
Software Defined Radio Implementation
of A DVB-S Transceiver

Ashwin Amanna, James Bohl, Zachary Goldsmith – ANDRO

Computational Solutions, Rome NY

Michael Gudaitis, Benjamin Kraines, Robert DiMeo, William Lipe,
Richard Butler II – Air Force Research Lab

1

Originator Reference Number: RIT-17-435

Public Approval Case Number: 88ABW-2017-4648

Outline

• Problem / Motivation

• Review of existing software implementations of
DVB-S

• Contributions

• Implementation

• Results

• Limitations

• Implications

2

Problem
• Early promises of Software Defined Radios (SDR)

included:
• Accelerated development times

• Greater accessibility to the waveforms (not a black box)

• Ease of modification and adaptation

• The reality in the 1990’s was general purpose processors
(GPP) could not meet the demands of complex
waveforms

• This led to firmware emphasis
• Less portability

• Less accessibility

• Less adaptable

• Today’s modern GPP and advancement in low-cost SDRs
has created an opportunity to go Back to the Future
with SDR waveforms

3

Modem

Motivation for an Agile SW/HW Ecosystem

4

SDR Block Diagram

Focus on the Modem

Military

Crypto

State of the Practice

FPGA-based approach

“glued” to custom gigabit bus

Analog/

Digital

Converter

Flexible RF

Hardware

Control signals

I/O

Processor

Modem

processing

ControlBypass

FPGA Processor

Firmware

Custom

Gigabit

Bus

General Purpose

Processor

Software

COTS

Gigabit

Bus

Software-based GPP approach with

Modular Open System Bus for gigabit data transfers

across multiple HW instantiations

Highest theoretical performance, firmware-based

but limited flexibility, long development, higher cost

Provides:

High theoretical performance, innovative software-based Modem.

Best flexibility, shortest development, lower cost, agnostic hardware

Modem

Modular
Interface

5

• Sklar functional waveform model

– Progressively build functional block pairs

• ‘Wind Tunnel’

– Scaled versions, functionally similar,

controlled conditions

– Test early test often (TETO)

Source: http://evworld.com/press/genovation_glenmartinwindtunnel.jpg

Source: https://fypfpga.files.wordpress.com/2011/07/communication-sys-block-diag.jpg

Our Approach

Source: G. Sklivanitis, A. Gannon, S. N. Batalama, D. Pados, “Addressing Next-Generation

Wireless Challenges with Commercial Software-Defined Radio Platforms,” IEEE

Communications Magazine, Jan 2016.

Why DVB-S

• Data rates, modulation, encoding, interleaving,
randomization

• Similar complexity to tactical waveforms

• DVB-S is an open standard allowing us to
share/discuss

• COTS devices exist to demonstrate limited
interoperability

• Serve as a teaching waveform and reference
implementation for the ecosystem

6

Our Contributions

• Complete real-time DVB-S transceiver in software
• 2 man-week rapid development timeline

• Validated transmitter with COTS DVB-S Satellite Receiver

• Leverage with multi-core parallelization
• Separate threads that pass data between threads

• G. Baruffa et al., 2014 [1] utilize thread pool with main thread
directing individual threads

• Selective use of Advanced Vector Extensions (AVX) to
improve computational load

• Performance assessments of processor usage and
latency

7

[1] G. Baruffa, L. Rugini and P. Banelli, "Design and Validation of a Software

Defined Radio Testbed for DVB-T Transmissions," Radioengineering, vol. 23, pp.

387-398, 2014.

General System Model

bladeRF

Ettus B205mini

USRP/

bladeRF

Radio’s FPGA
UHD/

libbladeRF

Hardware

USB 3.0

Ethernet

Radio Library

Waveform Software

Linked

GPP (Laptop, NUC, SoC)

Generally

hardware

agnostic

Implementation - Transmitter

9

VLC Randomize
Reed

Solomon
Interleave

Convolutional
Encoding

Puncture QPSK RRC Radio

=Defined Thread

Implementation - Receiver

10

Radio
DC

Offset
AGC

Frequency
Sync

DC
Offset

Symbol
Sync

QPSK
Demod

De-
puncture

Viterbi
Decode

Find
Sync

De-
Interleave

Reed
Solomon

De-
Randomize

VLC

=Defined Thread

Functions implemented with SIMD Intrinsics
• DC Offset Correction

• Calculate DC offset (accumulate samples in block)

