
FIELD TRIALS OF AN ALL-SOFTWARE GSM BASESTATION 
 

Jeffrey Steinheider (Vanu, Inc., Cambridge, MA, USA; jlstein@vanu.com);  
Victor Lum (Vanu, Inc., Cambridge, MA, USA; viclum@vanu.com); 

Jonathan Santos (Vanu, Inc., Cambridge, MA, USA; jrsantos@vanu.com)  
 
 

ABSTRACT 
 
Vanu, Inc. installed a GSM basestation in DeLeon, Texas, in 
June 2003 as part of the Mid-Tex Cellular radio access 
network. The basestation platform consists of an off-the-
shelf HP ProLiant server with two 2.8 GHz Intel processors, 
running Linux, connected to an ADC Digivance radio 
transceiver. All of the signal processing, protocol 
processing, and GSM BSC functionality is implemented as 
application software running on the HP server. This paper 
describes the system, the software, and experiences with the 
field trial. 

1. INTRODUCTION 
 

Vanu, Inc. deployed a software radio based GSM 
Basestation System for field trials in DeLeon, Texas at the 
end of June, 2003.  This paper describes the system, the 
software design process used for the GSM waveform 
implementation, and early results of the field trial. 

 
2. DESCRIPTION OF THE TRIAL SYSTEM 

 
The trial was initiated at the invitation of Mid-Tex Cellular, 
DeLeon, Texas. Mid-Tex operates an IS-136 AMPS/TDMA 
system covering 8,000 square miles in 6 counties, about 2 
hours West of Dallas Fort Worth airport. 
 The trial installation consisted of two basestation 
transceivers (BTS) and a basestation controller (BSC), with 
each running on an industry standard Hewlett Packard 
ProLiant DL380 server with dual Intel Xeon 2.8 GHz 
processors. All of the signal processing, protocol 
processing, and BSC functionality was implemented as 
application level software running on top of the Linux 
operating system.  The BTS systems used the ADC 
Digivance Long Range Coverage Solution as an RF 
interface. 
 Each BTS provided two TRX's of GSM capacity in one 
sector.  Each TRX contained 8 time slots.  Two of the time 
slots per BTS were used for the control channel, so each 
BTS supported 14 simultaneous voice calls. The first BTS 
was located in DeLeon, while the second BTS was located 
eleven miles away in the neighboring town of Gorman. The 
BSC equipment was located in the DeLeon central office. 
One of the goals for the trial was to evaluate hand-over 
between the two BTS's, so directional antennas were used to 

ensure overlapping coverage on the road between the two 
towers. The current Mid-Tex IS-136 system that operates 
from the same towers uses omni directional antennas and 
does not provide continuous coverage between the two 
towns. 

 
Figure 1: Trial System Architecture 

 The ADC Digivance system provides a fiber optic link 
for remote antennas. This capability was used for the 
Gorman BTS installation. The HP server running the BTS 
software was colocated in the DeLeon central office with 
the BSC, with its antenna 11 miles away. 
 Colocation of several base stations in a central location 
is known as base station hoteling. Hoteling offers cost 
savings to an operator because it reduces footprint and 
eliminates climate control at the cell tower, while 
centralizing equipment, which reduces maintenance costs. 
 For the DeLeon BTS, the BTS server was installed at 
the tower site. It was connected via a T1 link to the BSC 
server. This was a more traditional cellular system 
installation compared to the Gorman BTS. 
 An HP Procurve gigabit Ethernet switch at the DeLeon 
central office connected the BSC server, the Gorman BTS 
server, and the Cisco router that hosts the T1 link to the 
DeLeon BTS.  All voice and signaling was transported over 
IP. 
 Switch (MSC) functionality for the trial was provided 
by a TELOS soft-switch. The first phase of the trial used a 
switch running at TELOS corporate headquarters in 
Vancouver, British Columbia, Canada. All signaling and 
voice traffic links between the BSC and MSC were routed 
over the public Internet. In late September, a TELOS switch 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



was installed in the DeLeon central office, connected to the 
same gigabit Ethernet switch as the BSC and BTS. 
 

