

RECONFIGURATION MANAGEMENT IN 4G MOBILE NETWORKS:

REQUIREMENTS, PROCESS AND ARCHITECTURE

Vangelis Gazis, Nikos Houssos, Nancy Alonistioti, Lazaros Merakos
Communication Networks Laboratory, University of Athens, Athens, Greece

e-mail: {gazis@di.uoa.gr, nhoussos@di.uoa.gr, nancy@di.uoa.gr, merakos@di.uoa.gr}

ABSTRACT

Global vision consensus on the next generation of wireless
mobile communications, broadly termed 4G, sketches a
heterogeneous infrastructure, comprising different wireless
access systems in a complementary manner and vested with
reconfiguration capabilities that will facilitate a more
flexible and dynamic adaptation of the wireless network
infrastructure to better meet the ever-changing service
requirements. In the present paper, we analyze and identify
the functional requirements of reconfiguration, presenting a
generic staged reconfiguration procedure and identifying the
management requirements in the context of these stages.
Next, we introduce a generic, reconfiguration management
framework to be hosted on 4G mobile systems and elaborate
on its main components.

1. INTRODUCTION

Fourth generation wireless (4G) will be mainly
characterized by a horizontal communication model, where
multiple different access technologies such as cellular,
cordless, wireless LAN, short range connectivity and even
wired systems will interface to a common platform over the
IP protocol, complementing each other in an optimal way
for different service requirements and radio environments.
Supported by their personal intelligent agent(s), users who
roam in the 4G ‘technological mosaic’ will enjoy ‘always
best’ connectivity and seamless access to value-added
services, third-party applications and content over the most
efficient combination of systems available [1]. Considering
that the observed proliferation of wireless technologies is
likely to persist and that future mobile equipment will have
to support multiple dissimilar wireless standards, the mobile
industry has been focusing on reconfigurability as a
technological enabler of future multi-standard mobile
systems and flexible joint radio resource management
across different wireless standards. The rest of the paper is
structured as follows: Section 2 highlights the fundamental
concepts of reconfigurability, providing key definitions for
the next sections. Section 3 discusses reconfigurability and
service provision issues in the 4G era and presents a service

provision platform. Section 4 identifies the main functional
requirements of reconfiguration and introduces a generic
staged reconfiguration procedure Section 5 introduces the
proposed reconfiguration management framework and its
main functional components. Finally, Section 6 concludes
the paper and provides directions for future work.

2. RECONFIGURATION: CONCEPTS & ISSUES

Over the last few years, a number of EU research projects in
mobile communications (FIRST, SORT, TRUST, CAST,
MOBIVAS, SCOUT) have addressed the thematic area of
reconfigurability, identifying main functional requirements
and proposing a number of reconfiguration-supporting
architectures, each tailored to fit the problem domain under
study by each project. However, although the volume of
reconfigurability-related research contributions is constantly
increasing, the paramount issue of reconfiguration control
and management has remained in twilight. Naturally, the
broader issue of a generic, all-encompassing reconfiguration
management architecture remains an open one.

Scope and definition

Reconfigurability deals with issues such as the dynamic
instantiation, parameterization and inter-connection of
functional entities (e.g., protocols) within the user, control
and management planes of a collection of operating
communication systems in a manageable, consistency-
preserving and – preferably – transparent fashion.
Supported by over-the-air download of required system
software an/or firmware, reconfigurability possesses a huge
potential for the design of ubiquitously adaptable and, more
importantly, evolvable mobile systems. By exploiting over-
the-air download and in-situ installation of appropriate
communication protocols and/or middleware components
and instantiating appropriate communication personalities
(i.e., user, control, or even management planes) within its
target devices, reconfigurability enables a very dynamic and
flexible adaptation of the communication equipment’s
behavior to optimally meet the instant service requirements.
For the rest of the present paper, the term reconfiguration

This work has been partially performed in the framework of the project "ANWIRE" (www.anwire.org) funded by the European Community under contract IST-2001-38835

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

will refer to the dynamic adaptations of implementation
mappings of communication components [2] that do not
compromise their consistency or their ability to continue to
provide services.

