
Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Process collocation and core

affinity deployment

Document WINNF-15-R-0015

Version V1.0.0

29 May 2015

Slide 1

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Terms and Conditions

Slide 2

This document has been prepared by the SCA 4.1 Draft Adjudication Work Group to

assist The Software Defined Radio Forum Inc. (or its successors or assigns, hereafter

“the Forum”). It may be amended or withdrawn at a later time and it is not binding on

any member of the Forum or of the SCA 4.1 Draft Adjudication Work Group.

Contributors to this document that have submitted copyrighted materials (the

Submission) to the Forum for use in this document retain copyright ownership of their

original work, while at the same time granting the Forum a non-exclusive,

irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s

copyrights in the Submission to reproduce, distribute, publish, display, perform, and

create derivative works of the Submission based on that original work for the purpose

of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this

document for legitimate purposes of the Forum. Copying for monetary gain or for

other non-Forum related purposes is prohibited.

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Intellectual Property Rights
Use this chart in all contributions

Slide 3

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY

WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-

INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS

SPECIFICATION SHALL BE MADE ENTIRELY AT THE

IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY

OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY

WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY

DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR

INDIRECTLY, ARISING FROM THE USE OF THIS DOCUMENT.

Recipients of this document are requested to submit, with their comments,

notification of any relevant patent claims or other intellectual property rights of

which they may be aware that might be infringed by any implementation of the

specification set forth in this document, and to provide supporting

documentation.

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

This document contains a proposal to change the Draft SCAv4.1 specification to

provide the capability to support dynamic threading, when intended, for

Executable Device Component OS process address space and also for a

separate OS process address space. The proposal also intends to allow

application threads to be mixed with platform component threads in the same

OS process address space. Furthermore, this proposal adds support for multi-

core devices deployment via core affinity requirements in a SAD and DCD

supported by an executable device component that manages a multi-core

processor.

Proposal authors:

• Jerry Bickle, Raytheon

• François Lévesque, NordiaSoft

• Steve Bernier, NordiaSoft

Proposal reviewers:

• Chuck Linn, Harris

• Sarah Miller, Rockwell Collins

• Christoper J. Hagen, Rockwell Collins

• Eric Nicollet, Thales

Proposal

Slide 4

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Recommendation

SCA v4.1 Process collocation and core affinity deployment

5

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Topics

Description of the Issue

Summary of the Proposal

Detailed Proposal

Specifications Changes

• Main Specification Changes

• IDL Specification Changes

• Appendix A: Glossary

• Appendix D-1: PSM - Document Type Definition (DTD) Files Specification

Changes

• SCA User Guide

6

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Description of the Issue

POSIX Operating Systems support dynamic loading of libraries and dynamic
creation of threads within an OS process address space, thus allowing the
capability of a thread to be dynamically added to a OS process. Furthermore,
operating systems today support multi-core processors and different
techniques to run processes/threads across different cores.

Currently, one can collocate platform components or application components in
the same OS process address space using a Factory Component but not
together. The use of a Factory Component is static configuration on the types
of components that Factory Component can create up. Also, the SCA offers
limited support for multi-core devices deployment. Indeed, it uses an
executable device component per core or an executable device component for
all cores, which results in letting the OS make the decision on what processor
core to deploy executables.

At the moment, an Executable Device Component implementation could
support OS process creation and/or OS thread creation within its address
space. However, there is no standard approach to provide to an
ExecutableDeviceComponent the desired deployment strategy on single-core
nor on multi-core processors.

7

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Applications across all device categories continue to require

better performances. Two main trends are driving the

embedded device market today:

1. smaller form factors

2. improved performance per watt

However, traditional method of achieving better performances

via higher clock frequency leads to increased thermal

dissipation and energy requirements

Multicore technology improves performance per watt ratios. It

also reduces board real-estate requirements

Rationale

Slide 8

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Multi Core computing has gained widespread acceptance in

embedded systems.

