

Copyright © 2003 General Dynamics. All rights reserved.

FPGA BASED WAVEFORM DESIGN TECHNIQUES FOR SOFTWARE

DEFINED RADIOS

Steven W. Cox (General Dynamics Decision Systems, 8220 E. Roosevelt, Scottsdale, AZ,
steve.cox@gdds.com)

ABSTRACT

Design techniques are presented for FPGA based
waveforms on Software Defined Radios (SDRs). The
benefits of using these techniquies will be highlighted.

This paper assumes that FPGAs will be the target
processor for all real time signal processing of a
waveform. The role of software processors will also be
analyzed with respect to the FPGA based waveform. The
techniques presented in this paper are the result of
internal research and development for General Dynamics
wideband modem development.

In waveform development, the FPGA has been sucessfully
exploited to cover areas where high-speed and low
latency signal processing is demanded. FPGA waveform
design flow has many trade-offs and the types and
efficiency of different design flows will be presented.
FGPA integration flow also has benefits and limitations
that will be identified.

Quantization and optimization techniques for FPGA
utilization will be shown for waveform development.
Multi-Mode and Multi-waveform FPGA designs will also
be discussed.

FPGA waveform interfacing methods will be discussed as
a means for communication between various system
processors.

Various partitioning methods of control/data processing
vs. signal processing will also be shown.

1. INTRODUCTION

Software Defined Radios (SDRs) are mainly composed of
two distinct entities: The hardware platform and the
software application. The applications are known as
“waveforms” and can be implemented in either real-time
software, FPGA logic, or a combination of both.
Regardless of implementation, the radio system is defined
by the waveform running on the platform.

2. FPGA BASED PLATFORM ARCHITECTURES

In order to implement FPGA Based Waveforms
efficiently, the SDR platform architecture must be
appropriately defined. Many SDR platforms contain a mix
of FPGA, Digital Signal Processor (DSP), General
Purpose Processor (GPP), and ASICs. These mixed
architectures tend to offer the waveform designer a non-
homogenous development environment. Hence, many
different disciplines and interfacing challenges exist that
impede the development of real-time waveforms.
 To remedy this situation, the layout shown in Figure 1
may be used. Here, FPGAs are the central real-time
processing machines connected together with high speed
data buses. Sparse GPPs are used for control and non-real
time processing. This philosophy is similar to that of the
PC computer, which uses a GPP to interface with the user
while it controls dedicated hardware such as modems,
video display cards, audio cards, DVD players, and other
real-time processing peripherals.
 Another reason for selecting such architecture is that
software programming is most easily done for non-real
time tasks. Again, the PC computer is an excellent
example of this point. It demonstrates a software
controlled system rather than a software defined one.
 Finally, there are some very good benefits from
choosing an all FPGA based platform. These benefits
include: low-latency, high speed, parallel processing, real
time synchronization on a sample by sample basis, and
real time telemetry monitoring.
 Embedded Microcontrollers and on-chip GPPs are
available inside FPGAs and can be used for control and
non-real time processing in addition to external GPPs.
 Military systems require separation of Black and Red
Data. This is usually controlled by the NSA and therefore
separate hardware devices are needed for the security
section of the platform. Also, FPGA Based Waveforms are
easily made Software Computer Architecture (SCA)
compliant. A simple software interface object to FPGA is
required to encapsulate the FPGA functions.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Copyright © 2003 General Dynamics. All rights reserved.

Figure 1. FPGA Based System Architecture.