Related work

SDR Forum pioneered in producing a Software Radio
Architecture (SRA) specification [3] providing a framework
for building, configuring, connecting and tearing down
distributed, embedded (radio) applications within a radio
device. SRA specifies software (OMG IDL) interfaces for
the installation and use of distributed (radio) applications
within a single device so as to support reprogrammable
communication capabilities. It uses a variant of the CORBA
Components specification to describe the hardware and
software components of an SDR system, their properties
and their interconnections. Building on and expanding the
work of the SDR Forum, the OMG Software Radio
(SWRADIO) Special Interest Group (SIG) is primarily
focusing on the development of an architecture that will
allow applications to be independent from the operating
environment within a radio, thereby being portable across a
variety of hardware configurations. Notably, it recognizes
that such portability requires hardware interfaces to be
abstracted and application management interfaces to be
standardized along with common metadata and loading
processes [4]. In brief, the majority of existing work on
architectures for reconfigurable communication systems
focuses mostly on the architectural (i.e., structural) view and
its constituent functional interfaces and does not address
other, equally important concerns, such as generic decision
support for optimal reconfiguration sequences, or what the
generic phases of reconfiguration procedures are.

3. SERVICE PROVISION AND RECONFIGURATION

Service provision issues
The ubiquitous provision of (mobile) services, over the
dynamically reconfigurable networking and computing
infrastructures that will be commonplace in the beyond 3G
mobile era, requires a common set of support mechanisms
that, based on each application’s requirements, identify and
trigger the appropriate reconfiguration actions on the
underlying network infrastructure, including the mobile
devices themselves, in a manner that is transparent to the
user. Besides structural concerns dealing with the internal
re-organization of affected communication systems, these
mechanisms must also address issues related to context
capture and discovery, capability negotiation procedures
and representation formats, decision support regarding the
optimal communication mode, over-the-air deployment of
software implementations (e.g., MAC protocols, codecs,
modulation components, etc), in-situ installation and

validation checks, as well as remote service management
(e.g., activation/deactivation of protocol instances within a
mobile device). Obviously, the ultimate distribution of the
functionality in support of these mechanisms will depend on
the overall service provision architecture.

Service provision platforms that mediate between
network equipment, including end-user devices, and
applications have been at the focus of the EU IST project
MOBIVAS, which validated the case of a service platform
for over-the-air provision of applications in 3G and beyond
3G mobile environments. The next section introduces the
MOBIVAS architecture and presents its main components.

The MOBIVAS platform

The MOBIVAS platform addresses major issues regarding
deployment and management of independently developed
applications targeting the users of 3G and beyond 3G
mobile networks. Applications are typically contributed by
third-party software vendors, termed Value-Added Service
Providers (VASPs) and must be delivered over different
types of network infrastructures that may be operated by
different administrations. To support deployment over a
wide range of possible end user devices, the value-added
service (VAS) architecture consists of two components: A
“server” component hosted on the VASP’s application
servers and one or more “proxy” components, each tailored
to a particular execution environment (e.g., J2ME, Personal
Java, etc) and/or mobile device capabilities (e.g., cellular
phone, PDA, etc). While the server component is regarded
as stationary, the proxy component is downloaded and
executed at the mobile device upon the (user’s) request. The
logical architecture of the platform is depicted in the center
of Figure 1, which also provides a high-level visual of the
platform’s deployment in a 3GPP UMTS network. The
main logical components of the platform are:

The Value-Added Service Manager (VASM) is the
central platform component in that it co-ordinates the entire
service provision and management process. It includes
modules that undertake on-line VASP-initiated service
registration and deployment, including any network
reconfiguration that may be necessary, maintenance of
service and user metadata in suitable databases and
repositories, as well as facilities for customized online
service discovery, downloading and adaptation.

The Charging, Accounting and Billing (CAB) system is
responsible for producing a single user bill for service
access and apportioning the resulting revenue between the
involved business players.