1. Symmetric Multi Processing (SMP): One operating system controls

more than one identical processor/core. In SMP, all processors/cores

must be able to access the same memory and the same I/O devices

• Interactions between tasks can be done via memory access

• Interactions can also be done using IPCs

2. Asymmetric Multi Processing (AMP): Multiple operating systems are

used; one operating system for each processor/core. Operating

systems do not need to be the same. Processors/cores do not need to

be identical. Homogeneous AMP vs Heterogeneous AMP

• Interactions between tasks cannot be done via memory access

• Interactions must be done using IPCs

Rationale

Slide 9

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

AMP is good when:
• Communication speed between cores is not critical

• When more than one operating system is needed (legacy code,

Security requirements, etc.)

SMP is good when:
• Communication speed between cores is critical

• Workload needs to be distributed across processors/cores

dynamically

AMP is mostly used with multiple processors

SMP is mostly used with multicore processors

Rationale

Slide 10

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Concurrency

• Having two or more tasks in progress at the same time (time slicing).

Parallelism
• Having two or more tasks executing at the same time.

With AMP, parallelism is achieved executing several tasks on

different processors

With SMP, parallelism is achieved executing several tasks on

different cores of a single processor

Rationale

Slide 11

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Most common Operating Systems all support SMP. Some

support AMP.

SMP is a feature that is supported by the OS scheduler which

needs to allocate each tasks to a core. Different OSs use

different techniques to decide choose a target core.

By default, to avoid overloading a single core, all operating

systems use a form of load balancing algorithm that can move

tasks to under-utilized cores.

Real-time operating system offer the possibility to influence the

scheduling of time-critical tasks. This is generally offered via

the concept of Core Affinity. The following operating systems

support Core Affinity:

Rationale

Slide 12

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Cpuset_t affinity;

CPUSET_ZERO(affinity)

CPUSET_SET(affinity, 1);

CPUSET_SET(affinity, 3);

taskCpuAffinitySet(taskId, affinity);

my_data = malloc(...);

memset(my_data, ...);

rmask = ((int *)my_data) + 1;

RMSK_SET(1, rmask);

ThreadCtl(_NTO_TCTL_RUNMASK_GET_AND_SET_INHEIRT, my_data);

SetTaskProcessorBinding(TaskId, TRUE, 1);

SetTaskProcessorBinding(TaskId, TRUE, 2);

cpu_set_t mask;

CPU_ZERO(&mask);

CPU_SET(0, &mask);

CPU_SET(2, &mask);

sched_setaffinity(threadID, sizeof(mask), &mask);

SetThreadAffinityMask(::GetCurrentThread(), threadAffinityMask);

Rationale

Slide 13

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Some Operating Systems offer more sophisticated scheduling

schemes. For instance, VxWorks supports the concept of “Core

Reservation” which means that a Task can reserve a Core. This

prevents other tasks from running on the reserved Core.

Core reservation can also be done with Core Affinity by setting

the affinity of every task to not use a specific Core and by

allowing a single task to have an affinity for the reserved core

This proposal adds Core Affinity support to the SCA. Affinity is

the most basic SMP scheduling technique and is widely

supported by embedded operating systems.

The current proposal does not add support for the more

advanced scheduling techniques since they vary significantly

from on RTOS to another

Rationale

Slide 14

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

The new feature will allow a developer to specify a Core Affinity

for the deployment of SCA components. When a preference is

specified (it is optional), it will be stored in Assembly

Descriptors (SAD and DCD) at the component instantiation level

The Core Framework will be required to feed the Core Affinity to

the ExecutableDevice for each component that contains an

Affinity

If the ExecutableDevice implements support for Core Affinity, it

will be responsible for mapping the Core Affinity requirements

to the underlying operating system

Rationale

Slide 15

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

• Add an optional sub-element to SAD and DCD component instantiation to

specify a core affinity.

