
GWN: a Framework for Packet Radio and
Medium Access Control in GNU Radio

Víctor González-Barbone, Pablo Belzarena, Federico Larroca,
Martín Randall, Paola Romero and Mariana Gelós

{vagonbar, belza, flarroca, mrandall, paolar,
mariana.gelos}@fing.edu.uy

Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República
Uruguay

Wireless Innovation Forum Conference on Wireless Communications
Technologies and Software Defined Radio (WInnComm ’17)

San Diego, California

November 16th 2017

Software Defined Radio (SDR)

• Basic idea: implement as much as possible of receiver and/or
transmitter in software

• We focused on PC-based SDRs: enough sampling rate for most
applications + only some hundreds dollars

• Software: GNU Radio
• Free and open-source SDR development toolkit

• Provides framework to implement and interconnect blocks
• Extremely popular

• Supports most (if not all) SDR hardware
• Growing base of already-implemented blocks

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 2 of 15

Software Defined Radio (SDR)

• Basic idea: implement as much as possible of receiver and/or
transmitter in software

• We focused on PC-based SDRs: enough sampling rate for most
applications + only some hundreds dollars

• Software: GNU Radio
• Free and open-source SDR development toolkit

• Provides framework to implement and interconnect blocks
• Extremely popular

• Supports most (if not all) SDR hardware
• Growing base of already-implemented blocks

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 2 of 15

GNU Radio and Wireless Networks

• GNU Radio was originally conceived for stream-oriented
communications

Fig: An example flowgraph of gr-isdbt, our ISDB-T (DTV) receiver

• What if I want to work with packets?

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 3 of 15

GNU Radio and Wireless Networks
What if I want to work with packets on GNU Radio?

• Tagged Streams
• Specific samples may be “marked” with extra data (i.e. where a new
packet begins)

• Message passing
• Blocks may send and receive messages
• They work asynchronously and separated from the data stream
• Blocks may even receive messages from external apps
• Messages are actually PMTs: generic data containers which may
contain mostly anything, and in particular packets

Fig: An example flowgraph of gr-digital (packet_tx.grc)

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 4 of 15

GNU Radio and Wireless Networks
What if I want to work with packets on GNU Radio?

• Tagged Streams
• Specific samples may be “marked” with extra data (i.e. where a new
packet begins)

• Message passing
• Blocks may send and receive messages
• They work asynchronously and separated from the data stream
• Blocks may even receive messages from external apps
• Messages are actually PMTs: generic data containers which may
contain mostly anything, and in particular packets

Fig: An example flowgraph of gr-digital (packet_tx.grc)

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 4 of 15

GNU Radio and Wireless Networks

Natural next step: What if I want to implement the Data Link Layer on
GNU Radio?

• What’s necessary?
• TX: Packets have to be sent when certain conditions are met (e.g.
free channel, slotted time), acknowledgements waited for a certain
time, packets re-sent, etc.

• RX: As packets are received, error checking/correction is performed,
re-ordering may be necessary, (n)acknowledgments sent, etc.

• The above includes the Medium Access Control mechanism

What’s necessary?
1 A Finite State Machine (FSM) to implement the protocol’s logic
2 Events to drive the FSM
3 Timing

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 5 of 15

GNU Radio and Wireless Networks

Natural next step: What if I want to implement the Data Link Layer on
GNU Radio?

• What’s necessary?
• TX: Packets have to be sent when certain conditions are met (e.g.
free channel, slotted time), acknowledgements waited for a certain
time, packets re-sent, etc.

• RX: As packets are received, error checking/correction is performed,
re-ordering may be necessary, (n)acknowledgments sent, etc.

• The above includes the Medium Access Control mechanism
What’s necessary?

1 A Finite State Machine (FSM) to implement the protocol’s logic
2 Events to drive the FSM
3 Timing

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 5 of 15

GNU Radio Wireless Networks

• We present GNU Radio Wireless Networks (GWN)
• It introduces gwnblock: an extension of GNU Radio’s basic block
which includes

• An implementation of a FSM, which may be specified very easily
• Events
• The possibility to handle time

• It is thus fully compatible with GNU Radio and integrates seamlessly
• We demonstrate it by discussing an ARQ (Automatic Repeat
ReQuest) implementation

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 6 of 15

GWN Architecture
A typical GWN block:

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 7 of 15

GWN Architecture

Events
• Events are characterized by:

• a Nickname which indicates the type of Event
• a Dictionary with additional information

• Specialized Events are provided: EventConfig, EventTimer and
EventComm, along with constructor functions

• example: EventComm represents an incoming packet, and as such
includes source/destination addresses and payload

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 8 of 15

GWN Architecture

Finite State Machine
• In addition to states and transitions, GWN’s FSM includes:

• Action: a function to be executed on a transition
• Memory: which may be handled in the action functions
• Conditions: a function which, if evaluates to False, the Action and
the transition are not executed

• FSM is actually a table of transitions with entries as:
(input,current_state)->(action, next_state, condition)

• Several methods to modify the FSM are provided (e.g.
add_transition, add_default_transition(), etc.)