The End User Terminal Platform (EUT) includes
functionality such as service downloading management,
GUI clients for service discovery and selection, capturing of
event notifications and service execution management.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

The DiffServ Edge Router (DSER) provides for QoS-
aware traffic classification by hosting DiffServ edge
functionality, traffic monitoring (i.e., accounting in IETF
parlance). It provides detail records to the CAB, regarding
the traffic patterns of deployed value-added services and
can be reconfigured dynamically with regard to the
employed QoS classification rules and DiffServ classes as
well as the traffic monitoring and reporting functionality.

Focusing on the internal VASM architecture, we
present its main functional components:

The VAS Registrar Module (VASREGM) dealing with
VAS registration and deployment. Its functionality includes
storing the VAS profile that records VAS metadata for QoS,
charging and location aspects in an XML format in the VAS
database and also performing any necessary reconfiguration
actions on network elements (e.g., DSER).

The User Interaction Management Module (UIMM)
that co-ordinates all user-centric operations of the platform
(e.g., authentication procedures, service discovery and
selection and secure downloading) while enhancing them
with flexible adaptation and context-aware features.

The Packaging and Downloading Module (PDM),
which is responsible for packaging all the software
components and other supporting resources (e.g., images,
etc.) required for executing a VAS in a single archive. The
single archive produced is dynamically tailored to the
context of the particular VAS execution request (e.g.,
terminal and network characteristics, user preferences).

The User Database Management Module (UDBMM)
that handles all user-related metadata profiles to enable
service discovery, adaptation and provision according to
user preferences. The user profile contains information such
as user identification data (e.g., name, IMSI, security keys),
generic, service-independent preferences (e.g., language,
default tariff class), user interface preferences (e.g., font
size), as well as references to user-specific favorite services.

The VAS Database Management Module
(VASDBMM) that provides for back-end persistence of
user, terminal, service and network metadata.

The Reconfiguration Manager (RCM), an extension of
the original MOBIVAS design, undertakes network, and
service reconfiguration, applying proper reconfiguration
procedures upon network elements and/or activating a
generic service adaptation mechanism with intelligent
profile matching. In the next section, we focus on the design
aspects of the RCM.

4. THE RECONFIGURATION MANAGER (RCM)

Basic reconfiguration concepts

Treating reconfiguration as the selective adaptation of
implementation mappings for modular (i.e., component-
based) subsystems, we consider the following classification
for reconfiguration-related mechanisms:
a) Mechanisms that realize functionality prerequisite to
the reconfiguration action per se and are orthogonal to it,

IP transport service

VASPServ ice
Prov ision
P latform

UM TS RAN

W LAN RAN

UM TS PS Dom ain

D ifferentiated Services Dom ain

VASM

FD D /TD D

W CD MA

H /2 OFD M

Radio dependent
(m icro-m obility)

Radio independent
(m acro-m obility)

Core network

I n
 t

e
r n

 e
 t

RN C

DSER

CG F

G G SNSG SN

VASVAS
proxy

C AB

BR

BR

VASR EG M

VASD BM M

UD BM M

PDM

RCM

UIM M

AR

Tight coupling

Loose coupling

EUT

DSER

V AS session

Core network

M O BIVAS operator

Access network

M obile network operator

Access network

Va lue Added Serv ice
Prov ider

DSER DSER

Repository

VAS
M anagem ent

VAS
Server

R

R

D ynam ic user registration
Service discovery
Preference custom ization
Service dow nload
U ser notification

R outer reconfiguration

Tr
af

fic
 a

cc
ou

nt
in

g

Registration
U pda te
Deregistration

Figure 1. Deployment of the MOBIVAS service provision platform in a 3GPP UMTS R5/R6 environment.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

e.g., context-capture functionality, device capability
negotiation, intelligent decision making, over-the-air
download, etc.
b) Mechanism that support the reconfiguration action per
se, i.e., functionality related to the instantiation, inter-
connection, activation and/or deactivation of
communication components within their execution
environment (e.g., in the case of protocols, the device’s
communication subsystem).