 Modem Section

(Black Side)
Security Section

(Red Side)
Audio/Video Section

(Red Side)
Networking
(Red Side)

Tx FPGA Rx FPGA GPP
(Black)

Tx/Rx
FPGA

GPP
(Red)

Tx/Rx FPGA GPP
(Red)

GPP
(Red)

Pulse Shaping Matched
Filtering

Transec/
Comsec
Key
Manage-
ment

Comsec
Encoder/
Decoder

Control
Inter-
face

Vocoder Control
Inter-
face

Internet
Protocol
Stack

Spreading De-Spreading Mode
Switching
control

Transec
Variable
Generator

 Audio Filter Circuit
Routing

Ad-hoc
Networking
Protocol

Baseband
Modulation

Baseband
Demodulation

Presets Virtual Serial
I/O

 Wireless IP
Protocol
Stack

IF Upconvert/
Filtering

IF Downconvert/
Filtering

Human
Machine
Interface

 Rate
Converter

Tx Hop Timing/
Synchronization

Rx Hop Timing/
Synchronization

Circuit
Routing

 Video
Compression

OFDM Tx
Timing

OFDM Rx
Timing

 Speech
Recognition

FEC Encoder FEC Decoder Image
Processing

Interleaving Denterleaving User
Identification

Tx Hop
Controller/
Waveform
Clocks

Rx Hop
Controller/
Waveform
Clocks

 Virtual
CODEC

MIMO Channelization Audio AGC
Synthesizer Beam forming

W
A
V
E
F
O
R
M

F
U
N
C
T
I
O
N
S

 Rake Rx
Table 1. Partitioning of FPGA Based Waveform Functions Across the Platform Architecture

Modem

P2P

Presel Tx or Rx Dual Bridge WIM Red Host

Spare

P2P

Audio I/O

P2P

CDC

DSP
Data I/O

RS
422

RS
422

P2P

Red
Digital

Red
Audio

Red
Ethernet

I/O

N

Tx

Rx

Ethernet
(1 Total)

I/O
External RF

AIM

BPP RPP

P2P P2P

Tx Filter
Amps

RF
I/O

Spc
I/O

P2P P2P

N

DSP
Tx or Rx

Tx

Modem
FPGAs

Presel Tx or Rx
Black

Fabric
Switch

Security Red Host

Spare

P2P

GPPs

Audio I/O

P2P

CDC

DSP
Audio/
Video
FPGAs
and I/O

Data I/O

RS
422

RS
422

P2P

Data I/O

RS RS

Red
Digital

Red
Audio

Red
Ethernet

I/O

Tx

Rx

RF I/O

Ethernet

I/O
External RF

Hard
Drive
Hard
Drive

FPGAsDirect
 IF
Convert

Filter
Amps

Computational pipeline data
Overhead & Control

Computational pipeline data
Overhead & Control

 RED

ADCs
DACs

GPPs

N N N

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Copyright © 2003 General Dynamics. All rights reserved.

3. FPGA WAVEFORM PARTITIONING AND
INTERFACING

One of the first steps in the waveform design process is to
partition the various waveform functions across the
platform. Since we have chosen to use only FPGAs and
GPPs, this partitioning is made easier. Table 1 contains a
listing of commonly used waveform functions divided into
each section of the FPGA based platform.
 Some partitioning trade-offs exist between Modem
FPGA and Audio/Video FPGA depending if security is
needed. For non-secure waveform modes, audio filtering
and conditioning may be done in the modem section closer
to the modulation/demodulation functions, or it could be
performed in the audio/video section closer to the I/O
source/sink. Another area where partitioning trade-offs
exist is between RF and Modem sections. Such functions
as RF AGC and selectivity filtering can be allocated in
either domain depending on the amount of digital
processing.
 Interfacing the different platform sections can be done
in a variety of ways depending on the data speed and
flexibility requirements of the platform. In some cases, it
may be required to have each modem FPGA have full
access to each RF section through the use of a fabric
switch [1]. Dedicated or multiplexed direct hardwire
connections can also be used to connect FPGAs with other
hardware devices.
 A key difference between DSP processor (serial)
based platforms and FPGA (parallel) based platforms lies
in the routing of data. For DSP processor platforms the
data must be packetized and the exact time of each data
sample is not known unless costly time-stamping is
applied. This idea is contrary to the concept of FPGA
based waveforms. Ideally, the data processed by the FPGA
can be modeled sufficiently such that transfer between
FPGAs is well defined and synchronized on a sample-by-
sample basis.
 One advantage of FPGA based processing is that co-
location of speed intensive functions such as FFTs may be
multiplexed or shared in the same FPGA. This
dramatically saves resources compared with running
several FFTs in different processors and having to
communicate between them. Let us extend this philosophy
a bit further by suggesting that other memoryless
waveform functions such as certain
modulators/demodulators can be multiplexed within a
given FPGA. Functions with memory could also be
multiplexed such as FIR filters but some additional
resources would be needed to store coefficients and tap
values.