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 9 of 15

GWN Architecture

Finite State Machine
• In addition to states and transitions, GWN’s FSM includes:

• Action: a function to be executed on a transition
• Memory: which may be handled in the action functions
• Conditions: a function which, if evaluates to False, the Action and
the transition are not executed

• FSM is actually a table of transitions with entries as:
(input,current_state)->(action, next_state, condition)

• Several methods to modify the FSM are provided (e.g.
add_transition, add_default_transition(), etc.)

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 9 of 15

GWN Architecture

Handling of Time
• GWN timers generate Events (which are processed as any other

Event by the process_data() function)
• An arbitrary number of timers may be attached to a block
• Two timing mechanisms are provided in GWN’s current form:

1 Timers: Events are generated periodically for a number of times
2 Timeout: A single Event is generated after a certain time

• All timers may be stopped, reset or interrupted

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 10 of 15

Creating a new block

Let’s do a simple example: Data Source (it generates data events
periodically and sends them out as GNU Radio messages)

1 New blocks are generated (as usual) through gr_modtool:
gr_modtool add -t sync -l python

2 Modify the code so that it inherits from gwnblock
class data_source(gwnblock):

3 Write the constructor (note that the number of timers is specified
here):
def __init__(self , interrupt=False , interval =1.0, retry=5,

src_addr=’’, dst_addr=’’, payload=’’, ev_dc={}, debug=False
):

invocation of ancestor constructor
gwnblock.__init__(self , name=’data_source ’, number_in=0,

number_out =1, number_timers =1)

4 Write the process_data function to generate a new Data Event
and write it on the Event Port

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 11 of 15

Creating a new block

Let’s do a simple example: Data Source (it generates data events
periodically and sends them out as GNU Radio messages)

1 New blocks are generated (as usual) through gr_modtool:
gr_modtool add -t sync -l python

2 Modify the code so that it inherits from gwnblock
class data_source(gwnblock):

3 Write the constructor (note that the number of timers is specified
here):
def __init__(self , interrupt=False , interval =1.0, retry=5,

src_addr=’’, dst_addr=’’, payload=’’, ev_dc={}, debug=False
):

invocation of ancestor constructor
gwnblock.__init__(self , name=’data_source ’, number_in=0,

number_out =1, number_timers =1)

4 Write the process_data function to generate a new Data Event
and write it on the Event Port

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 11 of 15

Creating a new block

Let’s do a simple example: Data Source (it generates data events
periodically and sends them out as GNU Radio messages)

1 New blocks are generated (as usual) through gr_modtool:
gr_modtool add -t sync -l python

2 Modify the code so that it inherits from gwnblock
class data_source(gwnblock):

3 Write the constructor (note that the number of timers is specified
here):
def __init__(self , interrupt=False , interval =1.0, retry=5,

src_addr=’’, dst_addr=’’, payload=’’, ev_dc={}, debug=False
):

invocation of ancestor constructor
gwnblock.__init__(self , name=’data_source ’, number_in=0,

number_out =1, number_timers =1)

4 Write the process_data function to generate a new Data Event
and write it on the Event Port

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 11 of 15

Creating a new block

Let’s do a simple example: Data Source (it generates data events
periodically and sends them out as GNU Radio messages)

1 New blocks are generated (as usual) through gr_modtool:
gr_modtool add -t sync -l python

2 Modify the code so that it inherits from gwnblock
class data_source(gwnblock):

3 Write the constructor (note that the number of timers is specified
here):
def __init__(self , interrupt=False , interval =1.0, retry=5,

src_addr=’’, dst_addr=’’, payload=’’, ev_dc={}, debug=False
):

invocation of ancestor constructor
gwnblock.__init__(self , name=’data_source ’, number_in=0,

number_out =1, number_timers =1)

4 Write the process_data function to generate a new Data Event
and write it on the Event Port

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 11 of 15

Creating a new block
Let’s do a more advanced example: an ARQ Stop and Wait transmitter
(it doesn’t send a new packet until an acknowledgement for the previous
one was received, and a timeout generates a re-transmission)

1 Create the new block as before, but include a timeout this time:
def __init__(self , ack_nickname=’CtrlACK ’, max_retries =3,

tout_nickname=’TimerACKTout ’, timeout =1.0, buffer_len =1000 ,
debug=False):

invocation of ancestor constructor
gwnblock.__init__(self , name=’stop_wait_send ’, number_in =1,

number_out =1, number_timeouts =1)

2 We’ll use an FSM this time, so process_data may include simply
two lines:
def process_data(self , ev):

self.fsm.process(ev.nickname , event=ev, block=self)
return

3 Write the FSM. For instance:
def stop_wait_send_fsm(blk):

Code to initialize the FSM goes here
f.add_transition (’TimerACKTout ’, ’WaitAck ’, stop , ’Stop’, [