Typically, the latter category of reconfiguration-related
functionality will be available on each communication
system that may be subjected to reconfiguration, while the
former can be factored out to the service provision platform
that undertakes the bulk complexity of pre-reconfiguration
actions, including necessary interactions with any affected
(proximal) network elements. This approach, simplifies the
design of reconfigurable equipment by outsourcing certain
reconfiguration issues to the service provision platform,
where, by taking advantage of the abundant resources in the
wireline infrastructure, and the much broader contextual
information available (e.g., network capabilities, traffic load
of base stations proximal to the mobile device, etc), more
accurate decision-making about the optimal communication
modes and/or the best reconfiguration strategy for a given
mobile device can be made. Naturally, security issues are
paramount and, in such a case, would require that the
platform is administered by a party trusted by the owners of
reconfigurable equipment (e.g., a regulatory body).

Regarding the reconfigurable communication system
realm, we advocate a component-based (and thereby
modular) architecture and describe a generic reconfiguration
management framework as a natural, complementary
extension of the service provision platform to realize a
comprehensive, unified reconfiguration management
framework. In addition, we propose that network
equipment, mobile or not, be enhanced with a generic
capability for reconfiguration, i.e., the ability to
dynamically change the implementation mappings of their
constituent (functional) components. Fundamentally, that
requires research and standardization in two key areas:
a) Object-oriented information models [5] to capture and
express the internal organization and structure of network
equipment in an abstract, implementation neutral way that
effectively provides the unified view necessary to start
specifying the generic change capability. Through object
orientation and inheritance, common structural parts can be
factored out and reused as an abstract information model
from which wholly different structures will inherit their
common parts, allowing a fine-grain mix of standardized
behavior with innovative, performance-focused, proprietary
instrumentations.
b) Reconfiguration-related behavioral semantics recorded
within a platform-independent reconfiguration management
framework that specifies reconfiguration-enabling

functional interfaces and the blueprints of their interactions
(e.g., message sequence charts, state machines diagrams,
etc) so as to support generic, technology-independent
reconfiguration procedures.

A generic staged reconfiguration procedure

Based on the above classification of reconfiguration-related
mechanisms, we postulate that reconfiguration procedures
progress sequentially through the following stages:
a) Context discovery and identification: As reconfigurability
deals with the dynamic adaptation of implementation
mappings for functional communication components, it
requires contextual awareness, i.e., being able to discover
and exploit contextual information useful in manifesting
certain behavior [6]. For example, consider the hypothetical
case of a mobile device equipped with a reconfigurable
communication subsystem under WLAN and GSM/UMTS
radio coverage. From the prism of reconfiguration, context
identification will identify which wireless network elements
(e.g., Node B, RNC, BTS, BSC, WLAN access point) are
capable of participating in reconfiguration-related signaling.
This discovery process considers the immutable capabilities
of network equipment (e.g., hardware revision levels,
execution environment features, supported communication
standards, etc) and identifies the particular mobile network
elements that can be reconfigured in the current context. To
achieve this, common information models that express the
functional mechanisms of equipment components in a
universal manner independent of any implementation
artifacts are necessary while industry-standard flexible
representation formats (e.g., XML) can be employed to
encode such information models in an interoperable way.
b) Discovery of feasible communication personalities: The
set of candidate network elements is used to identify the
initial set of possible communication personalities (i.e.,
standards) on the basis of necessary hardware and software
capabilities. This initial set is further refined by ruling out
combinations of communication personalities for which
equipment resources do not suffice. Thus, this phase
interacts with resource management to consider dynamic
equipment capabilities (e.g., buffering capabilities, traffic
load, processor utilization level, etc) as filtering criteria.
c) Decision of optimal communication personalities: The
need for personalization throughout the 4G mobile service
provision process [1] requires that user preferences must be
accounted for when choosing the optimal personalities for
personal mobile devices. For instance, users may wish to
maximize the available communication options of their
mobile device (i.e., the set of communication standards it
supports) or prefer a particular wireless access standard
(e.g., WLAN) to others. To support arbitrary selection
criteria and decision-making algorithms, reconfiguration
management must furnish open interfaces to input the