• Define a new options parameter for the ExecutableInterface::execute operation

to provide a core affinity value that will be used to indicate a preference for a

specific core to execute a component.

• Add a new parameter for the ApplicationFactory::create operation to specify

core affinity assignments.

• Add an optional attribute to SAD and DCD component instantiation to specify a

process collocation.

• Define a new options parameter for the ExecutableInterface::execute operation

to provide a process collocation value that will be used to execute a component

within a specific address space.

• Define a new option parameter for the ExecutableInterface::execute operation to

provide the entry point for a function to execute from a shared library.

• Remove InvalidFunction exception from being thrown by

ExecutableInterface::execute operation.

Summary of the Proposal

Slide 16

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

In SAD XML file, the recommendation is to add a processcollocation

attribute and a coreaffinity sub-element to componentinstantiation element,

and add a executionaffinityassignments element to assemblyinstantiation

element.

D-1.10.1.3.1.2 componentinstantiation

The componentinstantiation element’s optional processcollocation attribute indicates

a specific logical process in which the component instance must be executed. The

processcollocation attribute is used as part of the options parameter for the

ExecutableInterface execute operation.

<!ELEMENT componentinstantiation

(usagename?

, componentproperties?

, coreaffinity*

, deploymentdependencies?

, findcomponent?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED

stringifiedobjectref CDATA #IMPLIED

processcollocation CDATA #IMPLIED>

Update Figure 22.

Detailed Proposal

Slide 17

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

D-1.10.1.3.1.2.x coreaffinity

The optional coreaffinity element is used to indicate preference for execution of a

component instance on specific a processor core. The coreaffinity is used as part of

the options parameter for the ExecutableInterface execute operation.

Data type for the value of this option is unsigned long, with values being platform

dependents.

<!ELEMENT coreaffinity (#PCDATA)>

Detailed Proposal

Slide 18

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

D-1.10.1.3.3.1 assemblyinstantiation

<!ELEMENT assemblyinstantiation

(usagename?

, componentproperties?

, deviceassignments?

, executionaffinityassignments?

, deploymentdependencies?

)>

<!ATTLIST assemblyinstantiation

id ID #REQUIRED>

Update Figure 27.

Add the following section.

D-1.10.1.3.3.1.4 executionaffinityassignments

The optional executionaffinityassignments element provides a list of

executionaffinityassignment elements which are used when deploying the sub-

application’s components.

Detailed Proposal

Slide 19

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

In an executionaffinityassignment element, the componentid attribute refers to the

componentinstantiationref within the scope of the sub-application being created. The

optional processcollocation attribute indicates a specific logical process in which the

component instance of the sub-application must be executed. The

processcollocation attribute is used as part of the options parameter for the

ExecutableInterface execute operation. The optional coreaffinity element is used to

indicate preference for execution of component instances of the sub-application on

a specific processor core. The coreaffinity is used as part of the options parameter

for the ExecutableInterface execute operation.

<!ELEMENT executionaffinityassignments

(executionaffinityassignment+

)>

<!ELEMENT executionaffinityassignment

(coreaffinity*

)>

<!ATTLIST executionaffinityassignment

componentid CDATA #REQUIRED

processcollocation CDATA #IMPLIED>

Detailed Proposal

Slide 20

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

In DCD XML file, the recommendation is to add a processcollocation

attribute and a coreaffinity sub-element to componentinstantiation element.

D-1.11.1.4.1.5 componentinstantiation

The componentinstantiation element’s optional processcollocation attribute indicates

a specific logical process in which the component instance must be executed. The

processcollocation attribute is used as part of the options parameter for the

ExecutableInterface execute operation.

<!ELEMENT componentinstantiation

(usagename?

,componentproperties?

,coreaffinity*

,componentfactoryref?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED

stringifiedobjectref CDATA #IMPLIED

processcollocation CDATA #IMPLIED>

Update Figure 38.

