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Problem
• Early promises of Software Defined Radios (SDR) 

included:
• Accelerated development times

• Greater accessibility to the waveforms (not a black box)

• Ease of modification and adaptation

• The reality in the 1990’s was general purpose processors 
(GPP) could not meet the demands of complex 
waveforms

• This led to firmware emphasis
• Less portability

• Less accessibility

• Less adaptable

• Today’s modern GPP and advancement in low-cost SDRs 
has created an opportunity to go Back to the Future 
with SDR waveforms
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Modem

Motivation for an Agile SW/HW Ecosystem
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• Sklar functional waveform model

– Progressively build functional block pairs

• ‘Wind Tunnel’ 

– Scaled versions, functionally similar, 

controlled conditions

– Test early test often (TETO)

Source: http://evworld.com/press/genovation_glenmartinwindtunnel.jpg

Source: https://fypfpga.files.wordpress.com/2011/07/communication-sys-block-diag.jpg

Our Approach

Source: G. Sklivanitis, A. Gannon, S. N. Batalama, D. Pados, “Addressing Next-Generation 

Wireless Challenges with Commercial Software-Defined Radio Platforms,” IEEE 

Communications Magazine, Jan 2016.



Why DVB-S

• Data rates, modulation, encoding, interleaving, 
randomization 

• Similar complexity to tactical waveforms

• DVB-S is an open standard allowing us to 
share/discuss

• COTS devices exist to demonstrate limited 
interoperability

• Serve as a teaching waveform and reference 
implementation for the ecosystem
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Our Contributions

• Complete real-time DVB-S transceiver in software
• 2 man-week rapid development timeline

• Validated transmitter with COTS DVB-S Satellite Receiver

• Leverage with multi-core parallelization
• Separate threads that pass data between threads

• G. Baruffa et al., 2014 [1] utilize thread pool with main thread 
directing individual threads

• Selective use of Advanced Vector Extensions (AVX) to 
improve computational load

• Performance assessments of processor usage and 
latency
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[1] G. Baruffa, L. Rugini and P. Banelli, "Design and Validation of a Software 

Defined Radio Testbed for DVB-T Transmissions," Radioengineering, vol. 23, pp. 

387-398, 2014.



General System Model
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Implementation - Transmitter

9

VLC Randomize
Reed

Solomon
Interleave

Convolutional
Encoding

Puncture QPSK RRC Radio

=Defined Thread



Implementation - Receiver

10

Radio
DC

Offset
AGC

Frequency
Sync

DC
Offset

Symbol
Sync

QPSK
Demod

De-
puncture

Viterbi
Decode

Find
Sync

De-
Interleave

Reed
Solomon

De-
Randomize

VLC

=Defined Thread



Functions implemented with SIMD Intrinsics
• DC Offset Correction

• Calculate DC offset (accumulate samples in block)

• Subtract DC offset (subtract scalar from vector)

• AGC

• Calculate RMS amplitude

• Divide each sample by RMS amplitude

• Frequency Sync

• Correct sample phase (complex multiply two vectors)

• Calculate error (dot product)

• FFT

• Symbol Sync

• Calculate timing error (dot product)

• Interpolation filter (dot product)

• Viterbi Decoder

• Calculate branch metrics

• In-line assembly code within the function not intrinsic



Demonstration System Model
Item Description

DVBS receiver Coolsat 5000 Platinum (IF 950-
2150MHz)

DVBS specification EN 300 421 V1.1.2 (1997-08)

SDR platforms Tested with bladeRF and USRP
B205MINI

Linux distribution Ubuntu 14.04.3

Linux kernel version 3.13.0

Software
dependencies

• VLC 2.1.6-0-gea01d28
• libbladerf
• libuhd

Antenna OmniLOG 70600 Antenna

Frequency 1GHz

Receiver gain Between 20dB and 40dB

Transmitter gain Between 20dB and 35dB

Samples/symbol 2.25M

Sample rate 33.75M

Frame size 188 Bytes
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• Original video is an Open source 480i.wmv file from NASA:

• http://s3.amazonaws.com/akamai.netstorage/HD_downloads/grail_launch_480i.wmv



Limitations

• Synchronization loss occurs intermittently with data 
transfers exceeding approximately 900,000 MPEG2 
frames.

• Limited hardware automatic gain control (AGC) on low-
cost platforms

• Calibration of transmitter/receiver gains not stable 
requiring re-calibration periodically

• Implemented a subset of specification necessary to 
demonstrate limited interoperability with a COTS device

• Not fully compliant with specification

• Validated interoperability of Tx with COTS Receiver. Have 
not tested interoperability of Rx
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Results: Bit Error Rate

• Over-the-air, uncontrolled office environment

• BER measured on fully synchronized mock MPEG2 
frames at the receiver

• 188 Byte frames transmitted in 2ms bursts with 10 
frames/burst.

• 13 repetitions of 90,000 bursts (900,000 total frames)

• Under stable synchronization� no measured BER

• Observed periods of synchronization instability 
after 90,000 bursts
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Results – CPU Usage Intel i7, i3

• htop, was used to monitor CPU usage of the transmitter 
software alone, the receiver alone, and both the transmitter 
and receiver running simultaneously. 
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Laptop Features

HTop Reported CPU Usage out of 

100%

Tx/Rx Tx Rx

Dell Precision 

M2800

Intel® Core™ i7-4610M CPU@3GHz

8GB RAM, 4CPUs
22% 8% 16%

Lenovo L530
Intel® Core™ i3-2348M CPU@2.3GHz

4GB RAM, 4CPUs
50% 24% 35%

Note that for quad-core processors, htop typically reports results out of a maximum of 200% to 

400% depending on # of threads/core. Here, results are normalized to 100% maximum



Results: Normalized CPU Usage vs Symbol Rate
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Latency Measurement System 
Model
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Latency Results
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Conclusions

• Implemented real-time DVB-S transceiver where all 
I/Q processing is performed in GPP

• Leveraged multi-core thread management and AVX 
instructions to reduce computational load

• Agile-based, iterative implementation approach 
yields operational waveforms at a faster rate than 
traditional requirements-based approaches

• Opens doors for low-cost platforms capable of 
supporting complex waveforms

• Enables reference government implementations 
with increased flexibility 
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