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

decision algorithm’s data, decision variables and criteria
values, to access its output results and to support switching
between different decision algorithms during runtime [7].
d) Deployment of selected communication personalities:
Having identified the set of optimal communication
personalities, reconfiguration will proceed to download the
appropriate implementations from their online software
repositories. Once the download completes, implementation
classes are instantiated in main memory, intra-system inter-
protocol communication links (e.g., IPC, message queues,
shared memory, etc) are established and the protocol graphs
of the chosen communication personalities are built. Finally,
protocol instances are activated (i.e., given their own thread
of control) and register their Service Access Points (SAP)
for use by dependent intra-system protocols.

The last (i.e., the deployment) stage identifies the
generic functionality to download, install, activate – and
also deactivate, uninstall and remove – functional
components within communication systems; functionality
which must be resident in all reconfigurable systems and
ideally, constitute part of a broader management framework.
The next section elaborates on the proposed such
management framework.

5. A RECONFIGURATION MANAGEMENT
FRAMEWORK

The reconfiguration management framework targets mainly
the subject of reconfiguration procedures (e.g., the DSER
and/or the EUT in Figure 1) and has been specified in UML,
thereby being platform-independent. The key benefit of a
platform independent model (PIM) standard is portability
to different platform specific models (PSM) such as CE,
.NET, CORBA, or Java using standardized mappings.
Another major benefit is the ability to certify compliance of
the PSM as it is mapped to the PIM using standard
technologies such as UML and XML which support formal
methods to prove compliance of a particular PIM-PSM pair,
provided the mappings themselves are done with formal
methods in mind. This modeling approach makes it possible
to design an open architecture that embraces the entire
infrastructure, from the end-user’s mobile device through
the network equipment, including proximal mobile devices
in the case of ad-hoc and self-organizing networks, to
value-added services and other the applications.

Framework design principles

Our proposed framework is founded upon a set of UML
management interfaces that support asynchronous command
dispatching to the managed objects and asynchronous
notifications from those objects towards their managing
entity. The reconfiguration management functionality is
specified on top of this basic ‘command and notification’

functionality, following a ‘separation of concerns’ principle
that discriminates between orthogonal concerns, thereby
leading to modular and extensible design (Figures 2 and 3).

Reconfiguration management functionality results
through the composition – rather than the inheritance – of
the specialized interfaces (e.g., LifecycleManagement),
thereby facilitating parallelism in the design of
reconfiguration signaling. For example, deactivation of an
existing protocol and download of a new implementation
for that particular protocol may progress simultaneously,
because the inherited management functionality provides
for the asynchronous interactions needed in concurrent
operations while composition (as opposed to inheritance)
facilitates the use of multiple instances that each employ
asynchronous interactions in its own context. Figure 4
illustrates the interfaces employed by the reconfiguration
management framework classes and interfaces, which are
further explained in the following section.

Reconfiguration management framework interfaces

The System Registry (not shown in Figure 4) is the core of
the reconfiguration management framework by providing a
single reference point for management and discovery of
globally available reconfigurability meta-information, such
as equipment hardware versions, communication subsystem
capabilities, protocol implementation versions, execution
environment properties, etc. At each reconfigurable system,
the System Registry provides access to the reconfiguration-
related meta-information and a consistent view of the
current status and its established (i.e., installed) capabilities.

