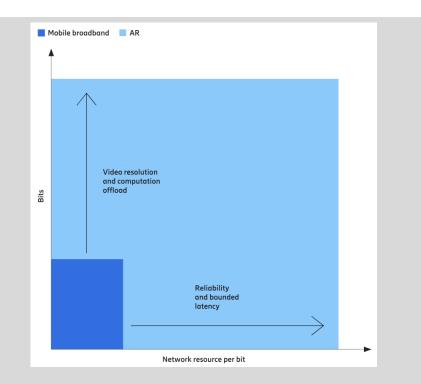
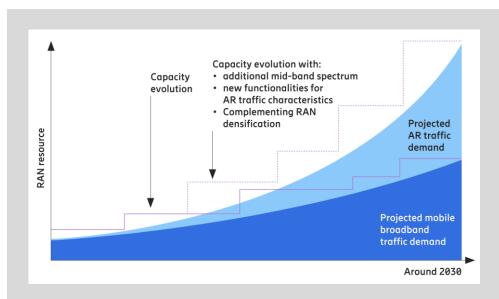


Spectrum evolution

Erika Tejedor Vice President, spectrum regulations


Mobile growth and new use cases



Use of mobile communication will evolve with increased MBB and new use cases such as XR driven by AI.

AR uptake enabled by mobile networks

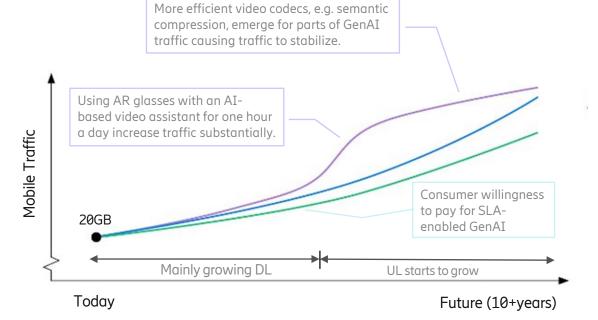
- Stringent delay requirements (bounded latency) and limited packet loss (high reliability).
- More network resource to deliver a given amount of traffic.
- An AR user will consume more bits.

- Growth in devices and applications using AR in wide-area use cases is expected to accelerate in the latter part of this decade.
- Mobile networks will need to be re-dimensioned to handle the traffic and performance requirements of these new real-time services.
- The solution will be a combination of additional spectrum and new functionality offering greater efficiencies, complemented with increased Radio Access Network (RAN) density.

ERICSSON

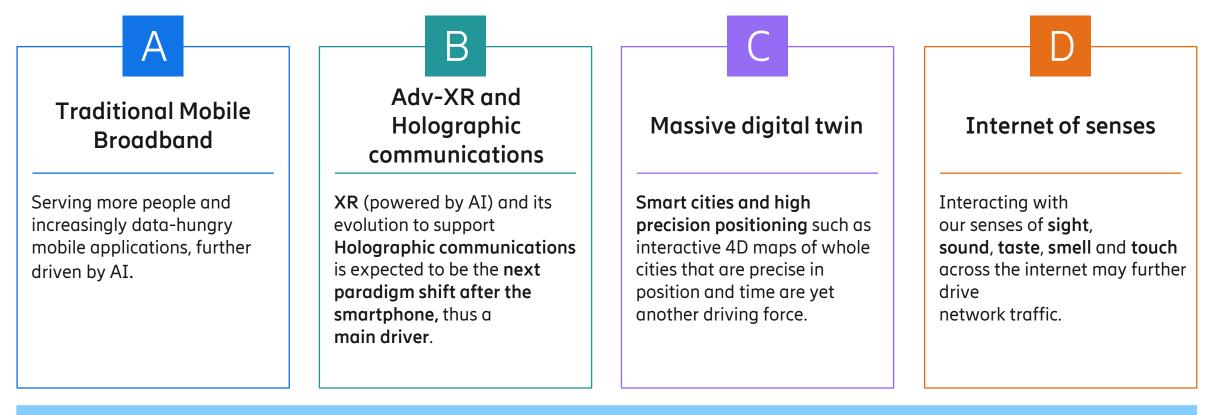
GenAI assisted applications are expected to bring mobile traffic growth – Three scenarios illustrate future impacts on UL and DL traffic

GenAI application trends


- Smartphones start to rely on GenAI-native chips, OS and applications. Consumers are willing to pay for improved GenAI experiences.
- Video and some audio-based AI Assistants will drive demand for UL and differentiated connectivity.
- Consumers start to show a preference for hyper-customized experiences leveraging GenAI.
- Differentiated connectivity & ULoptimized networks will start to make a real difference mid-term.