4. MULTI-MODE AND MULTI-WAVEFORM FPGA
DESIGN

Many current and future waveforms have multiple modes
of operation. These modes include combinations of the
following: plain text (PT), cipher text (CT), single-channel
(SC), frequency-hopped (FH), Voice, Data, TDMA,
OFDM, FEC, DS spread spectrum, and various
modulation types.
 Multi-Mode waveforms require that a single instance
of the waveform application be able to switch between
various modes upon user command within several hundred
mili-seconds in most cases. To accomplish this within an
FPGA(s), either serial or parallel implementations may be
considered. The most straightforward approach is the
parallel Multi-Mode Waveform Model shown in Figure 2.
Here all of the functions needed for the various modes are
designed and implemented at the same time in the FPGA.
When a different mode is selected, certain functions are
bypassed and others brought in-line. The advantage to this
approach is that the design cycle is short. The
disadvantage is that more FPGA resources are consumed
than are needed for any given one mode. An alternative to
the parallel approach is the serial multiplexed scheme.
This method is depicted in Figure 3. Here a core library of
waveform functions is designed and placed in a repository
on the FPGA. A core controller is then used to multiplex
the functions between different waveform application
cores or modes. In effect, the core library can be thought
of as a group of subroutines that get called whenever a
waveform application needs the service. The core
controller management complexity is a disadvantage of
this scheme however; the savings in resources may
outweigh this cost.
 Multi-Waveform FPGA design is a challenging area.
The driving requirements in this area are the number of
simultaneous waveform applications per FPGA and the
ability to “Swap” applications on the fly. Three
approaches will be described for handling these
requirements: 1.) Dynamic Reconfiguration, 2.) Static
Partitioned Waveforms, and 3.) Shared Core Library
 The first approach deals with Dynamic
Reconfiguration, which is also known as dynamic partial
reconfiguration. This off-the-shelf approach allows
swapping applications in and out of the same FPGA
without disturbing any applications that are already
running. Details are specified in [2] for implementing
Dynamic Reconfiguration however, not many FPGA
developers are reported to have used this method and it
may take more users for this to be a useful technique of
multi-waveform design. Dynamic Reconfiguration does
not affect nor can it be influenced by, the FPGA design
flow since it is a manipulation of the compiled source
code.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Copyright © 2003 General Dynamics. All rights reserved.

 The second multi-waveform approach is that of Static
Partitioned Waveforms. This is shown in Figure 4. Here,
multiple waveform cores are designed into a single FPGA
and run simultaneously, however, they cannot be swapped
out unless each application has its own FPGA.
The third approach to multi-waveform design uses a
shared core library that is also useful for multi-mode
waveforms within a multi-waveform FPGA. This was
introduced in Figure 3 and is elaborated on in Figure 5 for
the multi-waveform scenarios.

Figure 2. Parallel Multi-Mode Waveform Model.

Figure 3. Serial Multiplexed Multi-Mode Waveform
Model.

Figure 4. Parallel Multi-Waveform Model.

Figure 5. Serial Multiplexed Multi-Waveform Model.