• Subtract DC offset (subtract scalar from vector)

• AGC

• Calculate RMS amplitude

• Divide each sample by RMS amplitude

• Frequency Sync

• Correct sample phase (complex multiply two vectors)

• Calculate error (dot product)

• FFT

• Symbol Sync

• Calculate timing error (dot product)

• Interpolation filter (dot product)

• Viterbi Decoder

• Calculate branch metrics

• In-line assembly code within the function not intrinsic

Demonstration System Model
Item Description

DVBS receiver Coolsat 5000 Platinum (IF 950-
2150MHz)

DVBS specification EN 300 421 V1.1.2 (1997-08)

SDR platforms Tested with bladeRF and USRP
B205MINI

Linux distribution Ubuntu 14.04.3

Linux kernel version 3.13.0

Software
dependencies

• VLC 2.1.6-0-gea01d28
• libbladerf
• libuhd

Antenna OmniLOG 70600 Antenna

Frequency 1GHz

Receiver gain Between 20dB and 40dB

Transmitter gain Between 20dB and 35dB

Samples/symbol 2.25M

Sample rate 33.75M

Frame size 188 Bytes

12
• Original video is an Open source 480i.wmv file from NASA:

• http://s3.amazonaws.com/akamai.netstorage/HD_downloads/grail_launch_480i.wmv

Limitations

• Synchronization loss occurs intermittently with data
transfers exceeding approximately 900,000 MPEG2
frames.

• Limited hardware automatic gain control (AGC) on low-
cost platforms

• Calibration of transmitter/receiver gains not stable
requiring re-calibration periodically

• Implemented a subset of specification necessary to
demonstrate limited interoperability with a COTS device

• Not fully compliant with specification

• Validated interoperability of Tx with COTS Receiver. Have
not tested interoperability of Rx

13

Results: Bit Error Rate

• Over-the-air, uncontrolled office environment

• BER measured on fully synchronized mock MPEG2
frames at the receiver

• 188 Byte frames transmitted in 2ms bursts with 10
frames/burst.

• 13 repetitions of 90,000 bursts (900,000 total frames)

• Under stable synchronization� no measured BER

• Observed periods of synchronization instability
after 90,000 bursts

14

Results – CPU Usage Intel i7, i3

• htop, was used to monitor CPU usage of the transmitter
software alone, the receiver alone, and both the transmitter
and receiver running simultaneously.

15

Laptop Features

HTop Reported CPU Usage out of

100%

Tx/Rx Tx Rx

Dell Precision

M2800

Intel® Core™ i7-4610M CPU@3GHz

8GB RAM, 4CPUs
22% 8% 16%

Lenovo L530
Intel® Core™ i3-2348M CPU@2.3GHz

4GB RAM, 4CPUs
50% 24% 35%

Note that for quad-core processors, htop typically reports results out of a maximum of 200% to

400% depending on # of threads/core. Here, results are normalized to 100% maximum

Results: Normalized CPU Usage vs Symbol Rate

16

0

5

10

15

20

25

30

35

40

45

50

5.5 10 15 15.5 16 17 18 19 20 25 26.5

C
P

U
 U

S
A

G
E

 (
N

O
R

M
A

LI
Z

E
D

 T
O

 1
0

0
%

)

SYMBOL RATE (MSYM/S)

DVB-S: Symbol Rate vs. CPU Usage

TX RX

Latency Measurement System
Model

17

Latency Results

Maximum Symbol

Rate (Good Data)

Sync Loss System Broken (Core

Dump)

Maximum Allowable

Symbol Rate

0

5

10

15

20

25

30

35

40

45

50

5.5 10 15 15.5 16 17 18 19 20 25 26.5

La
te

n
cy

 (
m

s)

Symbol Rate (Msym/s)

DVB-S: Symbol Rate vs. System Latency

Latency (ms)

Conclusions

• Implemented real-time DVB-S transceiver where all
I/Q processing is performed in GPP

• Leveraged multi-core thread management and AVX
instructions to reduce computational load

• Agile-based, iterative implementation approach
yields operational waveforms at a faster rate than
traditional requirements-based approaches

• Opens doors for low-cost platforms capable of
supporting complex waveforms

• Enables reference government implementations
with increased flexibility

19