Scenario illustration of mobile traffic growth impact due to GenAI based applications

Baseline scenario Adoption of GenAI is a reason for continued traffic increase.


Uptake scenario Accelerated uptake and usage of GenAI applications cause a steady increase of traffic.

Interplay scenario GenAI uptake explode aligned with launch of AR glasses. At the same time more efficient video codecs emerge.

GenAl impact on traffic – Ericsson Mobility Report

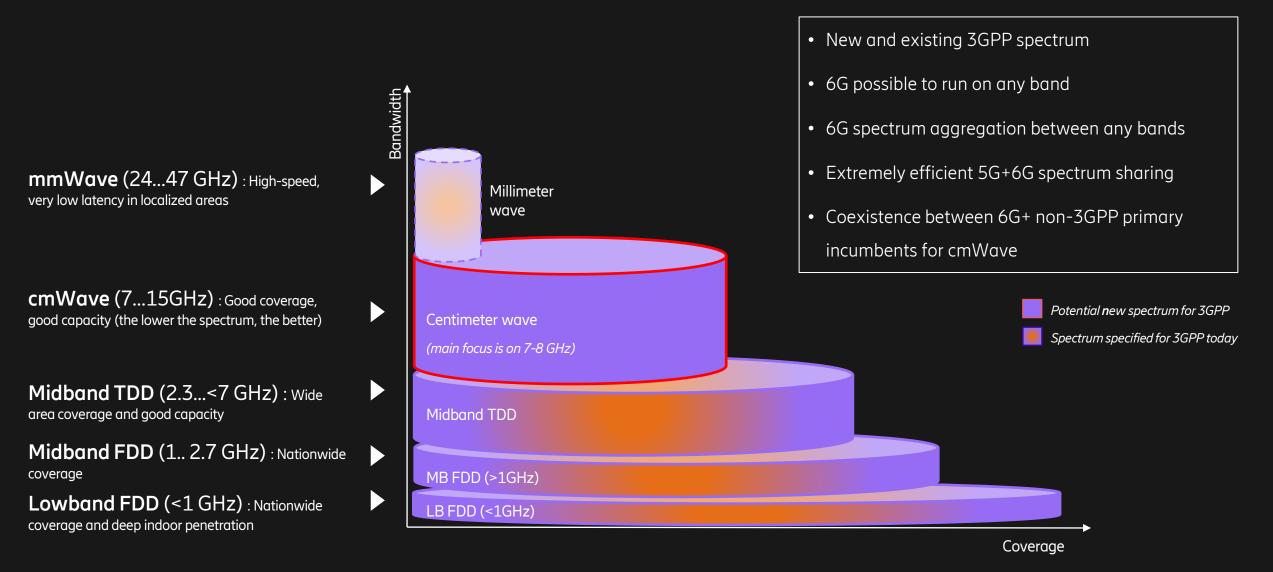
What are the driving use cases in wide area deployments beyond 2030?

ERICSSON

Additional wide-area spectrum is key to enable mobility for many 6G use cases.