1
Data

Output

In Out

Viterbi
Decoder

In Out

Reed
Solomon
Decoder

In Out

QPSK
Demod

Multiport
Switch

In Out

FSK
Demod

In Out

Carrier
Squelch

In Out

ASK
Demod

2
Complex

Signal
Input

1
In1

1
Data

Output

CORE CONTROLLER

CORE LIBRARY MEMORY

CORE MODE PROCESSOR

1
Complex

Signal
Input

Mode Select

1
Data

Output

In Out

Waveform 3

In Out

Waveform 2

In Out

Waveform 1

Multiport
Switch

2
Complex

Signal
Input

1
In1

3
Data

Output3

2
Data

Output2

1
Data

Output1

CORE WAVEFORM PROCESSOR 2

CORE CONTROLLER

CORE LIBRARY MEMORY

CORE WAVEFORM PROCESSOR 2

CORE WAVEFORM PROCESSOR 1

3
Complex

Signal
Input3

2
Complex

Signal
Input2

1
Complex

Signal
Input1

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Copyright © 2003 General Dynamics. All rights reserved.

5. FPGA WAVEFORM DESIGN FLOW

 New FPGA design flows [3] based on high-level,
parallel, simulation environments offer code synthesis
directly from a block diagram systems model. At the
center of these new design flows are tools that allow
access to hardware interfaces and abstract the FPGA fabric
to a systems level. This gives the systems designer direct
insight into the platform for which he is designing a
particular function. This is made possible by the bit true
and cycle true abilities of these tools. One problem with
traditional design flows is that the system designer does
not have insight into the implementation details of the
fabric and therefore cannot best optimize the system
design without lengthy interaction and written
communication with implementation engineers who use
low-level tools such as VHDL, Verilog, or schematic
capture. An example of an FPGA based waveform done
using the Xilinx System Generator in Matlab Simulink is
shown in Figure 6 [4].
 In addition, to direct code synthesis from the systems
model, the model can also serve as a systems
documentation vehicle. Some tools such as Matlab
Simulink support document generation from the model
itself and this can be coupled with other tools such as
Requisite Pro and Rational Rose to form a complete
system definition and code producing model. At this time
there is not a definitive link between these tools. One
feature that could be added would be a way to
automatically verify system requirements with model-
generated data. For example, the system requirement may
call for a certain Bit Error Rate (BER) at a given input
power to the system. When the model is run, data from the
BER calculation block could be mapped to a Requisite Pro
requirement to mark it verified at the system design level.
Other requirements that may be mapped are latency,
attack/release times, acquisition times, and distortion.
 Another valuable feature of Matlab Simulink is the
ability to do co-simulation with the target FPGA while
running other Simulink components. This process involves
compiling the FPGA code for the target and placing a co-
simulation block in model. Then, data from the model can
be routed in and out of the real-time operating block. The
co-simulation block could also be part of an actual system
with RF and ADC/DAC interfaces so as to allow very
accurate simulation at a high level of abstraction.

6. FPGA WAVEFORM INTEGRATION FLOW

 Once an FPGA based waveform has been designed,
simulated, synthesized, and place/routed, the integration of
the bit file with other FPGA bit files and GPP software
must be done to realize the fully functioning waveform.

Since most of the critical real-time functions were
simulated and proven during the design flow, the risk and
duration of waveform integration is greatly reduced.
 One advantage of using a highly accurate model to
synthesize the FPGA code is that test vectors can be taken
from the system under integration to compare with the
model. Also, test vectors from the model may be used in
DSP signal generating equipment to provide a stimulus of
known data. If problems are found during integration the
model must be updated and the FPGA bit file must be
regenerated. This is the only disadvantage to this approach
compared with DSP processor based waveforms in which
coded changes can be recompiled in a shorter time.
However, the risk of code errors is greatly reduced by
using the FPGA design flow with accurate system models.