3. DESCRIPTION OF SOFTWARE PROCESSES 
 
3.1 Open source tools and libraries 
 
Open-source tools and libraries were used extensively. 
Several problems that were encountered with open-source 
components in building the BTS and BSC were solved by 
debugging combined with research on the public Internet. 
The primary tools used are compilers and debuggers 
(gcc/gdb), libraries for multimedia and network protocols 
(vovida), logging (log4cpp), and configuration management 
(libconfuse). The error-checking tool Valgrind helped 
improve the BTS and BSC code, as well as fix bugs in other 
open-source packages. 
 
3.2 High level languages 
 
The Mid-Tex system was implemented in C++. The choice 
of C++ represents a mid-point on the spectrum of high-level 
languages between C (high performance and excellent 
portability, but weak type-checking and little support for 
large-scale programming), and Java (modern conveniences, 
like strict type checking and garbage collection, but poor 
performance).  A great advantage of C++ is that the whole 
system, from high-performance signal processing code to 
network protocols to high-level control, can be implemented 
in one language. One drawback of C++ is exposure to 
certain classes of errors that are difficult to debug, such as 
use of uninitialized memory, memory leaks, and improper 
memory accesses.  On the other hand, C++ development 
knowledge is fairly widespread, and techniques for using the 
language and addressing its deficiencies are widely 
available. The 'design by contract' technique and the 
Valgrind error-checking tool address specific problem areas. 
 
3.3 Test-driven development 
 
Development of the BTS and BSC software followed a strict 
test-driven development strategy, often called test-first 
programming. In test-driven development, new functional 
code is added only after an automatically executable and 
verifiable test is written for the new functionality.  In effect, 
the test becomes a fully precise specification for the 
functional code.  This approach helps the developer to think 
through the design of the software before the code is written 
and it also improves the test coverage of the code.  Using 
this approach, implementers also discover and correct errors 
early, keeping costs low. In addition, tests created by the 
developers form the core of the regression test suite used in 
continuous integration. 

 
Figure 2: Trial Coverage Area 

 As an aid to TDD, the test coverage of the code is 
regularly measured using the 'gcov' tool built into gcc. This 
is not to enforce a particular numeric target. Instead, the 
coverage tool is used to indicate where in the system test 
coverage is weak.  
 When untested code is detected, one of three response 
options is selected. If the untested code is functionally 
important, tests are added. If the code is unnecessary, it is 
removed. If the code is error-trapping code that is difficult 
to test, it is validated through inspection, often in 'pair 
programming' sessions. 
 
3.4 Continuous integration and testing 
 
As the software was developed, a continuous integration 
system was employed.  This system automatically built the 
software from the latest source code and ran it through a 
comprehensive suite of functionality tests.  This process 
occurred several times a day. 
 The continuous testing provided a solid 'safety net'. An 
error introduced into the code, or an integration problem 
between two components, had a high probability of being 
detected within several hours while the cost of a fix was still 
very low. This permitted rapid progress and a good measure 
of system correctness at any given time. 
 
3.5 Pair programming 
 
Pair programming, in which two programmers collaborate 
side-by-side on the same task, was utilized in the software 
development effort.  Key benefits of this practice include 
continuous design and code reviews as well as increased 
knowledge transfer. 
 
 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



3.6 Design for testability 
 
In designing the system, we were careful to segment the 
system into components that could be tested independently.  
By using network interfaces and C++ abstract classes, we 
could replace peer system components with test apparatus to 
test classes and subsystems in isolation.  By replacing the 
complex objects with simple mock objects in our tests, we 
could easily record the method calls made by the class under 
test as well as control the values returned by the calls, 
allowing us to setup and test particular interactions that 
would have been difficult to create with the actual peer 
object. 
 