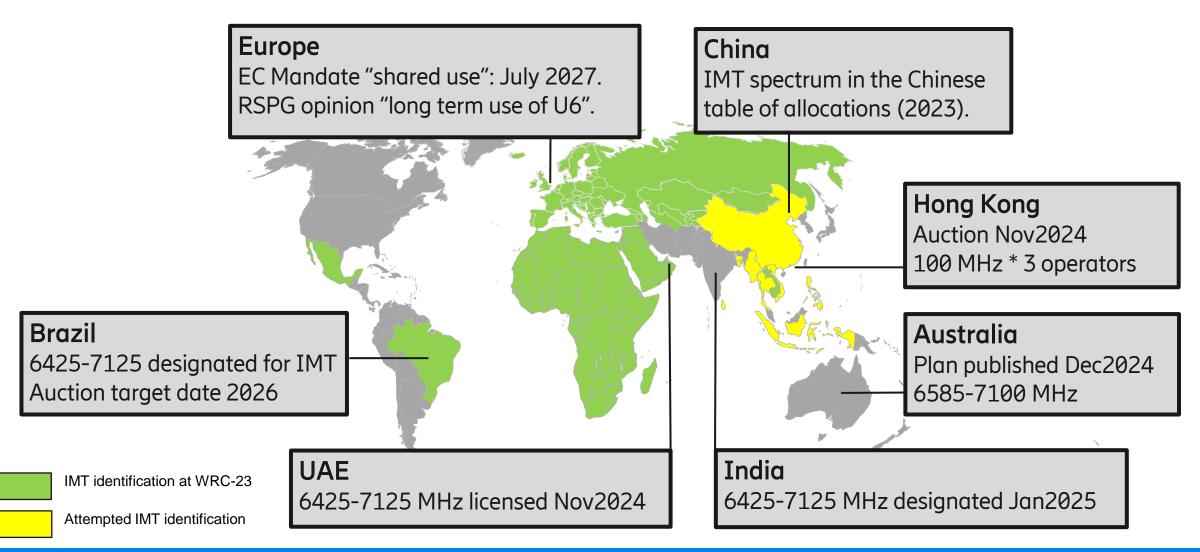
* To read more about the different use cases: Link

Additional spectrum for a robust mobile evolution


• Regional considerations on the 470-694 MHz band usage (e.g. Europe).

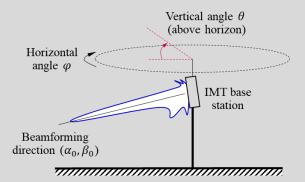
 (\mathbf{O})

Intelligent multi-layer co-ordination in 2030+

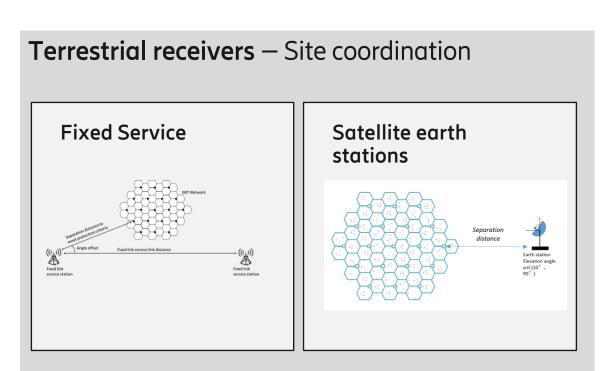


Deep dive on wide-area spectrum

6425-7125 MHz: Global momentum



Additional momentum for U6 GHz harmonization – 3GPP n104


Sharing between mobile and primary incumbents in the band

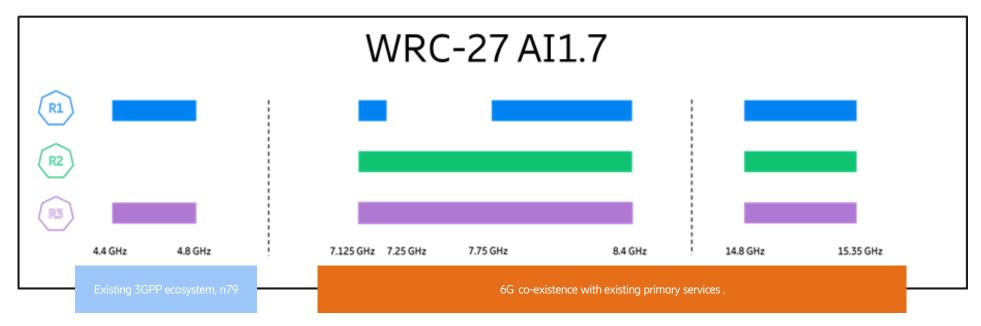
Satellite receivers – Expected EIRP (WRC-23)