’self.nr_retries␣>␣block.max_retries ’]) # retries
exceeded

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 12 of 15

Creating a new block
Let’s do a more advanced example: an ARQ Stop and Wait transmitter
(it doesn’t send a new packet until an acknowledgement for the previous
one was received, and a timeout generates a re-transmission)

1 Create the new block as before, but include a timeout this time:
def __init__(self , ack_nickname=’CtrlACK ’, max_retries =3,

tout_nickname=’TimerACKTout ’, timeout =1.0, buffer_len =1000 ,
debug=False):

invocation of ancestor constructor
gwnblock.__init__(self , name=’stop_wait_send ’, number_in =1,

number_out =1, number_timeouts =1)

2 We’ll use an FSM this time, so process_data may include simply
two lines:
def process_data(self , ev):

self.fsm.process(ev.nickname , event=ev, block=self)
return

3 Write the FSM. For instance:
def stop_wait_send_fsm(blk):

Code to initialize the FSM goes here
f.add_transition (’TimerACKTout ’, ’WaitAck ’, stop , ’Stop’, [

’self.nr_retries␣>␣block.max_retries ’]) # retries
exceeded

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 12 of 15

Creating a new block
Let’s do a more advanced example: an ARQ Stop and Wait transmitter
(it doesn’t send a new packet until an acknowledgement for the previous
one was received, and a timeout generates a re-transmission)

1 Create the new block as before, but include a timeout this time:
def __init__(self , ack_nickname=’CtrlACK ’, max_retries =3,

tout_nickname=’TimerACKTout ’, timeout =1.0, buffer_len =1000 ,
debug=False):

invocation of ancestor constructor
gwnblock.__init__(self , name=’stop_wait_send ’, number_in =1,

number_out =1, number_timeouts =1)

2 We’ll use an FSM this time, so process_data may include simply
two lines:
def process_data(self , ev):

self.fsm.process(ev.nickname , event=ev, block=self)
return

3 Write the FSM. For instance:
def stop_wait_send_fsm(blk):

Code to initialize the FSM goes here
f.add_transition (’TimerACKTout ’, ’WaitAck ’, stop , ’Stop’, [

’self.nr_retries␣>␣block.max_retries ’]) # retries
exceeded

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 12 of 15

Creating a new block
Let’s do a more advanced example: an ARQ Stop and Wait transmitter
(it doesn’t send a new packet until an acknowledgement for the previous
one was received, and a timeout generates a re-transmission)

1 Create the new block as before, but include a timeout this time:
def __init__(self , ack_nickname=’CtrlACK ’, max_retries =3,

tout_nickname=’TimerACKTout ’, timeout =1.0, buffer_len =1000 ,
debug=False):

invocation of ancestor constructor
gwnblock.__init__(self , name=’stop_wait_send ’, number_in =1,

number_out =1, number_timeouts =1)

2 We’ll use an FSM this time, so process_data may include simply
two lines:
def process_data(self , ev):

self.fsm.process(ev.nickname , event=ev, block=self)
return

3 Write the FSM. For instance:
def stop_wait_send_fsm(blk):

Code to initialize the FSM goes here
f.add_transition (’TimerACKTout ’, ’WaitAck ’, stop , ’Stop’, [

’self.nr_retries␣>␣block.max_retries ’]) # retries
exceeded

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 12 of 15

Demo

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 13 of 15

Conclusions and Future Work

• We’ve been using GNU Radio for several years now (both education
and research), and wished to extend it to support packet
communications

• Event objects for inter block communication, conversion to and
from GNU Radio PMTs, and the integration of Event inputs and
outputs in a generic GWN block is the result of some years worth of
iterations of GWN

• GWN has been used successfully “on the field”

• Although the number of protocols already implemented in GWN is
still modest, being open and free we welcome contributions!

• Performance is an issue. We are evaluating a transition to a C++
implementation which should be transparent to users

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 14 of 15

Conclusions and Future Work

• We’ve been using GNU Radio for several years now (both education
and research), and wished to extend it to support packet
communications

• Event objects for inter block communication, conversion to and
from GNU Radio PMTs, and the integration of Event inputs and
outputs in a generic GWN block is the result of some years worth of
iterations of GWN

• GWN has been used successfully “on the field”

• Although the number of protocols already implemented in GWN is
still modest, being open and free we welcome contributions!

• Performance is an issue. We are evaluating a transition to a C++
implementation which should be transparent to users

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 14 of 15

Thanks for your time!
Any questions?

Federico ‘Larroca’ La Rocca - flarroca@fing.edu.uy
https://github.com/vagonbar/gr-gwn

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 15 of 15

https://github.com/vagonbar/gr-gwn

	Main Part

