Development Platform
Designed to Speed
Market Application
Designs

François Luneau fluneau@radicalhorizon.com
Louis Luneau lluneau@radicalhorizon.com
Outline

- Motivation
 - Education
 - Research
 - Future Acquisition Model
- Signal Processing
 - Computational Requirements
 - Signal Processing Hardware
- RF
- Interconnection
- Radio Development Process
- Conclusion
Motivation for Testbed Platform

- **Education**
 - Complement theoretical courses in modern digital communications
 - Exposes students to implementation issues
 - Allow student to see their radio projects put into practice

- **Research**
 - completing the link between theoretical research and experimental research
 - allow exploration of issues in wireless cellular system

- **Compliant with open standards (SCA)**
 - Ensure that like the PC world there will be many vendor sources for:
 - reprogrammable hardware
 - middleware software
 - radio application software
 - upgrade kits
Signal Processing

- For older waveform
 - multiple radio sets can be implemented on the latest FPGA-DSP

- For new waveform
 - Processing requirements for wireless protocol grows faster than Moore’s Law
 - Hardware accelerators required
 - Multiple FPGAs and DSPs are required
 - 3 FPGA and one DSP for UMTS from vendor A
 - 1 FPGA and three DSP for UMTS from vendor B
 - New techniques also requires more processing power
 - MUD solution for UMTS requires 1 FPGA

Figure 1: Signal Processing Hardware
RF Module

- **Testbed**
 - 6U cPCI RF Cellular Module in the Rx 824-849/Tx 869-894 band
 - The figure shows how to use the testbed for other frequency band

- **Technology**
 - Multi-carrier transceiver
 - IF band Sampling
 - Up to 35 MHz bandwidth with current ADC
 - Mixer and IF filter are protocol independent
 - Digitized IF bandwidth contains the data from all the RF channels present in that bandwidth

Figure 2. Accessing the desired frequency band with the available RF module
Interconnection – RF and DSP

• Interconnection based on the requirements defined by OBSAI (Open Base Station Architecture Interface)
• Bidirectional bus capable of 30 Gbits of data per second in both direction
• Uses LVDS at 800 MHz
• Hardware consist of
 • RTM Node
 • RTM Switch Fabric
• Software consist of
 • Link Layer
 • Network Layer
 • Switch
• Many Configuration Possible
Radio Development Environment

Figure 3. Radio development process and tools
Conclusion

- Software radio testbed have been developed that
 - Provides the processing power required by new waveform
 - Supports newly proposed signal processing techniques
 - adaptive receiver, adaptive interference suppression, multi-user multistage RAKE receiver, adaptive turbo coding and exploration of many other novel techniques
 - RF front end allows research in antenna diversity, power amplifier correction technique and ultra wideband
 - A rapid prototype of the solution can be developed using code generated by the simulation tools and operating on the target hardware

- Future
 - The system will be integrated with Mitsubishi Virtual Field Test Simulator that
 - simulates the behavior of thousands of users bringing near real-life condition in the lab
 - Smart Antennas Support