ai to node coordinates through a linearized, 
weighted least squares criterion.  In Section  4 we will relate 
the weights to the reported error radii Re,i, i=1,...N. 
 
Since the observation times {ti} do not coincide and node 0 
is mobile, we consider the estimation of a coordinate 
trajectory in this section.  The estimates of the motion 
parameter vector m0 may be related to the apparent range 
estimator ăi  using a variety of techniques.  Consider, for 
example, the defining equation for ai

2 as shown in Figure 1, 
 
ai

2=ri
2+∆i

2 - 2ri∆i cos θi 
    =|| vi,0||2, 
vi,0 =ci(ti)-V(ti)m0 .                (1)   

 
Equation (1) may be linearized about any coarse motion 
parameter estimator m* as follows 
 

ai
2 ~ ai* 

2 +gi
T(m0-m*)              (2) 

ai*
2 =  ||vi,*||2 

vi,* = ci(ti)-V(ti)m*  
-gi

T = 2[ vi,* T  (ti-ts) vi,* T    ½(ti-ts)2vi,* T  ...]. 
 
A least squares estimator for m0 follows directly from (2) 
and from estimators of ăi

2
 i=1,...N with known covariance 

matrix D0 
  

m0,est = (G0D0
-1G0

T)-1 G0D0
-1 x0,                 (3)            

x0
T = [ ă1

 2 - a1*
2 + g1

Tm*    ...   ăN
 2 - aN*

2 + gN
Tm* ], 

G0 = [g1   ...  gN], 
D0=diag[ R2

e,1 / 2  ...  R2
e,N / 2 ]. 

 
Equation (3) describes the algorithm which node 0 uses to 
determine an estimate of the motion parameter m0.  A 
similar equation is used all nodes.  In the next section we 
complete this estimator by describing  the estimator ăi

 2 .  
 
 

4. APPARENT RANGE ESTIMATION 
 

 
In this section we will develop estimators for the square of 
apparent range ai

2, using the received signal and statistical 
models developed in the last section.  Most ranging 
techniques apply equally well to our formulation, including 
time-of-arrival and received signal strength indicators 
(RSSIs), and we focus on RSSI ranging in this work.  In 
particular, at time ti, with ts <=ti<= tf, the instantaneous 
power of the received signal from  node i, yi, will be 
observed.  We will consider the estimation of  ai

2  using 
cj(tj), tj,yj, Re,j, j=1,...N. 
 

If the bandwidth used for wireless transmission of the RSSI 
signals is small compared to the reciprocal delay spread of 
the radio channel, then the conditional distribution of yi for a 
given range ri, the true range, is well-approximated by a log-
normal distribution, 
 
fy(yi|ri) = 1/(2πσ2yi

2)1/2 exp(-1/(2σ2){ln yi � µ + αln ri}2),         
                                                                 yi>0.          (4) 
 
 
Here, µ is the conditional average value of ln yi at a range of 
1 meter, α is the path loss exponent for the channel between 
nodes 0 and i at time ti.   Further σ is the standard deviation 
of ln yi given ri.  In this work, we shall assume 
omnidirectional antennas and isotropic propagation for all 
nodes.  We shall assume that node 0 has acquired accurate 
estimates of µ, σ and α.  Finally, we assume the 
transmission used to obtain the RSSI measurement also 
conveys information representing the apparent coordinates 
of node i,  the error radius Re,i, and sufficient parity 
checking to reject observations due to two or more 
overlapping RSSI transmissions. 
 
Since the ranges ri, i=1,...N are mutually independent, the 
distribution of ai

2
 given  cj(tj),tj,yj, and Re,j, j=1, ... N depends 

only on yi.  The mean-squared error is a natural performance 
metric for estimators of random quantities, and it is well-
known that the conditional mean E[ ai

2| yi] minimizes this 
metric.  In this work we will compare the performance of 
this estimator to those which are more computationally 
feasible.  In particular, we focus on estimation of ai

2, by first 
estimating the true range ri given yi through the estimator  
E[yi|ri], and then producing ăi

2= E[ai
2|ri]|ri=E[yi|ri]. 