7. FPGA WAVEFORM QUANTIZATION

 During the FPGA waveform design flow, it is best to
first create a floating point model using the FPGA
Simulink blockset with the “Override with Doubles”
option turned on. This can be done at the block primitive
level or globally for a system or subsystem in Simulink to
allow simulation of a system with 64 bit floating point
precision.
 Once confidence is gained with the floating point
model, the quantization process should begin. Each block
in the model must be analyzed for fixed-point properties
such as Number of Bits, Binary Point Position, Arithmetic
type (Unsigned or Signed), Quantization Behavior (Round
or Truncate), and Overflow Behavior (Wrap or Saturate).
In addition, any filter coeficients must also be analyzed for
fixed piont behavior.
 Fixed point filter design can be done using the Matlab
Filter Design and Analysis Tool (fdatool) by entering the
“Set Quantization Parameters” window and enabling
“Turn quantization on”. In this window all of the filter
arithmetic and filter coeficients can be quantized and a
graph of both floating and fixed point responses are shown
in the window above. By adjusting the fixed-point
properties of the filter, one can visually approximate the
floating point behavior for such responses as Magnitude,
Phase, Group Delay, Impulse Response, Step Response, or
Pole/Zero configuration.
 One feature that could be added to these tools is a
Processing Gain Analyzer to estimate scaling and bit sizes.
To do this manually involves tedious effort and is a
disadvantage of the FPGA waveform approach. For
example, a digital phase-locked loop contains feedback
with a loop filter that can be very sensitive to dynamic
range. When attempting to quantize a recursive circuit
such as this, one must pay careful attention to the growth
of registers and apply scaling after each multiply

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

Copyright © 2003 General Dynamics. All rights reserved.

operation. The trade-off here is that input dynamic range
will dictate the maximum “Number of Bits” and “Binary
Point Position”. However, since there is feedback in the
loop, the input to the loop filter can change its output
which inturn mixes with loop input to infuence the loop
filter input. Bounds must be estimated at each stage and at
each arithmetic calculation point to control the register
growth or quantization error.
 Overall, the goal of Quantization is to approximate
floating point operation with a minimum amount of FPGA
resources while meeting system performance requirments.

Figure 6. FPGA Based Waveform Model using Xilinx/Matlab Simulink Design Flow.

8. CONCLUSION

 In this paper, concepts and techniques were given for
FPGA based waveform design. An FPGA based system
architecture and mapping of waveform functions was
shown, suitable for future military JTRS type
communications applications. Both Muti-Mode and Multi-
Waveform applications were discussed in relation to
FPGA based systems. An efficient design flow was
overviewed along with a corresponding integration flow.
Techniques for FPGA waveform quantization were given
as well.
 As DSP computing technology migrates from the
serial, instruction set architecture, von Neumann machine
to the parallel, system based design flow, FPGA based
systems and waveforms will be an enabling technology for
higher speed and more complex communication systems.
The end result will be that waveforms can be developed
faster with more features.

9. REFERENCES

[1] D. Bouvier, “RapidIO, The Embedded System

Interconnect”, RapidIO Trade Association, 2003.
[2] Xilinx Application Note XAPP290, Two Flows for Partial

Reconfiguration: Module Based or Small bit
Manipulations, New York, May 17, 2002.

[3] Xilinx System Generator for DSP v3.1 Reference Guide.
[4] C. H. Dick, f. j. harris, and M. Rice, “Maximum likelihood

carrier phase syncronization in FPGA-Based software
defined radios”, Acoustics, Speech, and Signal Processing,
2001. Proceedings. (ICASSP '01). 2001 IEEE International
Conference on , Volume: 2 , 7-11 May 2001
Page(s): 889 -892 vol.2.

FPGA 6Mbps QPSK Data System

xlusamp 10

Up Sample

Data_In

I_Out

Q_Out

QPSK
Modulator

I_In

Q_In

Q_Out

I_Out

QPSK
Demodulator

xlp2sp s

Paral lel to Serial

Out

PN 511
Data Generator

z
-22

Integer Delay

fpt dbl

Gateway Out6

fpt dbl

Gateway Out2

Error Rate
Calculation

Tx

Rx

Error Rate Calculation

I_In

Q_In

IF_Out

Digital Up
Converter

IF_In

I_Out

Q_Out

Digi tal Down
Converter

xlconcat
hi

lo
cat

Concat

0

Bit Error Details

DAC1_In

DAC2_In

DAC1_Out

DAC2_Out

BenADDA DACs

ADC1_In

ADC2_In

ADC1_Out

ADC2_Out

BenADDA ADCs

Sy stem
Generator

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

