SNMP CONTROL FOR A SOFTWARE-DEFINED RADIO

Dave Dohse (General Dynamics Decision Systems, Scottsdale, Arizona, USA; dave.dohse@gd-decisionsystems.com);
Jim Crowe (General Dynamics Decision Systems, Scottsdale, Arizona, USA; jim.crowe@gd-decisionsystems.com)

1. THE CASE FOR SNMP MANAGEMENT OF AN SDR

SNMP is not the only option for arbitration of external control into an SDR; however, it is our assessment that SNMP is the best solution at this time based upon a number of assessment factors. Table 1 contrasts SNMP with the Common Management Information Protocol (CMIP) and direct CORBA control mechanisms [1] [2]. The table characterizes the relative merits of each approach for a set of attributes deemed significant to an SDR such as those defined by the Joint Tactical Radio System (JTRS) Software Communication Architecture (SCA) [3].

An SNMP-based approach to radio management addresses numerous factors that are key to providing an optimal SDR control structure. An SDR must often respond to control from a variety of devices (e.g., Human Machine Interface (HMI), Mission Computer, Remote Control Devices) over a potentially diverse set

Table 1. SNMP is a sound choice for SDR management as demonstrated by comparison with CMIP and Direct CORBA

<table>
<thead>
<tr>
<th>Attributes</th>
<th>SNMP</th>
<th>CMIP</th>
<th>Direct CORBA access</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Acceptance</td>
<td>Widely used for network management in conjunction with routers, etc.</td>
<td>In limited use</td>
<td>Emerging use in telecommunication applications but not yet for network management</td>
<td>SNMP</td>
</tr>
<tr>
<td>SDR Acceptance</td>
<td>Used in the Navy Digital Modular Radio (DMR) as the interface to an NT-based HMI and SPAWAR developed Remote Control Processor (RCP).</td>
<td>Unknown</td>
<td>Prototype SDRs exist with direct CORBA control. The JTRS SCA defines CORBA as the SDR control interface.</td>
<td>None</td>
</tr>
<tr>
<td>Language Bindings</td>
<td>Generic ASN.1 definitions can be compiled into C, C++, etc.</td>
<td>C/C++</td>
<td>Generic IDL bindings to C/C++/Java</td>
<td>None</td>
</tr>
<tr>
<td>Required Resources</td>
<td>Minimal</td>
<td>Large (10x SNMP)</td>
<td>Would require incorporating ORB into legacy environments</td>
<td>SNMP</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>Simple, easy to understand Based upon well-defined Management Information Base (MIB) structure</td>
<td>Complex, few experts, difficult to use</td>
<td>Makes network management a transparent extension of normal programming</td>
<td>Direct CORBA</td>
</tr>
<tr>
<td>Monitoring and Analysis Utilities</td>
<td>Numerous Third Party tools and monitors available Analysis packages widely available including Shareware</td>
<td>Less Common</td>
<td>Custom with some emerging commercial tools (e.g., Vertel CORBA Explorer)</td>
<td>SNMP</td>
</tr>
<tr>
<td>Access Management (including multiple controllers)</td>
<td>Authentication via SNMP V3 and mechanisms to lock and restrict access to portions of the MIB</td>
<td>Built in authorization, access control and security logs</td>
<td>"Policy Objects" associated with CORBA security services offer flexibility but are not as intuitive as controlling access to variables in a database (e.g., MIB)</td>
<td>None</td>
</tr>
</tbody>
</table>
of bus structures (e.g., MIL-STD 1553, Switched Fabrics and Ethernet). SNMP provides the means for consolidating these device and bus interfaces within a common structure. Given the stringent availability requirements for SDRs, there is a desire to incorporate mature COTS products adapted to a wide range of operating environments. SNMP is widely accepted within industry and is compatible with a variety of platforms including Windows NT, Unix™, Linux™, Wind River’s VxWorks™ and Green Hills Integrity™. COTS vendors also offer an extensive set of products for monitoring SNMP. SDR management must incorporate adequate locking mechanisms to prevent corruption from simultaneous controller modifications and restrict SDR access to authorized users. SNMP v3 offers the necessary security and integrity features for SDR-coordinated access management and control.

Despite the case made for use of SNMP to control an SDR, it would be a mistake to apply SNMP directly to file transfers or streaming data. To overcome this limitation, SNMP can be used to orchestrate setup of a secondary connection (e.g., FTP, NFS) between an external controller and the SDR. SNMP essentially steps aside during the actual data transfer.

Use of SNMP within an SDR architecture challenges both the real-time (RT) nature of radio applications and the desire to make direct use of CORBA messaging. To overcome these challenges, General Dynamics Decision Systems has implemented a gateway between SNMP and CORBA, as shown in Figure 1. The gateway effectively de-couples the RT aspects of the radio from non-RT control initiated from an HMI, by introducing translations between SNMP and CORBA.

As applications are instantiated within the SDR, they are assigned a Circuit ID. SNMP-related “shadow” objects (i.e., data caches) register with the CORBA gateway. The registration process establishes an interface repository linking a group of MIB variables to a corresponding CORBA shadow object. As an SNMP “get” or “set” request is received at the SDR, the gateway searches its interface repository for the corresponding “Arg Name” and “Circuit ID” and routes the request to the appropriate CORBA object. The “Arg Name” is internally linked to an SNMP Object Identifier (OID).