 
It is straightforward to show that the conditional kth moment  
E[ri

k|yi] has the form 
 
E[ri

k|yi]  =  exp[{k2+4k}σ2/(2α2) � k(σ ln yi � µ)/(α σ)] * 
              Φ[(α/σ)ln R – (k+2)(σ/α) + (ln yi – µ)/σ]   /  
              Φ[(α/σ)ln R – 2(σ/α) + (ln yi – µ)/σ],              (5) 
 
where Φ is the standard Gaussian cumulative distribution 
function.  Using equation (1), and the first two conditional 
moments in (5), the estimator  ăi

 2  is readily obtained. 
 
In Sections 3 and 4 we have developed a novel method of 
distributed multilateration which uses confidence volume 
information.  Equations (2), (3) and (5) summarize the 
algorithm used to compute an estimate of mi, for each node 
i.  A important component in this algorithm is the error 
radius for each received set of coordinates. In this next 
section, we describe the method to produce these confidence 
estimates. 
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5. CONFIDENCE VOLUME ESTIMATION 
 
Let ni be a zero-mean Gaussian random vector with positive 
definite covariance matrix ΛΛΛΛi.  Suppose that λmin and λmax 
denote the minimum and maximum eigenvalues of ΛΛΛΛi.  Let 
Fi

HFi=Λi denote the Cholesky factorization of ΛΛΛΛi.  We are 
interested in bounding the probability of the event ||ni||>Re,i. 
 
It is not difficult to show that vi=Fi

-1ni has IID Gaussian 
components, and that ||vi||2 has an exponential distribution 
with mean 2.  As a result, P{||vi||2>l2}=exp(- l2/2).  Further, 
the loci ||ni||=Re,i corresponds to an ellipsoid in vi, which 
may be enclosed in the disk with squared radius  Re,i

2
 /λmin, 

and contains the disk with squared radius  Re,i
2

 /λmax.  As a 
result, we may bound the probability of the event of interest 
as 
 
exp{-Re,i

2/(2λmin)} <= P{||ni||>Re,i} <= exp{- Re,i
2 /(2λmax)}.       

(6) 
 
If we are interested in providing a conservatively large 
confidence sphere for a containment probability p, then (6) 
may be used to relate the radius  Re,i to p as 
 

Re,i
2 <= 2 λmax log (1-p) .                (7) 

 
While our motion parameter estimator m0,est is not Gaussian, 
it is asymptotically Gaussian as N grows given G0.  As a 
result, our coordinate estimator či(t)=V(t)mi,est tends toward 
a Gaussian distribution, given the matrix Gi. Assuming that 
the linearization in (2) is accurate, and assuming that E[ ăi

2 -  
ai

2  | Gi ]=0, and  cov(ăi
2 -  ai

2  |Gi) = Dii=Re,i
2/2, then the 

conditional covariance matrix of či(t) given Gi is 
  

cov(či(t) | Gi) = V(t) (Gi Di -1Gi
T) -1VT(t).           (8) 

 
Equations (7) and (8) summarize the method to estimate the 
size of the confidence volume at node i and at time t.  In the 
next section, we describe a simulation experiment to 
demonstrate the reduction in network localization time due 
to this method of multilateration. 

 
6. NUMERICAL RESULTS 

 
We have developed a simulation tool to demonstrate the 
improvements in localization for a network of mobile SDRs.  
In particular, we are interested in describing this 
improvement through the network localization time, defined 
as follows. 
 
Definition:  The ε-network localization time (NLT) is the 
first time t for which  || V(t) (mi,est - mi ) || <= ε  for each 
node i in the network. 
 

Since the NLT is a random variable, we will estimate its 
first two moments.  Clearly, the NLT depends on many 
parameters, including the node density, range, and initial 
states.  Our aim in this section is to compare the technique 
developed in this work to traditional multilateration for 
identical network conditions, and show that estimates of the 
average NLT are sufficiently reduced using the proposed 
method. 

Figure 2. Mean network localization time as a function of Re,t. 
Simulation parameters are described in  Section 6.  Traditional 
multilateration (upper curve) failed to show finite average NLT for Re,t 
exceeding 50m, and had increasing average NLT with  Re,t .  The 
proposed method of multilateration (lower curve) showed finite and 
decreasing average NLT with  Re,t .  Marginal performance gains 
beyond  Re,t =80m indicates that packets with sufficiently large radius 
of error provide little information for the estimation of the receiver's 
coordinate trajectories. 
 
For our simulation, we consider a 1000m x 1000m 
rectangular area.  Three nodes were given random initial 
displacements and velocity vectors (-3m/sec <||v|| < 
3m/sec), and were provided with perfect estimates of these 
parameters.  Next, 20 nodes were assigned randomly 
generated motion parameters, but were not given this 
information.  Motion across the rectangular boundaries was 
wrapped in the usual fashion, keeping all nodes within the 
grid at all times.  Each SDR had a transmission range of 
R=100m, and we were interested in determining the average 
ε−NLT for  ε =10m.  The confidence probability used for 
volume calculations was p=0.90.    Nodes which had a 
radius of error of Re,t  or less were able to broadcast their 
locations and confidences, as described earlier.  For this 
simulation, we considered values of  Re,t between 10m and 
120m.   Packets were transmitted by a node with mean 
interarrival time of 1/λ=1000sec, and the packet length in 
the random access channel was fixed at 0.01sec. Packets 
propagated at the speed of light, and the received signal was 
attenuated by a log-normal variable with parameters α=4, 
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σ=0.04, and µ was chosen so that a  packet had an average 
received power of -20 dB at maximum range of R=100 m. 
Only contention-free packets were used by a receiving node.  
Initial coarse estimates of mi were provided by the centroid 
algorithm. 
 
Figure 2 shows the average ε-NLT as a function of Re,t  for 
both conventional multilateration (which assumes that all 
received coordinates are accurate) as well as the proposed 
method.  The upper curve represents the simulation results 
for conventional multilateration.  For these experiments,  
conventional multilateration failed to provide a finite 
average NLT when  Re,t  exceeded 50 m, and yielded a  
increasing average NLT with Re,t .  The simulation results 
for the proposed method of multilateration showed similar 
results when all transmitting nodes had a radius of error 
which was 20m or less.  Provided that  Re,t exceeded 20m,  
however, the proposed method of multilateration 
dramatically reduced the average NLT, produced finite 
average NLT's for all tested values of Re,t and showed a 
decreasing average NLT with  Re,t .  As  Re,t  approach the 
value of R, further reductions in average NLT were 
marginal, suggesting that received packets having a large 
reported radius of error did provide additional useful 
information for coordinate estimation.  

  
Figure 3.  Mean Network Localization Time versus Node Density, for 
conventional multilateration (upper curve) and the proposed method 
(lower curve).  Simulation parameters are described in Section 6.  
Sample averages are displayed within a range of 2-standard deviations. 
 

In the next simulation we considered the effect of node 
density on the network simulation time.  Since the ε-NLT is 
defined as a worst-case criterion among the network nodes, 
it is interesting to investigate its dependency on the number 
of nodes.  For this experiment, we considered 3 nodes with 
complete information about their trajectory, as in the last 
experiment.  Next, we placed from 1 to 70 additional nodes 
in the grid, and investigated the ε-NLT, with ε=10m.  For 
this study we set Re,t=80m, and all other parameters were 
identical to the last experiment. 
 
Figure 3 shows the average NLT as a function of the 
number of nodes.  The independent variable was expressed 
as the mean number of in-range nodes.   In contrast to the 
behavior of conventional multilateration, the mean NLT is 
shown to decrease as the node density increases.  This is due 
to the fact that increasing the node density enables the 
sharing of information (and its accuracy).  Conventional 
multilateration exhibits a  growth in the average NLT as the  
node density increases, since the received coordinate 
estimates are assumed to be noiseless. 
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