Detailed Proposal

Slide 21

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

D-1.11.1.4.1.5.x coreaffinity

The optional coreaffinity element is used to indicate preference for

execution of a component instance on specific a processor core. The

coreaffinity is used as part of the options parameter for the

ExecutableInterface execute operation.

Data type for the value of this option is unsigned long, with values being

platform dependents.

<!ELEMENT coreaffinity (#PCDATA)>

Detailed Proposal

Slide 22

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

D-1.6.1.6.3 code

The code element (see Figure 4) is used to indicate the local filename of

the code that is described by the softpkg element, for a specific

implementation of the software component. Options parameters stacksize

and priority are used by the ExecutableInterface execute operation. Data

types for the values of these stacksize and priority options are unsigned

long. The stacksize element provides the means to specify a stack size for

the process/thread being created. The priority element provides the means

to specify the scheduling priority for the process/thread being created. The

type attribute for the code element will also indicate the type of file being

delivered to the system. Options parameter entrypoint is used by the

ExecutableInterface execute operation. The entrypoint element provides

the means for providing the name of the entry point of the component

being delivered. The data type for the value of entrypoint option is string.

The type attribute of the code element indicates the type of file being

delivered to the system.

Detailed Proposal

Slide 23

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.3.1 InvalidProcess

The InvalidProcess exception indicates that a process or thread, as

identified by the processIdexecutionId parameter, does not exist on this

device.

Remove section 3.1.3.4.1.6.3.2

3.1.3.4.1.6.3.2 InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the

input name parameter, hasn't been loaded on this device.

exception InvalidFunction{};

Detailed Proposal

Slide 24

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.3.3 ProcessExecutionID_Type

The ProcessExecutionID_Type contains information for a process and a thread

number id within the system. The process number ExecutionID_Type is unique to

the processor operating system that created the process and thread. The threadId

field is the thread id provided by the operating system when a thread is created to

execute a function as specified in the entry point options parameter. The processId

field is the process identifier provided by the operating system when a process is

created either to execute a file or to execute a function as specified in the entry

point options parameter. The processCollocation field is the value of the process

collocation options parameter when specified. The cores field is the value of the

processor cores used to execute the process.

typedef long ProcessId_Type;

struct ExecutionID_Type

{

unsigned long long threadId;

unsigned long long processId;

string processCollocation;

CF::ULongSeq cores;

};

Detailed Proposal

Slide 25

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.3.6 STACK_SIZE_ID

The STACK_SIZE_ID is the identifier for the execute operation options

parameter. STACK_SIZE_ID is used to set the operating system's

process/thread stack size. SCA277 The value for a stack size shall be is

an unsigned long.

const string STACK_SIZE_ID = "STACK_SIZE";

3.1.3.4.1.6.3.7 PRIORITY_ID

The PRIORITY_ID is the identifier for the execute operation options

parameter. PRIORITY_ID is used to set the operating system's

process/thread priority. SCA278 The value for a priority shall be is

unsigned long.

const string PRIORITY_ID = "PRIORITY";

Detailed Proposal

Slide 26

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Add new constants for ExecutableInterface options parameters.

3.1.3.4.1.6.3.x EXEC_DEVICE_PROCESS_SPACE

The EXEC_DEVICE_PROCESS_SPACE is the constant value known for

the execute operation PROCESS_COLLOCATION_ID option parameter.

const string EXEC_DEVICE_PROCESS_SPACE = “DEVICE";

3.1.3.4.1.6.3.x PROCESS_COLLOCATION_ID

The PROCESS_COLLOCATION_ID is the identifier for the execute

operation options parameter. PROCESS_COLLOCATION_ID is used to

select the process from within which the entry point function must be

invoked. A PROCESS_COLLOCATION_ID value of

EXEC_DEVICE_PROCESS_SPACE means the entry point is invoked

from within the process of the Executable Device Component. A

PROCESS_COLLOCATION_ID empty value means a new process is

created to invoke the entry point. A PROCESS_COLLOCATION_ID of any

other value means the entry point is invoked from within a process

associated with that logical process value. The value for a process

collocation is a string.