The SNMP Management Information Base (MIB) hierarchy specifies information that can be communicated to or from an SNMP-compliant device. SNMP agents for network devices (e.g., routers, printers and SDRs) are affiliated with a specific MIB branch. This affiliation enables the dynamic discovery of similar MIBs by upstream applications or tools. The early stages of MIB standardization practice produced an MIB to test access control methods. The need for standardization of MIBs has proven to be critical. To manage access to the external SNMP manager in given SDRs, the C ircuit ID is assigned to the device and is visible to all members of the SDR. This unique number is used to uniquely identify access to the device (concurrent update).

Figure 1. Managing External Control with SNMP by providing a gateway into CORBA environments
3. MIB STRUCTURE FOR THE NAVY DIGITAL MODULAR RADIO

The family of MIBs for the Navy Digital Modular Radio fall under the base OID "1.3.6.1.4.1.3880.6.1". In WITS (3880), all of the variables defined in this Experimental (6) branch within the Numbers Authority (IANA) as "iso(1).org(3).dod(6).milit(7).navy(8).wits(9)".

The WITS MIB is separated into groups for System Control, Interfaces, Waveforms and Security as shown in Figure 2. The MIB Groups further resolve into tables used to collect and structure variables used in external managers, the Control, Interfaces, Waveforms and Security as shown in Figure 2.

The 2-level structure example, the System Control Group, is shown in the MIB row instantiation of AM creates a new MIB row in this table. Each instantiation of AM creates a new MIB row in this table.

Figure 2. The WITS MIB is part of an extensible MIB structure registered within the IANA hierarchy.
4. SNMP MESSAGING WITHIN THE DMR

A closer look at the SNMP messaging shown in Figure 3 provides insight into interactions with the CORBA Gateway, Target Objects, and the Event Manager. Panel A of Figure 3 illustrates SNMP to CORBA conversions and the underlying support protocols and busses (i.e., SNMP over UDP/IP/Ethernet and CORBA over a custom Transport and cPCI bus within the radio). SNMP Set Requests are translated into CORBA Refreshes by the CORBA Gateway. The return path translates CORBA Queries originating in Target Objects to SNMP Get Responses. Events originating in the radio are logged in the “Event Manager” and provided as Notifications that ultimately become SNMP Traps received at the HMI. The radio responds to commands that might require thirty seconds or more vents/Traps (vs. Get-Response) to avoid tying up the SNMP interface.

Figure 3. The CORBA Gateway within the DMR translates SNMP Messages to CORBA.
connections before reclaiming the application’s resources (processing, memory, devices). The final steps involve use of the event services to send a Notify and ultimately a Trap back to the HMI signaling the successful closure of the circuit. At this stage the resources previously held by the closed application are now available for establishment of a circuit for a new application instantiation.

It is possible to extend SNMP by bundling commands and data for more efficient operation. SNMP “set” and “get” primitives can be “stacked” as multiple entries in the “variable-bindings” list within an SNMP Protocol Data Unit (PDU) as described in RFC 1157. A front end to the SNMP agent that queues received SNMP commands provides a means of allowing an HMI to initiate multiple and potentially extended operations (e.g., instantiation of applications) such that SDR processing occurs in receive sequence (i.e., eliminates operator waiting between command initiation). Multiply indexed MIB tables can be introduced to add efficiency and extensibility to MIB structures (e.g., directory structure with multiple routing entries and associated attributes for address, subnet, priority, etc.). Finally, “collection” objects can be introduced to aggregate multiple SNMP “set” and “get” operations [7].

5. THIRD PARTY CONTROL OF AN SDR VIA SNMP

One of the advantages SNMP affords is the introduction of auxiliary controllers to the standard HMI interfaces. Such controllers may facilitate coordination within distributed environments that include legacy ancillary devices requiring interfaces into an SDR. The Remote Control Processor (RCP) in Figure 4 is an example of third party control for the DMR Information Transfer Unit (ITU) (i.e., radio platform). Control and status access to a DMR is possible from either an RCP or HMI through a standard Ethernet hub. The RCP serves as an intelligent communication device for translating controls from the Navy’s integrated shipboard switching system into SNMP commands. Navy SPAWAR is developing the RCP with support from General Dynamics Decision Systems. The SNMP interface allows communications users to configure attributes of a waveform without direct operator interaction. The RCP converts user settings from a communications panel into SNMP requests for control and status. Through the use of SNMP, the RCP has the capability of commanding a subset of the operations possible from the DMR HMI (e.g., setting radio frequencies).

6. SUMMARY

SNMP offers benefits for SDR external control and management that exceed alternative approaches using CMIP or direct CORBA access. Real-Time performance in an SDR can be maintained by use of a CORBA gateway that decouples HMI control from radio data traffic. The Navy’s Digital Modular Radio demonstrates viability of SNMP within an SDR while serving as an example for the adaptations necessary to succeed. SNMP opens the door for use of third party controllers and offers a significant pool of COTS SNMP analysis tools.

7. REFERENCES