Vertical angle range θ _L ≤ θ < θ _H (vertical angle θ above horizon)	Expected e.i.r.p. (dBm/MHz) (See NOTES 1, 2 and 3)	
0° ≤ θ < 5°	27	
5° ≤ θ < 10°	23	
10°≤ θ < 15°	19	
15°≤ θ < 20°	18	
20°≤ θ <30°	16	
30°≤ θ < 60°	15	
60°≤ θ ≤ 90°	15	
	10	

ITU-R work on-going on draft Recommendations to support administrations to coordinate

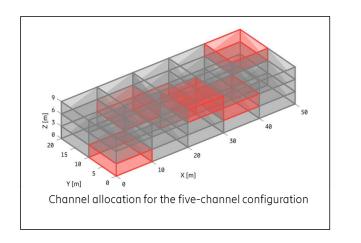
6 GHz sharing with Fixed Links

Licensed


- Individual licensing ensures interference avoidance via coordination.
- License conditions can include provisions to ensure FS protection with regulatory control.
- In case of interference, the regulator can intervene.

Unlicensed

- Interference protection from unlicensed use cannot be ensured.
- Wi-Fi beacon signal (always sent at highest power) remains an issue.
- Market penetration of LPI, VLP still low to conclude on impact on FS.
- Will AFC protect FS when the market penetration of Standard Power matures?


WRC-27 IMT identification

- Focus band: 7125-8400 MHz.
- 7125-8400 MHz included in the U.S. National Spectrum Strategy (NSS).
- 14 GHz can complement (not replace) wide-area spectrum by offering additional capacity.

Spectrum beyond 5 GHz and L6 for Wi-Fi in residential environments?

	Channel configuration	Mean throughput for 11 dB wall loss	95 percentile throughput for 11 dB wall loss	5 percentile throughput for 11 dB wall loss	
	11 channels of 80 MHz (non interference-limited)	1.31 Gb/s	1.32 Gb/s	1.21 Gb/s	
	Five channels of 160 MHz	2.13 Gb/s	2.44 Gb/s	1. 10 Gb/s	
	Five channels of 80 MHz, using two links per AP	2.27 Gb/s	2.64 Gb/s	0.76 Gb/s	
	Three channels of 80 MHz, using three links per AP	2.59 Gb/s	3.94 Gb/s	0.95 Gb/s	

- Speeds significantly higher than 1 Gbps can be achieved today with current Wi-Fi technology and spectrum available in the 5GHz and lower 6 GHz.
- The best performance is achieved when combining efficient reuse of the available channels with modern Wi-Fi features.
- Larger channel bandwidth does not always mean better performance. Throughput increases, but interference among access points (APs) increases as well.
- Emphasis should be put on optimizing operation in dense scenarios with appropriate channel bandwidth and features, rather than overprovisioning of spectrum.

Mobile and Wi-Fi will remain complementary technologies

Technology choice

Mobile:

- QoS indoors and outdoors.
- Enables mobility.
- Secure connectivity.

Wi-Fi

- Best effort.
- Localized area coverage

Technology choice examples

- Extended Reality (AR, VR, XR)
 - Unlicensed: best effort, localized and indoors environments.
 - Licensed: indoors/outdoors, mobility, secured QoS, mission critical.
- Enterprises
 - Unlicensed: Large chunks of spectrum needed to avoid interference.
 - Licensed: Private networks requiring only its allocated spectrum -- Spectrally efficient solution.

Summary

- Additional wide-area spectrum is essential to enable mobile growth and new use cases.
- Wide-area spectrum in focus:
 - Near term towards 2030: 6425-7125 MHz.
 - 2030 and beyond: 7125-8400 MHz.
- Global momentum for harmonization of the 6425-7125 MHz band for mobile (after WRC-23).
 - Sharing with incumbents studied for WRC-23.
 - Harmonization is critical for 3GPP n104 device ecosytem and economies of scale.
- 7125-8400 MHz
 - Sharing with incumbents under study (WRC-27 internationally and U.S. NSS).
 - Relocating some incumbents may be possible or not depending on the market.