Identifiable

getId() : String
getName() : String

<<Interface>> Abst ractIterator

first() : Identifiable
next() : Identifiable
current() : Identifiable
hasMore() : Boolean

<<Interface>>

AbstractCommand
id : String
name : String

getId() : String
setId(id : String)
getNam e() : Name
setNam e(name : String)
execute()

AbstractThread

start()
stop()
suspend()
resume()
setCommand(command : AbstractCommand)

<<Interface>>

AbstractNotification

doing(identity : Identifiable, theCommand : AbstractCommand)
done(identity : Identifiable, theCommand : AbstractCommand)
error(identity : Identifiable, theCommand : AbstractCommand)

<<Interface>>

Abst ractManagement

do(theCommand : AbstractCommand)
abort(theCommand : AbstractCommand)

<<Interface>>

AbstractThreadManager

starting(theThread : AbstractThread)
started(theThread : AbstractThread)
stopping(theThread : AbstractThread)
stopped(theThread : AbstractThread)
suspending(theThread : AbstractThread)
suspended(theThread : AbstractThread)
resuming(theThread : AbstractThread)
resumed(theThread : AbstractThread)

<<Interface>>

+theAbstractCommand

0..1

0..1

0..1

0..1

+theNotifee

+theManager

Figure 2. The basic management framework interfaces.

LifecycleNotif ication

activating(id : String)
activated(id : String)
deactivating(id : String)
deactivated(id : String)
suspending(id : String)
suspended(id : String)
resuming(id : String)
resumed(id : String)

<<Interface>>

AbstractManagement

do(theCommand : AbstractCommand)
abort(theCommand : AbstractCommand)

(from framew ork)

<<Interface>>

AbstractNotification

doing(identity : Identifiable, theCommand : AbstractCommand)
done(identity : Identifiable, theCommand : AbstractCommand)
error(identity : Identifiable, theCommand : AbstractCommand)

(f rom f ra mew ork)

<<Interface>>

LifecycleManagement

activate()
deactivate()
suspend()
resume()
<<static>> create(properties : PropertySet) : LifecycleManagement

<<Interface>>
LifecycleM anager

activate(id : String)
deactivate(id : String)
suspend(id : String)
resume(id : String)
create(url : String, properties : PropertySet) : LifecycleManagement

<<Interface>>

0..n0..n

PropertySet

add(property : Property)
remove(property : Property)
removeAll()
contains(property : Property)
isEmpty() : Boolean
getPropertyIterator() : PropertyIterator

(from registry)

Identifiable

getId() : String
getName() : String

(from framework)

<<Interface>>

Figure 3. The lifecycle management interfaces.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

The Download Manager undertakes secure download of
protocol implementations from online repositories, handling
multiple downloads simultaneously. Once a download is
completed successfully, protocol meta-information related
to execution environment settings as well as to necessary
pre- and post- installation actions is retrieved and used to
update the System Registry database.
The Installation Manager is responsible for installing and
uninstalling implementations of communication protocols
and updating the system configuration databases held in the
System Registry.
The Load Manager undertakes to load object code from
installed implementations into the system’s main memory
and to provide type-safe interfaces of the loaded objects.
Depending on the actual implementation class format, this
step may not be necessary [8].
The Lifecycle Manager coordinates the activation and
deactivation of multiple protocol instances belonging in the
same protocol layer. It interfaces to operating protocol
instances to coordinate protocol state management policies
so as to ensure consistency of internal protocol state across
reconfigurations as well as persistence of behavior-affecting
protocol state across different protocol implementations. In
addition, it supports the reconfiguration sequence by acting
as proxy for managing the temporal ordering of control
commands issued towards its subordinate protocol
instances. That includes control commands of other protocol
instances and reconfiguration-related commands.
The Provision Manager sets proper values to environmental
parameters and configuration attributes that each protocol
implementation exploits in realizing its functionality. The
identification of necessary parameters exploits configuration
metadata in the System Registry that is updated by the
Installation Manager after a successful installation.

Finally, the Reconfiguration Manager deals with the
reconfiguration of communication standards (as defined by

an RDF-encoded specification of functional components
and their inter-connections) that may comprise multiple
protocol layers. It guarantees the structural consistency of
the communication standard and coordinates signaling
between protocol instances and the Download, Provisioning
and Lifecyle manager objects to achieve reconfiguration.