3.7 Design by contract 
 
Software objects were implemented using the design by 
contract methodology.  In design by contract, method 
preconditions and post-conditions as well as class invariants 
explicitly specify the obligations of the objects and their 
clients.  This communication creates a better understanding 
among the software developers of how the various objects 
interact.  Furthermore, the contracts are enforced through 
assertion checks to aid in debugging and quality assurance 
of the software. 
 The assertion checks are separated into two classes, 
those intended for use during the development phase only 
and those intended to remain in the system during 
operational use. Development phase assertion checks remain 
in the code but are disabled through a compiler option after 
the system has been qualified. Knowing that development 
phase assertion checks have no run time performance cost 
frees developers to insert frequent and aggressive checks of 
all aspects of the processing and system state.  
 
3.8 Valgrind 
 
Valgrind is a dynamic error-checking tool, comparable to 
commercial tools such as Purify or Insure++. In its basic 
configuration, it detects errors such as use of uninitialized 
memory, heap errors including leaks, boundary errors, and 
double-frees, and misuse of certain APIs. Another 
configuration is able to detect race conditions in multi-
threaded code.  
 Valgrind's basic memory checks were integrated into 
our continuous integration builds to catch memory errors 
that escaped notice at check-in time. Perhaps most 
importantly, Valgrind allowed the detection and fix of bugs, 
such as memory leaks in third-party libraries, on which 
there is dependence. 
 
 
 
 

3.9 Logging 
 
Logging of system events was both a valuable development 
aid and an important product feature. The logging system 
used (log4cpp) has adjustable reporting levels and output 
formats, making it suitable both for development-time trace 
statement debugging, and for tracking system progress and 
anomalous events in the deployed system. The logs were 
invaluable during early field testing, as the team in 
Cambridge could remotely monitor system behavior and 
correlate logged information with reports from testers in the 
field. 
 

4. TRIAL RESULTS 
 

After the initial installation of the equipment and tests to 
ensure that it was functioning properly, Vanu, Inc. 
employees spent three consecutive weeks at the Mid-Tex 
site to test and improve the system until it was ready for 
Mid-Tex to trial.  This was the first field trial of the Vanu, 
Inc. software GSM basestation in a live outdoor 
environment.  All prior testing was in a controlled lab 
environment. 

 
Figure 3: System Hardware at the DeLeon Central Office 

 The tests were performed onsite using commercial, off-
the-shelf GSM phones that support GSM in the 850 MHz 
Cellular band.  Most of the tests consisted of drive tests with 
the phones.  These tests were used to exercise handover, 
power control, and timing advance, as well as to determine 
the coverage area. 
 The first week was spent testing mobile to mobile calls 
on the network.  Several issues were discovered in the initial 
tests.  Originally, the system was too aggressive when 
releasing a traffic channel due to poor reception, which 
resulted in a large number of dropped calls.  This was 
corrected by increasing the length of time the basestation 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



measured mobile receive quality before deciding to release 
the call.  In a related problem, channels that were being 
released by the basestation were not properly cleared, 
preventing future phone calls on those channels.  This was 
detected early on and fixed in the next release. 
 Another problem discovered during the first week was 
that on some calls, there was a significant audio latency that 
was introduced by the VOIP libraries.  This example took 
longer to solve, as it required the creation of new system 
tests to allow engineers to reproduce the problem.  It 
occurred because of differences between the trial system 
network and the network used for initial testing.  The T1 
link added additional latency to the VOIP packets, and the 
delay was accumulating to cause the noticeable latency in 
the voice calls.  An open source program, NIST Net, was 
used to simulate the latency added by the T1 routers so the 
problem could be reproduced and tested in the lab.  The 
voice latency was removed in a release that was deployed 
during the second week of onsite testing. 
 The power control algorithm was modified throughout 
the three weeks in an attempt to find the balance between 
conserving a mobile phone’s battery life and maintaining a 
high quality voice link in all conditions.  The first algorithm 
was too dynamic, frequently requesting the mobile to 
significantly change its transmit power every SACCH 
period.  The algorithm frequently instructed the mobile to 
reduce its transmit power, resulting in poor reception by the 
basestation.  Trying to fix this resulted in a new problem:  
the algorithm did not increase the mobile’s transmit power 
fast enough when the mobile was moving away from the 
tower at high speed.  This resulted in dropped calls while 
driving away from the tower. 
 The adjustable reporting level of the logging system 
was instrumental in working on the power control 
adjustments.  In normal operation, the basestation does not 
log all of the power measurements during a phone call, to 
reduce the load on the basestation as well as reduce the 
amount of information in the logs.  For these tests however, 
the reporting level was increased so the basestation reported 
the power level measured by the basestation on each 
timeslot.  This allowed engineers to compare the measured 
power with the power control messages sent to the mobile, 
in order to determine when the power control algorithm was 
failing.  After testing several implementations of the power 
control algorithm, a balance was reached that smoothed the 
mobile’s changes in transmit power, while still increasing 
the mobile phone’s power at a high enough rate to match the 
movement of the mobile traveling in a car away from the 
basestation at high speeds.   
 The handover algorithm suffered from similar 
problems.  The first version caused the mobiles to handover 
too quickly, resulting in many handovers back and forth 
between the two towers as a phone traveled in a straight-line 
path between the towers.  In this case a drive tester would 