Detailed Proposal

Slide 27

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

const string PROCESS_COLLOCATION_ID =

“PROCESS_COLLOCATION";

3.1.3.4.1.6.3.x ENTRY_POINT_ID

The ENTRY_POINT_ID is the identifier for the execute operation options

parameter. ENTRY_POINT_ID is used to identify the name of the entry

point function that must be invoked. The value for a entry point is a string.

const string ENTRY_POINT_ID = "ENTRY_POINT";

3.1.3.4.1.6.3.x CORE_AFFINITY_ID

The CORE_AFFINITY_ID is the identifier for the execute operation options

parameter. CORE_AFFINITY_ID is used to identify the processor core

where to execute a process. The value for a core affinity is a

CF::ULongSeq.

const string CORE_AFFINITY_ID = "CORE_AFFINITY";

Detailed Proposal

Slide 28

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.5.1.2 Synopsis

ProcessExecutionID_Type execute (in string filename, in Properties

options, in Properties parameters) raises (InvalidState, InvalidFunction,

InvalidParameters, InvalidOptions, InvalidFileName, ExecuteFail);

3.1.3.4.1.6.5.1.3 Behavior

SCA279 The execute operation shall execute the function or file identified

by the input filename parameter using the input parameters and options

parameters. Whether the input name parameter is a function or a file name

is device-implementation-specific.

SCA280 The execute operation shall map the input parameters (id/value

string pairs) parameter as an argument to the operating system

"execute/thread" function. The argument (e.g. argv) is an array of

character pointers to null-terminated strings where the last member is a

null pointer and the first element is the input filename parameter.

Thereafter the second element is mapped to the input parameters[0] id, the

Detailed Proposal

Slide 29

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

third element is mapped to the input parameters[0] value and so forth until

the contents of the input parameters parameter are exhausted.

The execute operation input options parameters are STACK_SIZE_ID, and

PRIORITY_ID, PROCESS_COLLOCATION_ID, ENTRY_POINT_ID, and

CORE_AFFINITY_ID.

SCA281 The execute operation shall use these options, when specified, to

set the operating system's process/thread stack size and priority, for the

executable image of the given input name parameter.

3.1.3.4.1.6.5.1.4 Returns

SCA282 The execute operation shall return a unique process

ExecutionID_Type for the process/thread that it created. The threadId is

zero when no ENTRY_POINT_ID is specified.

Detailed Proposal

Slide 30

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.5.1.5 Exceptions/Errors

SCA284 The execute operation shall raise the InvalidFunction exception

when the function indicated by the input name parameter does not exist for

the device to be executed.

SCA285 The execute operation shall raise the CF InvalidFileName

exception when the file name indicated by the input file name parameter

does not exist for the device to be executed.

SCA286 The execute operation shall raise the InvalidParameters

exception when the input parameter ID or value attributes are not valid

strings.

SCA287 The execute operation shall raise the InvalidOptions exception

when the input options parameter does not comply with sections

3.1.3.4.1.6.3.6 STACK_SIZE_ID, and 3.1.3.4.1.6.3.7 PRIORITY_ID,

3.1.3.4.1.6.3.x PROCESS_COLLOCATION_ID, 3.1.3.4.1.6.3.x

ENTRY_POINT_ID, and 3.1.3.4.1.6.3.x CORE_AFFINITY_ID.

SCA288 The execute operation shall raise the ExecuteFail exception when

the operating system "execute/thread" function is not successful.

Detailed Proposal

Slide 31

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.5.2 terminate

3.1.3.4.1.6.5.2.1 Brief Rationale

The terminate operation provides the mechanism for terminating the

execution of a process/thread on a specific device that was started up with

the execute operation. The terminate operation may terminate a process

when all threads within that process have been terminated.

