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ABSTRACT  
This paper presents a design study for a flexible rake 
receiver using techniques and concepts suitable for a 
Software Defined Radio (SDR). This specific design 
combines software and hardware accelerators to create a 
basic rake receiver that could potentially support multiple 
standards (e.g. WCDMA, cdma2000) as well as allowing 
high level configuration software to trade resources to 
match a dynamically changing propagation channel. 
By encapsulating both software and hardware functions 
using Real Time Operating System (RTOS) tasks and 
channels as well as developing a common message based 
control interface we have demonstrated how components in 
SDR can be controlled and linked independent of the 
underlying physical architecture. Furthermore to evaluate 
the effect on power consumption we have analysed the 
increase in overhead due to the additional control code 

1. INTRODUCTION 

1.1. Motivation 

In the last fifteen years the mobile phone has continuously 
evolved. This evolution has been driven by a demand for 
improved spectral efficiency, higher quality audio, extra 
services and increased flexibility. Each time the wireless 
terminal went through another stage of evolution the 
hardware and software associated with the signal 
processing stage had to undergo a substantial redesign [1]. 
This continuous redesign of the signal processing stages is 
particularly difficult due to its direct impact on power 
consumption and tight timing constraints. This has resulted 
in a slow and expensive development cycle. To address this 
problem researchers are currently looking at software and 
hardware architectures that support dynamic 
reconfiguration to provide multiple implementations [2]. 
This type of system is known as Software Defined Radio 
(SDR). The primary issue that we must address when 
proposing an architecture for SDR is the power 
consumption. It is clear that for SDR to be successful it 
must operate at equivalent or lower power consumption 
levels when compared against its non-reconfigurable 
predecessor.  

1.2. Background 

This paper describes the real time implementation of a 
flexible rake receiver. The rake receiver is a key component 
in a Code Division Multiple Access (CDMA) receiver and 
has traditionally been implemented in hardware. An all 
software solution is possible [3][4][5] and potentially offers 
the maximum flexibility but requires the processor and data 
bus to operate at higher clock frequencies than a hardware 
solution that can use multiple processing elements and 
interconnects. A circuit running at higher clock frequency 
will have to operate at a higher supply voltage and will 
therefore have higher power consumption [6]. In addition 
the amount of MIPS required to implement all the 
processing at the IQ sample level is well beyond current 
technology [7]. So in this design we have used a 
combination of software and hardware to try and achieve 
the flexibility of software while maintaining the low power 
consumption of a hardware solution. The rake receiver was 
chosen because it was seen as a complex real-time problem 
that could benefit from the extra flexibility offered by 
applying the ideas and concepts associated with SDR. By 
analysing a system that has complex real-time interactions 
between hardware and software modules we hope to gain 
significant insight into future SDR design issues. 

1.3. Software Defined Radio 

At its most flexible, Software Defined Radio will allow a 
processing module to be downloaded into the terminal via 
the wireless link and then integrated into the rest of the 
system. Typically these modules might be a complete 
receiver chain or elements of the transceiver (e.g. an 
improved channel decoder). As might be expected these 
modules will be made up of both software and hardware. In 
a system that supports reconfigurable logic the hardware 
configuration may also be downloaded.  

One of the key challenges for implementing SDR will be 
how to integrate a new module into the rest of the system. It 
is made especially difficult because it cannot be assumed 
that the combination of modules can have been anticipated. 
This problem is similar to that of applications running on a 
Personal Computer except in the case of SDR the 
performance of each module must be guaranteed. This 
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timing deadlines [8] otherwise data may be lost or the 
complete system may crash. In addition, and equally 
importantly, the implementation must also be very power 
efficient. 

2. OVERVIEW 

By using an object orientated approach to analyse the rake 
receiver we isolated a number of objects that had clear 
boundaries and shared very little common data. The 
processing requirements for each of these objects were then 
analysed to see if they would be best implemented in 
hardware or software. This analysis required a trade-off 
between flexibility and power consumption so this involved 
a certain amount of speculative design work to evaluate the 
difference in complexity between the hardware and 
software solution. The result of this work was to split the 
system so all the chip level processing was done in 
hardware and the symbol level processing was done in 
software. In practice this meant that the software processed 
blocks of symbols rather than symbol by symbol as this 
reduced the overhead due to interrupt service routines. 

The hardware is split into the following modules (Figure 1) 

§ Scrambling code generator 

§ Spreading code generator 

§ Partial discriminator 

§ Matched filter 

§ Signal Conditioning 

To allow maximum flexibility, each module is connected 
via programmable switches. 

An important aspect of SDR is the encapsulation of real-
time functions so they are isolated from the rest of the 
system. In a single threaded system this is relatively easily 
achieved by using function calls. The detail of how that 
function is implemented is hidden by a standard interface 
but such a call will only return when the operation has been 
completed. So if the function was implemented using a 
hardware accelerator the processor may sit idle waiting for 
its completion. By allowing the system to support multiple 
threads and developing a message-based command 
interface we allow the processor to execute other threads 
while it waits for hardware to complete. We then use 
services such as pipes or channels to route data between 
tasks see Figure 2 and [9]. 

It is anticipated that future systems [10] will include a 
combination of multiple processors and hardware 
accelerators so it is important that the control messages, 
mailboxes and data channels work transparently across 
different processors as well as between threads on a single 
processor. This feature should be supported by the RTOS. 

3. DESCRIPTION 

In Figure 1 we show a block diagram of the complete 
system but to simplify the diagram we have not shown the 
multiplexing of signals between each set of blocks. 

Within the rake receiver hardware there are 5 scramble 
code generators, 16 Spreading code generators and 8 
physical correlators. The scramble code generators can 
produce an arbitrary Pseudo Noise (PN) sequence 
compatible with WCDMA, cdma2000 and any other 
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Figure1 Simplified block diagram of the rake receiver 
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Figure 2, Diagram showing encapsulation of data processing modules 

similar system. In addition the absolute timing of each PN 
sequence can be set to an accuracy of one chip. 

The spreading code generator includes a Walsh code 
generator and mixing logic to combine the Walsh code and 
scramble code. Each spreading code generator can select 
any of the scramble code generators as its input. 

The physical correlator block operates at 16 x chip rate and 
implements 16 partial logical correlators. A partial 
correlation is the calculation of either the real or imaginary 
component of a complex correlation. A logical correlator 
can select one of two spreading code generators as its input 
and can be configured to take IQ samples at a timing offset 
of 1/8th of the chip period. In this implementation a rake 
finger is made up of a single data discriminator. A data 
discriminator is physically implemented by using two 
logical correlators configured to calculate the imaginary 
and real component of the correlation between the selected 
PN sequence and the input IQ signal. This means that a 
single physical correlator can implement 8 rake fingers and 
so the complete system could implement 64 fingers. 

The matched filter is designed to detect the primary 
Synchronisation Channel (SCH) burst in the WCDMA 
synchronisation channel [11]. The timing acquisition 
module uses the output from the matched filter to determine 
the timing of the scramble code and spreading code 
generators [12]. In many other implementations the Early-
Late Delay Locked Loop (DLL) method is used to track 

paths [13] but the matched filter approach is used because it 
was better suited for implementation on this platform. In 
addition it also allows us to easily upgrade the system to 
support adaptive algorithms. It is envisaged that these 
adaptive algorithms will increase or reduce the number of 
fingers depending on the type of channel environment the 
terminal is working in [14].   

The output from the timing acquisition module is used by 
the frame rate control task to determine when the hardware 
is reprogrammed. This precise timing is important to 
ensure that changes in the PN phases are gradual and do 
not cause glitches at the output of the combiner. The 
combiner takes the complex output from each selected rake 
finger and a weighting coefficient from a channel estimator 
(not implemented in this design) to calculate a soft symbol 
value. The output from the combiner can then be streamed 
via a RTOS channel to other modules in the receive path or 
on to a file on the host PC. 

Figure 2 shows how RTOS services were used to 
encapsulate the major functional modules within the 
system. A function may be implemented in a hardware 
accelerator or as a function call in the processor but by 
using a RTOS task as a wrapper for the function we can 
force a common interface to the rest of the system. The 
wrapper must supply two types of interfaces, control and 
data. The control interface is implemented using a mailbox 
and a messaging scheme. A wrapper task will poll the 
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mailbox after each operation to see if it has a control 
message. If the task is idle it will wait until a control 
message is sent. On receiving a message it will then 
configure the associated hardware or call the appropriate 
software function to execute the operation requested by the 
message. A task maybe instructed to repeat an operation 
until told to stop or may only execute the operation a fixed 
number of times.  

The data interface is either hardwired as in the case 
between two hardware modules or can be implemented as a 
RTOS channel. Using a channel gives the flexibility to 
locate the modules on different processors without 
modifying the wrapper or data processing function.  

In this design the DSP has to support 10 threads or tasks. 
To determine which task has access to the processor the 
RTOS will choose the task with the highest priority from a 
list of all pending tasks. The setting of individual task 
priorities is done at design time and is static. Many 
methods are available for assigning priorities to tasks 
[15][16][8] but most of these algorithms will only 
guarantee that a set of timing deadlines will be achieved 
when certain constraints are met. In this design we 
assigned higher priorities to task that repeat most 
frequently. This is known as rate monotonic scheduling 
[15]. This scheduling scheme requires that all tasks are 
independent, support pre-emption and are periodic. In 
addition to assigning priorities to the tasks we also had to 
prioritise access to the data bus. Without this lower priority 
tasks would block higher priority tasks by initiating data 
transfers that could not be pre-empted. Prioritising access 
to the data bus is achieved by assigning different Direct 
Memory Access (DMA) channels depending on the priority 
of the task requesting the data transfer.  Each DMA 
channel in the DSP has a different priority so higher 
priority DMA transfers will pause lower priority transfers. 

3.1. Cycle count 

 In this design the majority of the data processing is located 
in the hardware but an extra overhead in software is 
required to program the hardware. This overhead is the 
price we pay for being able to reconfigure the system to 
meet the demands of Software Defined Radio. The control 
code overhead will result in an increase in power 
consumption when compared to a non-configurable system. 

 In Figure 3 we show how the ratio of control code cycles to 
non-idle cycles in the DSP decreases as the data rate 
increases. 

 

 

 

4. OBSERVATIONS 

Many of the issues encountered during this design exercise 
have been due to partitioning the rake receiver into a set of 
general-purpose correlators and then trying to save silicon 
by time multiplexing them on to one physical unit. This 
required significant amounts of additional synchronisation 
code to ensure that when changes in the PN phase were 
implemented the effect of reprogramming each hardware 
block did not cause a glitch in the processing of the data. 

In this implementation we used a simple scheduling 
scheme to determine which tasks would have access to the 
DSP. The slack in the DSP made it possible to guarantee 
that all tasks would meet their deadlines but it is clear that 
as the system became more complicated and the available 
slack in the DSP was reduced the task of the scheduler 
would become significantly more difficult. 

The memory requirements for our system are large 
(>146Kbytes) most of this memory is associated with the 
control code. Further optimization of the design could make 
substantial savings, but it is clear that a software controlled 
reconfigurable platforms will need much larger amounts of 
control code and data memory when compared with a 
specialized non-configurable solution. 

The extra control code used in this design will increase the 
power consumption of the baseband. The power 
consumption due to the control code will increase with data 
rate and receiver complexity. However because the 
combiner is also done in software the ratio of control code 
power dissipation to total processor dissipation will 
decrease as the data processing becomes the larger element. 
This suggests that a processor based SDR solution looks 
more attractive at higher rather than lower data rates. 

Figure 3 Control code overhead versus data rate 
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5. CONCLUSION 

In this paper we have described the philosophy, principles 
and design details for an SDR based rake receiver. This 
work has focused on evaluating the consequences of 
splitting the rake receiver into hardware and software 
modules while still achieving levels of flexibility more 
normally associated with a pure software solution. 

The amount of control code required in this system is 
clearly a limiting factor when we try to reduce power 
consumption. This is especially true for low data rates when 
the power consumption for the data processing is low and 
we would therefore expect a proportionally low value for 
the control code. Ultimately the power consumed by the 
control code is limited by the architecture of the processor it 
is executing on. DSPs are designed for data processing and 
have long instruction pipelines that are inefficient when 
executing unpredictable branches. It would therefore seem 
sensible to locate the control code in a dedicated processor 
and the data processing in logic or a DSP.  

In this design study we have found that by attempting to 
reduce the silicon area we increased the complexity of the 
control code and hence, potentially, increased the power 
consumption. This suggests that the optimum architecture 
for a SDR terminal will require a tradeoff between power 
consumption and silicon area. 

One of the issues that we only briefly addressed in this 
study is the problem of scheduling tasks and the resources 
shared by these tasks (e.g. the data bus). It is clear that in 
an SDR terminal, where the number and type of tasks will 
not be known at design time, it will be difficult to devise a 
generic scheduling scheme that will guarantee that tasks 
will always meet their deadlines.  

The component that limited the data throughput in our 
system was the data bus and while its performance was 
improved by using priority driven DMA schemes it was 
clear that by restricting all data movements so they only 
pass through a single resource we will encounter significant 
problem in developing power efficient SDR solutions. 
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