6. CONCLUSIONS AND FUTURE WORK

In the beyond 3G mobile era, performing and managing
reconfiguration actions over mobile systems and networks
will constitute a major part of service provision. Due to
their constrained resources and limited capabilities, mobile
devices will have difficulty in coordinating reconfiguration
procedures that may affect multiple network elements or
require higher layer context information. Outsourcing some
reconfiguration concerns to service provision platforms will
ease the load imposed on mobile devices by reconfiguration.
We introduced a generic staged procedure and a platform-
independent framework for reconfiguration management
specified in UML that can be formally mapped to suitable
implementation technologies using OMG mappings. We are
in the process of validating the effectiveness our framework
in a prototypical Java implementation on Linux OS. Future
directions of our work foresee integration of our framework
with the operating system through appropriate adapters and
the export of open (OMD IDL) framework interfaces.

REFERENCES

[1] V. Gazis, N. Houssos, A. Alonistioti, and L. Merakos,
“Evolving perspectives of 4G mobile communication
systems”, Proc. 13th IEEE Personal Indoor Mobile Radio
Communications, Lisbon, Portugal, 2002.

[2] Z. Tang, “Dynamic reconfiguration of component-based
applications in Java”, M.Sc. thesis, MIT, September 2000.

[3] J. Bickle, “Software Radio Architecture (SRA) 2.0 technical
overview”, OMG TC meeting, December 11, 2000, Orlando,
Florida.

[4] OMG SWRADIO SIG document 01-03-03, available from
http://www.omg.org/.

[5] RFC 3444, “On the difference between information models
and data models”.

[6] A. Dey, “Providing architectural support for building context-
aware applications”, PhD thesis, College of Computing,
Georgia Institute of Technology, December 2000.

[7] N. Houssos, V. Gazis, A. Alonistioti, “Application-
transparent adaptation in wireless systems beyond 3G”, m-
Business 2003, 23–24 June 2003, Vienna, Austria, pp. 43-54.

[8] J-Consortium JEFF file format, available from http://www.j-
consortium.org/jeffwg/.

ReconfigurationNotification
<<Interface>>

Abst rac tManagem ent

do(theCommand : AbstractCommand)
abort(theCommand : AbstractCommand)

(from framework)

<<Interface>>
Abst ractNotificat ion

doing(identity : Identifiable, theCommand : AbstractCommand)
done(identity : Identifiable, theCommand : AbstractCommand)
error(identity : Identifiable, theCommand : AbstractCommand)

(f ro m f ramework)

<<Interface>>

+theManager

+theNotifee

DownloadManager

cache : String

download(url : String) : String
delete(url : String) : Boolean
isDownloaded(url : String) : Boolean
getLocalURL(url : String) : String

(f rom d ownload)

InstallationManager

cache : String

install(url : String) : Boolean
uninstall(url : String) : Boolean
isInstalled(name : String) : Boolean

(from instal lation)

LoadManager

create(id : String) : LoadManagement
create(id : String, properties : PropertiesSet) : LoadManagement
load(id : String)
unload(id : String)
isLoaded(id : String)
getInterface(id : String, name : String) : Identifiable
getInterfaceLifecycle(id : String) : LifecycleManagement
getInterfaceProvision(id : String) : ProvisionManagement

(f ro m l oad)

<<Interface>>

LifecycleManager

activate(id : String)
deactivate(id : String)
suspend(id : String)
resume(id : String)
create(url : String, properties : PropertySet) : LifecycleManagement

(from l i f ecy cle)

<<Interface>>

ProvisionManager

provision(id : String)

(from provision)

<<Interface>>

Rec onfigurationM anagem ent

download()
delete()
install()
uninstall()
provision()
activate()
deactivate()
suspend()
resume()

<<Interface>>

ReconfigurationM anager

download(id : St ring)
delete(id : String)
install(id : String)
uninstal l(id : S tring)
load(id : S tring)
unload(id : String)
provision(id : String)
activate(id : String)
deactivate(id : String)
suspend(id : String)
res ume(id : String)

<<Interface>>

Figure 4. The reconfiguration management interfaces.

Proceeding of the SDR 03 Technical Conference and Product Exposition. Copyright © 2003 SDR Forum. All Rights Reserved

