

DIGIMOD: A TOOL TO IMPLEMENT FPGA-BASED DIGITAL FRONT-END

FOR SOFTWARE RADIOS

José Marín-Roig, Vicente Torres, Mª José Canet, Asunción Pérez, Trinidad Sansaloni,
Fabian Angarita, Javier Valls (Dpto. Electrónica, Universitat Politècnica de València,

Gandia, Spain, {jomara, vtorres, macasu, asperez, tmsansal, faanpre, jvalls}@eln.upv.es),
Francisco Cardells (Inkjet Commercial Division (ICD) R&D Lab, Hewlett-Packard,

Barcelona, Spain, francisco_cardells@spa.exch.hp.com), Felip Vicedo (Dpto. Física y
Arquitectura Computadores, Universitat Miguel Hernández, Elche, Spain,

felip@umh.es), Vicenç Almenar (Dpto. Comunicaciones, Universitat Politècnica de
València, Gandia, Spain, valmenar@dcom.upv.es)

ABSTRACT

DIGIMOD is a software tool that speeds up and makes easy
the implementation of wireless communications systems.
The tool allows the software radio designer to develop
digital upconverters and downconverters and, finally, to
generate automatically the VHDL code to implement the
system on Xilinx FPGAs. The main characteristic of this
tool is that the user can adjust the parameters of an ad-hoc
interpolation or decimation filter chain composed by CIC,
polyphase, pulse shaping, matched filters and a CORDIC-
based or ROM-based mixer. By means of its graphical
interface the user can choose all the subsystems required,
and once the transmitter/receiver is completed, this tool can
evaluate the performance of those IP-cores employed.
Finally, if the specifications are met, the tool generates the
VHDL code for the whole system.

1. INTRODUCTION

In the near future it is expected that new communication
systems will provide higher mobility and wider bandwidth
than present systems. Then, those firms that develop future
communication systems will have to face up to next
challenges: continuous evolving standards, fast deployment
of new services, higher spectral efficiency, high capacity
and mobility data transmissions, and a demand of a high
reliability in those services offered.
 To meet all theses objectives it will be necessary the
use of new methods of design and development. In recent
years a new technology called software defined radio (SDR)
has come up. The main idea behind SDR is to move the
digital part of any communication system towards the
antenna. This means that most of the analogue components
from transmitters and receivers have been substituted by

digital signal processing under FPGA or DSP devices.
Working in this way it is possible to change the system
configuration without changing the hardware.
 This paper presents a tool that speeds up and makes
easy the implementation of wireless communications
systems. With this tool one can design using SWR a digital
transmitter/receiver in intermediate frequency or in base
band. By means of its graphical interface the user can
choose all the subsystems required, and once the
transmitter/receiver is completed, this tool can evaluate the
performance of those employed IP-cores. Finally, if the
specifications are met, the tool generates the VHDL code
for the whole system.

2. DESCRIPTION OF DIGIMOD TOOL

DIGIMOD is a graphical tool that makes easy and fast the
design and implementation of a transceiver for digital
communications on FPGA. The transmitter, also called
upconverter, is composed of several stages: binary data
source, symbol mapping, pulse shaping, interpolation filters
and mixer. Meanwhile, the receiver (or downconverter) is
composed by a chain of elements that performs the reverse
operations: a mixer to bring the signal to baseband,
decimation filters to cancel the double frequency image and
to reduce the sampling rate, a matched filter adapted to the
pulse shape, a demapper and a symbol detector.
 So, the designer of a digital communication modem can
use this tool to:
• select the type of modulation between BPSK, QPSK, and

QAM, and the pulse shape parameters;
• evaluate what kind of filters are needed in the

interpolation or decimation stages, CIC or polyphase
filters can be used;

• design the selected filters by using the toolboxes from
MATLAB and importing the final coefficients;

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

• carry out a floating point simulation where the system
performance is evaluated through two kinds of results:
the Error Vector Measurement (EVM) of the generated
signal, and the bit-error rate (BER) in a standard AWGN
channel;

• evaluate the finite precision for each block by comparing
the floating point design with the same design using
fixed point operators until the implementation loss is
minimized;

• generate a VHDL code of the fixed point modelled
system in which each block is an area optimized
relatively placed macro (RPM).

2.1. Design Flow

There are several steps during the design process with
DIGIMOD. The design flow is shown in figure 1. The first
step is the selection of those blocks needed in the design:
source, modulation mapping, pulse shaping, interpolation
filters, and/or mixer. Then the user must configure their
parameters.
 Once the filter chain is specified, a simulation using
floating point precision is performed to evaluate if the
specifications are fulfilled. The tool generates the frequency
response of the filter chain, as well as of individual filters,
and two quality measurements: BER and EVM. If the
obtained results do not match with system specifications the
user can aggregate or delete blocks, or adjust block
parameters until simulation gives the correct results.
 After tuning the floating point design, the user can
begin with the fixed point evaluation, this part is performed
iteratively: in each step the number of bits (filter
coefficients and output signal) of a new block from the
chain is adjusted, this process is performed until all the
blocks have been analyzed. Simulations are performed in
each step in order to asses the user to choose the number of
bits needed.
 If finite precision simulation accomplishes those
required specifications, the tool is ready to generate the
VHDL code of the system. After target FPGA device
selection, DIGIMOD generates the VHDL code, and it is
synthesized with Synplify and implemented with ISE Xilinx
tool.

2.2. DIGIMOD Blocks

When the tool is started it shows a screen with the main
blocks of a generic digital transmitter or receiver; figure 2
shows this screen for a transmitter design. At this point, the
user can choose which components will be used in the final
design: it should be noted that it is not necessary to include
all the blocks showed in the chain, or that more than one
interpolation filter block can be added. Those blocks
selected and their parameters appear in a list next to the

chain flow diagram (this list is showed empty in figure 2),
the order of appearance in the list determines the up/down
converter structure since this is the order of connection in
the system. Next to the list there is a group of buttons that
allows moving the position of an item in the list (Up and
Down), editing its parameters or adjusting the number of
bits of each stage (Edit). Following sections describe the
different blocks available in DIGIMOD tool.

Fig. 1. Design flow diagram of DIGIMOD

Source
This block allows selecting the source of data and the bit
rate for simulation. Three options can be selected: Random,
File and None. Random option generates automatically a
random sequence of bits (user is allowed to choose the
number of bits transmitted). File option reads data stored in
a file or a MATLAB workspace variable. One of these two
options are required if BER or EVM measurements are
needed. When option None is selected only the floating
point frequency response is available as simulation result,
this option obtains a quick result and it is useful during the
first steps of the chain design.
 The selected option is showed in a box over the chain
list (figure 2). This item does not appear in the list because
source must be always the first stage of the system chain.

START: DOWN/UP- CONVERTER
BLOCK DIAGRAM

BLOCK
CONFIGURATION

FLOAT POINT
EVALUATION

MATCH
SPECIFICATIONS?

FIXED POINT
EVALUATION

MATCH
SPECIFICATIONS?

ADD
FINITE

PRECISION

VHDL CODE
GENERATION

NO

YES

YES

NO

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Fig. 2. First screen of DIGIMOD for a transmitter design
QAM mapping
This block allows choosing the modulation format between
BPSK, QPSK, and QAM. The mapping is performed using
Gray encoding. The selected modulation mapping also
appears over the chain list, beside the source box (figure 2).

Pulse shaping and matched filter
This block includes all the parameters needed in the
definition of a root rise cosine filter: the delay (in number of
symbols), the interpolation factor (in number of samples per
symbol), and the roll-off factor (a number between 0 and 1).
Figure 3 shows the dialog box for this block when a
transmitter is designed.
 The user can select between two implementation
methods: polyphase filter (by default option) or look-up
table [1]. Look-up method makes use of the embedded
block select RAM available in a FPGA device. This method
allows a higher interpolation factor than polyphase filter at a
lower cost and simplifies the interpolation filters that come
later in the transmitter chain. In a fixed point
implementation of a look-up filter, the only parameter
needed is the number of bits at the output.
 Polyphase filters are implemented with bit-serial or
digit-serial distributed arithmetic [2]. In this case, both the
number of bits for the coefficients and the number of bits at
the output are needed to implement this filter in fixed point
precision.
 In a receiver, the matched filter can only be
implemented using a polyphase structure.

Multirate filters
This block allows us to select between two kinds of filters:
CIC filter or FIR filter. When a CIC filter is chosen, the user
must specify these parameters: filter order, interpolation
factor and the differential delay [3]. Its fixed point
implementation only needs the number of bits at the output.
 FIR filters are also called half band filters when the
interpolation/decimation factor is 2 or more generally 1/n-
band filters, where n is the change rate factor. These filters
are implemented using a polyphase structure and distributed
arithmetic. When fixed point design is selected the user
must introduce two parameters: number of bits for

coefficient quantification and number of bits at the output.
The coefficients of the FIR filter can be specified by one of
the following ways:

• from a previously designed filter whose coefficients
have been saved in a “.mat” file or in a workspace
variable;

• from a design using MATLAB SPTOOL, DIGIMOD
allows to import the coefficients;

• from a dialog box where three types of filters can be
specified: Kaiser window, equiripple, and least
squares.

Fig. 3. Pulse shaping dialog.

Mixer
This block only requires the intermediate frequency if a
floating point simulation is selected. In order to simulate the
precision finite behaviour the output resolution and the
phase and frequency resolution must be indicated.
 Two methods can be chosen to implement this block.
The first performs a CORDIC-based mixer [4] and the
second a ROM-based one [5,6]. This last method uses
compression techniques to reduce the size of the required
memories.

2.3. Implementation Technology

The VHDL code generated by DIGIMOD instantiates all
the necessary cores to perform the required operations. All

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

the cores have been described in VHDL by using relative
placed attributes. Furthermore, they are area efficient with
respect to same blocks generated with Xilinx Coregenerator
system [7].

3. A DESIGN EXAMPLE

For a better understanding of DIGIMOD characteristics and
performance, in this section we will present a design
example of a digital IF QPSK modulator using DIGIMOD
tool. In order to benchmark the performance of our tool we
will design the same modulator using Xilinx System
Generator [8], and we will compare the results obtained by
both tools. The QPSK modulator parameters are:

• Data rate: 2 Mbps
• Pulse shape: root raised cosine with a roll-off of 0.3,

and a duration of 8 symbols (4 symbols delay)
• Intermediate frequency: 10.7 MHz
• Output sampling rate: 40 MHz
• DAC resolution: 8 bits

 We have implemented this modulator using these block
settings in DIGIMOD:

− Source: random, 2 Mbps.
− QAM mapping: QPSK.
− Pulse shaping: delay 4, roll-off 0.3, interpolation 4,

(polyphase structure).
− FIR interpolation filter: interpolation factor 2, Kaiser

design (MATLAB parameters: order 6, cut-off
frequency 0.5, beta 3.39).

− CIC interpolation filter: interpolation factor 5, filter
order 3, differential delay 1.

 After some simulations we have checked that good
fixed point parameters are: 8 bits for coefficient
quantization in both filters: pulse shaping and half band
interpolation and 8 bits for signal output for all the blocks in
the system: previous filters, CIC filter and mixer. As results
of these simulations we show in figure 4 the comparison in
BER between floating point design and 8 bits fixed point
design (where implementation loss is less than 0.1 dB), and
in figure 5 the signal spectrum at CIC filter output in both
the passband (above) and the stopband, it is clear that fixed
point spectrum is very close to float point spectrum.

3.1. Implementation Results

Table 1 shows the results of three different implementations
of the QPSK modulator in a Xilinx VirtexE-8 device. The
first one has been performed with Xilinx System generator,
the second and third ones use DIGIMOD tool with the pulse
shaping filter performed with a polyphase filter or with the
look-up table method, respectively.
 It can be seen in Table 1 that DIGIMOD
implementation is more efficient than System Generator
one. It is achieved an area saving of 45% with the polyphase

filter option. If the look-up table method is used to
implement the pulse shaping, two Block Select RAMs and
27 slices are only required.

1 2 3 4 5 6 7 8
10-4

10-3

10-2

10-1

Eb/No

B
ER

float point
8 bits

Fig. 4. BER comparison between floating point and fixed point
implementation

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8

-0.6

-0.4

-0.2

0

dB

frequency (MHz)

0 1 2 3 4 5
-80

-60

-40

-20

0

dB

frequency (MHz)

Fig. 5. CIC output signal spectrum: passband (above) and
stopband.

Table 1 Implementation results
DIGIMOD

Resource (slices) System
Generator Polyphase

PS
Look-up

PS
Pulse shaping
(PS)

201 118

Half band 90 30

27 +
2 BSRAM

CIC 67 67 67
DDS+MIXER 281 189 189
Block connections 140 8 4

QPSK modulator 1137 627 354 +
2 BSRAM

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

 Moreover, not only DIGIMOD implementation requires
less area per block, but also it does not require extra
resources to connect those blocks employed, as System
generator does.
 Finally, the layout of the QPSK modulator
implemented with DIGIMOD is shown in Figure 6. As can
it be seen and was mentioned above all the cores are
implemented as relative placed macros.

Fig. 6. QPSK modulator layout

4. CONCLUSIONS

In this paper a software tool that allows the software radio
designers to develop digital downconverters and, finally,
automatically to generate the VHDL code to implement the
system on Xilinx FPGAs. A design example of a QPSK
modulator has been presented and the results of the
implementation on a VirtexE device have been given. The
same circuit has been implemented by using Xilinx System
Generator and it is shown that our tool leads to an area
efficient implementation.

 To complete DIGIMOD, our goal is to integrate in this
platform all the necessary components of a complete digital
modem. So we will add the generation of other type of
modulations, the possibility of insertion of known
preambles for burst systems, synchronization: phase and
time for continuous and burst data transmission, and
equalization.

5. ACKNOWLEDGEMENTS

This work was supported by the Ministerio de Cicencia y
Tecnología under Research Project TIC2001-2688-C03 and
in part by the Universitat Politècnica de València.

6. REFERENCES

[1] José Marin-Roig, Javier Valls, Vicenç Almenar, "LUT-based

Up-converters for FPGA", Communication Systems, Networks
and Digital Signal Processing Conference, July 2002

[2] Stanley A. White, “Aplications of Distributed Arithmetic to
Digital Signal Processing: A Tutorial Review”, IEEE ASSP
Magazine, July 1989.

[3] E. Hogenauer, “An Economical class of Digital Filters for
Decimation and Interpolation”, IEEE Transactions on
Acoustic, Speech and Signal Processing, vol ASSP-29, nº2,
April 1981.

[4] F. Cardells, J. Valls, "Optimisation of direct digital frequency
synthesizers based on CORDIC", Electronic Letters, Vol. 37,
no. 21, pp. 1278-1280, October 2001

[5] F. Cardells, J. Valls, “Optimized FPGA-implementation of
quadrature DDS", IEEE International Symposium on Circuits
and Systems (ISCAS2002), May 2002, AZ USA

[6] F. Cardells, J. Valls, "Area-Optimized Implementation of
Quadrature Digital Direct Synthesizer on LUT-based
FPGAs", IEEE Trans. on Circuits and Systems II, Vol. 50, no.
3, pp. 135-138, March 2003

[7] Xilinx Coregenerator, www.xilinx.com.
[8] Xilinx System Generator for DSP v2.2 Reference Guide,

www.xilinx.com

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