3.1.3.4.1.6.5.2.2 Synopsis

void terminate (in ProcessExecutionID_Type processexecutionId) raises

(InvalidProcess, InvalidState);

3.1.3.4.1.6.5.2.3 Behavior

SCA289 The terminate operation shall terminate the execution of the

process/thread designated by the processexecutionId input parameter on

the device to be executed. When threadId is 0, the specified process will

be terminated, including all threads it contains. When a specific threadId is

provided, only that thread will be terminated.

Detailed Proposal

Slide 32

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.4.1.6.5.2.4 Returns

This operation does not return a value.

3.1.3.4.1.6.5.2.5 Exceptions/Errors

SCA291 The terminate operation shall raise the InvalidProcess exception

when the process executionId does not exist for the device.

Detailed Proposal

Slide 33

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Update 3.1.3.1.3.29 SpecializedInfo Identifiers

Since the type returned by ExecubleInterface::execute is

ExecutionID_Type instead of ProcessID_Type

Remove PROCESS_ID

This string constant is the identifier for

ExecutableInterface::ProcessID_Type value within a ComponentType’s

specializedInfo.

const string PROCESS_ID = “PROCESS_ID";

Add EXECUTION_ID

This string constant is the identifier for

ExecutableInterface::ExecutionID_Type value within a ComponentType’s

specializedInfo.

const string EXECUTION_ID = “EXECUTION_ID";

Update Appendix C and SpecializedInfo IDL file.

Detailed Proposal

Slide 34

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

Add the possibility to perform core affinity assignment when an

application is instantiated.

3.1.3.1.3.x ExecutionAffinityType

The CF ExecutionAffinityType defines a structure that associates a

component with a process collocation and/or processor cores on which it is

executed. Only processCollocation and coreAffinity values that are

specified (non-empty) are used.

struct ExecutionAffinityType

{

string componentId;

string processCollocation;

CF::ULongSeq coreAffinities;

};

Detailed Proposal

Slide 35

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

3.1.3.1.3.x ExecutionAffinitySequence

The IDL sequence, CF ExecutionAffinitySequence, provides an

unbounded sequence of CF ExecutionAffinityTypes.

typedef sequence <ExecutionAffinityType> ExecutionAffinitySequence;

3.1.3.3.1.3.5.1.2 Synopsis

ApplicationManager create (in string name, in Properties initConfiguration,

in DeviceAssignmentSequence deviceAssignments, in Properties

deploymentDependencies, in ExecutionAffinitySequence

executionAffinityAssignments) raises (CreateApplicationError,

CreateApplicationRequestError, InvalidInitConfiguration);

3.1.3.3.1.3.5.1.3 Behavior

SCAXXX The create operation shall use the values contained in the input

executionAffinityAssignments parameter. These values have precedence

over the ApplicationFactoryComponent profile’s processcollocation

attribute and/or coreaffinity elements.

Detailed Proposal

Slide 36

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

In section Appendix A, add definitions

A.2 Definitions

Logical process

A process that this associated with a specific name within an

ExecutableDeviceComponent and that can be identified via a

PROCESS_COLLOCATION_ID option parameter.

Process

A process is composed of one region in runtime memory where execution

happens (called an address space) and of one-to-many threads. A

terminology other than process may be used in some operating systems.

Thread

The smallest sequence of programmed instructions that can be managed

independently by an operating system.

Detailed Proposal

Slide 37

Copyright © 2015 Software Defined Radio Forum, Inc. All Rights Reserved

Wireless Innovation Forum Document Number WINNF-15-R-0015-V1.0.0

In User guide, add a section to explain and clarify that process

collocation and core affinity requirements are applied once an

ExecutableDevice has been selected using the regular deployment

rules (allocation properties, device assignments, deployment

channels, etc.) already described in the SCA specification.

Detailed Proposal

Slide 38