converse with an engineer back in Cambridge, while the 
engineer examined the current log messages.  Instructions 
could easily be given to the drive tester to try different test 
cases, and the engineer could be notified of any problems 
with the voice link.  The handover algorithm was tuned so 
that handover now occurs at roughly the half way point 
between the two towers. 
 The network architecture and physical deployment of 
the trial system also created a few problems for the 
basestation system.  There was not enough capacity at the 
Mid-Tex sites to place all of the basestation system on their 
high availability power supplies, so several parts of the 
system lost power at different times due to storms.  The 
sudden shutdown of a BTS introduced several unseen states 
in the BSC, which were caught through the design by 
contract method.  The contracts made the problems obvious, 
by reporting the violations to the log.  This provided a 
starting point in the logs enabling engineers to determine the 
sequence of events that caused the problem.   
 Using the public Internet as the voice and signaling 
connection between the MSC and BSC introduced the same 
type of problems.  The link between the MSC and BSC 
could sometimes disconnect for several minutes at a time, a 
situation that was not handled well at the start of the trial.  
As in the previous case, design by contract found many of 
the error cases, and the messages from the logs were used to 
find the exact cause of the problem.  
 As a result of following the software processes 
described earlier, Vanu Inc. iterated through 12 releases of 
the basestation software during this three week period.  New 
releases were downloaded to the system over an Internet 
connection, and could be installed in a few seconds.  The 
ease of deploying new releases allowed the team to make 
many small, incremental changes with each release.  
Improvements were made to both the BSC and BTS, across 
all aspects of the system.  The radio interface, the voice over 
IP transport protocol, and the link detection between the 
BSC and MSC are a few examples of areas where 
improvements were made.   
 

5. CONCLUSION 
 
Design by contract and the use of a logging system were 
very important for catching errors and debugging the 
system.  The other software processes described earlier 
allowed Vanu, Inc. engineers to increase the speed of 
development and to make many changes with the 
confidence that these changes would not result in new bugs 
elsewhere in the system. 
 The use of off-the-shelf servers and the Linux operating 
system also streamlined the development and deployment 
process. Capabilities such as log retrieval and remote 
software installation were built in to these commodity 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved



components, meaning these did not have to be custom-
developed. 
 The deployment phase described in this paper was 
completed in three weeks, at which point the system was 
ready for Mid-Tex begin its evaluation.  After extensive 
tests, Mid-Tex declared itself highly satisfied with the 
performance of the Vanu, Inc. devices.  
 This successful field trial represents an important 
milestone in commercial acceptance of Vanu Software 
Radio, and in the acceptance of flexible SDR systems in the 
general telecoms marketplace.  
 Vanu, Inc would like to acknowledge the National 
Science Foundation for partially funding the development 
and testing of the Vanu Software Radio basestation system. 
 

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved


