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ABSTRACT

HF communications (3-30 MHz) have been a popular medium
for emergency, military, and hobbyist applications because they
generally do not require significant architecture or equipment.
For long range HF communications, which are common, this
involves having signals reflect off the Earth’s ionosphere. How-
ever, the ionosphere is highly unstable, varying with respect to
space, time, and frequency, which has prompted research into
compensating the effects of the ionosphere in the receiver to
maintain robust communications even when faced with harsh
channel conditions. This instability in the ionosphere causes the
channel to change between non-linear and linear models at dif-
ferent times. Thus, the objective of this paper is to utilize and
evaluate the performance of two non-linear adaptive equalizers
in recovering distorted signals transmitted through a non-linear
HF channel. The performance of the equalizers will be charac-
terized using mean squared error (MSE).

1. INTRODUCTION

The High Frequency (HF) band (3-30 MHz) is very popular
among radio enthusiasts. Unlike mainstream communication
architectures that require a significant amount of equipment to
maintain (i.e. internet, satellites, fiber optic cables, etc.), trans-
missions in the HF band are made by only using radios to trans-
mit signals by reflecting them off of the ionosphere, which en-
ables long-range communications at a low cost. My work in
[1], for example, showed that such communications were pos-
sible over the HF band, as our team (stationed in Tucson, Ari-
zona) was able to hear communications from Tokyo, Japan. Be-
cause of this, in addition to being inexpensive, HF systems are
used in emergency crises more than mainstream communica-
tion systems. One example of this is Hurricane Katrina, where
HF systems were used to organize “rescue and recovery oper-
ations” as a result of damaged, regularly used communication
infrastructures [2]. In addition, the HF band is used for vari-
ous military applications, such as enabling troops to establish
communication links in different locations [3]. However, while
the ionosphere enables long-range/low-power communications
over the HF band, it itself is not a stable medium. As [4] elabo-
rates, the ionosphere varies significantly as a result of different

atmospheric variations (i.e. solar radiation, sunspot cycles, sea-
sonal changes), which can result in the transmitted signal suf-
fering from effects like multipath and fading. This has been the
motivation for the development of ionospheric models, with the
most heralded of these developed by Clark Watterson. As will
be elaborated on later, his model assumes that the channel is sta-
tionary in time and frequency making it only accurate for small
bandwidths [5]. Thus, it is desirable to design a system capa-
ble of obtaining an adaptive, real-time model of the ionosphere
that can be used to improve transmissions made over the HF fre-
quency band.

Equalizers are an ideal signal processing tool for this appli-
cation because they take the received signal from the channel as
input and output an estimate of the transmitted signal by “creat-
ing an inverse model of the transmission channel" [6]. The error
between this estimate and the transmitted signal is calculated
and, in the case of adaptive equalization, is fed into a learning
algorithm that utilizes the error to fine tune the equalizer’s coef-
ficients. Thus, the objective of this paper is to survey/compare
the performance of different equalizers that have been imple-
mented specifically for the HF channel. These equalizers are
specifically the Least Mean Squares Decision Feedback Equal-
izer (i.e. LMS-DFE) and Constant Modulus Algorithm equal-
izer (i.e. CMA). The structure of the paper is as follows. Section
2 provides background on previous implementations of these
equalizers for the HF channel. Section 3 provides an explana-
tion on the functionality of a general Decision Feedback Equal-
izer (DFE). Section 4 provides an explanation on LMS-DFEs
and CMA equalizers specifically. Section 5 elaborates on the
Watterson and non-linear models used in this effort. Section 6
describes how the experiments were implemented and provides
an analysis on the results obtained. Section 7 summarizes the
work completed in this effort and provides next steps we will
take in future projects.

2. BACKGROUND

Historically, different types of equalizers have been imple-
mented in the context of HF channels. The authors of [7] showed
that decision feedback equalizers (DFEs) were better suited for
the HF channel than maximum-likelihood sequence estimation
(MLSE) equalizers, due to having a similar performance but
much simpler complexity. As such, different types of DFEs have
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been implemented for the HF channel. One type of equalizer
that has been implemented frequently for HF environments is
the Kalman Decision Feedback Equalizer (i.e. Kalman-DFE),
where different variations of the standard Kalman state-tracking
algorithm have been used to update the taps of the DFE. In [8],
the recursive least squares (RLS) algorithm was utilized to up-
date the taps because its usage in adaptive equalization is analo-
gous to tracking states with standard Kalman filtering. In [9], a
square root Kalman algorithm is utilized to update the weights
of the DFE. In [10], a fast recursive least squares (FRLS) DFE
is implemented and shown to have significantly better perfor-
mance than a LMS-DFE and a similar performance to the DFE
formed in [9].

In addition, different types of equalizers have been used in
the HF channel. In [11], various blind equalization algorithms,
including the Constant Modulus algorithm, were implemented
over the air. While the above algorithms require sending a train-
ing sequence over the channel, to allow the equalizers to adapt
the taps, the main attraction of blind equalization algorithms is
that they don’t require training sequences - allowing for more
useful data to be sent at higher speeds [12].

3. DFE FUNCTIONALITY

The DFE consists of a feed-forward and feedback filter. Differ-
ent adaptive algorithms are used to update the taps of the DFE,
with the mean squared error (MSE) algorithm being one of the
most common algorithms utilized. A standard DFE can be ex-
pressed as follows [13]:
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where the indices of j and c¢; represent the taps of the DFE,
v represents the sequences received from the channel, I repre-
sents symbols decoded in previous iterations, and I represents
the output of the equalizer. In equation 1, the first summation
represents the feed-forward filter and the second represents the
feedback filter. As [13] describes, if the mean squared error is
being used to update the weights, the following cost function is
minimized as shown in equation 2:
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where (K + 1) and K represent the number of taps used in
the feed-forward and feedback filter respectively. However, as
will be shown in section 4, this criteria will vary based on the
learning algorithm used.

4. LEAST MEANS SQUARES AND CONSTANT
MODULUS ALGORITHMS

4.1. LMS

Similar to equation 2, [14] defines the error of the equalizer to
be the following:

e(n) = d(n) —y(n) 3)

where e represents the error, d represents the desired signal,
and y represents the equalized output as given in equation 4:

y(n) =" (n)u(n) )

where u(n) is the input sequence, w represents an estimate
of the ideal tap vector (i.e. w), and H represents the Hermitian
transposition. Contrary to equation 2, the LMS algorithm as-
sumes that the function to be minimized is as shown in equation
5[14]:

J(n) = Elle(n)’] = e(n)e* (n) Q)

where E[] denotes the expectation value and e* (n) is the com-
plex conjugate of the error vector. As [14] elaborates this re-
moval of the expectation is used to make the estimation more
feasible to adapt to a varying environment. To find the subse-
quent tap vector that is most effective in optimizing the above
cost function, equation 6 is used to update the taps at each iter-
ation of the adaptation process:

w(n+ 1) = w(n) + pu(n)e*(n) (6)

where p is a step-size parameter. Thus, the LMS algorithm
would be an alternative to the MSE algorithm for updating the
weights of the DFE. An important attribute to note about the
LMS algorithm is that it does have knowledge about attributes
of the signal (i.e. modulation) prior to equalization, unlike the
CMA algorithm.

4.2. CMA

The Constant Modulus algorithm (CMA) is commonly used as
a learning algorithm for blind equalizers. It is ideally used when
managing signals with a constant amplitude. Similar to the LMS
and MSE algorithms, it also has a cost function as shown in
equation 7 [15]:

DW= E(|z(n)])” — Ry)” 0

where D is referred to as the dispersion of order p, z(n) rep-
resents the equalizer output, and the meaning of 12, will be ex-
plained later. As [11] summarizes, steepest descent can be used
to optimize equation 7 resulting in the following update equa-
tion:
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where e represents each of the taps of the equalizer, u is a step-
size parameter, and aa—[;p is given by the following expression:

oD®)

Oe
As [11] indicates, a specific form of R, can be derived
making the following two assumptions. The first is that the
equalized signals, z(n), are assumed to have the form a(n) x

. ) ® .
eI*(@+270fnT)  The second is that 8%: is set to zero. Plug-

ging this information into equation 9, it can be shown that R, is
given by the following expression:
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5. CHANNEL MODELS
5.1. Watterson Model

As explained in the introduction, Clark Watterson’s model, re-
ferred to as the Watterson model, is the most frequently used
ionospheric model in HF experiments. The model represents
the ionosphere’s effects on transmitted signals as a tapped delay
line as shown in figure 1 [16]. Each tap modulates the transmit-
ted signal in amplitude and phase to simulate Gaussian scatter-
ing effects using a complex gain function specific to each tap,
represented in figure 1 as G;(t). Each function has a bi-variate
Gaussian power spectrum, which enables the model to capture
the effects of Rayleigh fading on the outputted signal [17].
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Figure 1: Watterson Model - Tapped Delay Line

Each main tap of the delay line shown in figure 1 is created
using a series of taps generated using equation 11 [17]:

ho(t) = ke ™ i T8 N < n < N (11)

where f; represents the Doppler spread, & is used to preserve
a unity gain, n represents the tap index, /N represents the total
length of the filter, and T's represents the sample period. For this
effort, the above tap generation was implemented as shown so
that it could accept the delay spread, Doppler spread, and num-
ber of taps as parameters. Complex Gaussian noise is filtered
through these taps and sampled, with these final values used as
the main taps of the Watterson model [17].

The International Telecommunications Union (ITU) [18] de-
fines different HF channel conditions based on the delay spread
and Doppler spread inputted into the Watterson Model, which
are displayed in tables 1 and 2. As will be shown in later sec-
tions, these values were used in the simulations to simulate the
ionosphere under different conditions.

Table 1: ITU Poor Channel Conditions

Channel Condition Poor
Delay Spread (ms) 2
Doppler Spread (Hz) | 1

Table 2: ITU Moderate Channel Conditions

Channel Condition Moderate
Delay Spread (ms) 1
Doppler Spread (Hz) | 0.5

5.2. Non-Linear Channel Model

While the Watterson model has been experimentally verified and
used in multiple projects analyzing the HF band, as stated ear-
lier, the assumptions Watterson made when constructing this
model makes it valid only for small bandwidths [5]. In addi-
tion, because of the ionosphere’s instability, it is possible for it
to exhibit non-linear attributes at different instances, which the
Watterson model does not neccesarily capture. However, Wat-
terson’s model did verify certain attributes of the ionosphere that
are accurate; specifically, the channel having a Gaussian distri-
bution and Rayleigh fading. Thus, in addition to using Watter-
son’s original model, a non-linear model was also implemented
to simulate such effects. To our knowledge, there is not an exist-
ing non-linear Ionospheric model that has been verified/heralded
as the Watterson model. Thus, the following model, shown in
equation 12 is our initial attempt to simulate non-linear effects
in the HF channel:

y:x2+x+n (12)

where y represents the signal received by the equalizer, x is the
signal corrupted from the Watterson model, and n represents
Gaussian noise. Thus, for this project, both Watterson’s original
model and the above non-linear model were used in the experi-
ments for both equalizers.

6. RESULTS
6.1. System Architecture

The equalizers explained in section 4 were simulated us-
ing existing implementations in GNU Radio, an open source
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language used for rapid prototyping of communication sys-
tems/algorithms [19]. As explained earlier in section 4.1., the
LMS equalizer does have knowledge about the incoming sig-
nal unlike the CMA equalizer. GNU Radio accounts for this by
having one of the inputs to its LMS decision-directed (i.e. LMS-
DD) equalizer block be the constellation of the incoming signal.
In replacement of this parameter, the CMA equalizer block takes
as an input the desired modulus (i.e. amplitude) that will drive
the signal’s equalization. Despite this distinction both blocks
have the following parameters: number of taps, gain of the up-
date loop, and samples per symbol rate of the incoming signal,
which is used to apply proper down-conversion if the signal was
interpolated at an point in the system. During the simulations,
each equalizer had 4 taps, a gain of 0.01, and a sample per sym-
bol rate of 2. A vector sink block was used to store the equal-
izer’s output, and Python was used to calculate the subsequent
MSEs.

8-PSK was the only modulation used in all experiments.
Complex Gaussian noise was filtered through 101 taps used to
generate a Watterson model with two main taps on its delay line,
as explained in section 5.1. Both the Watterson and non-linear
model were simulated using GNU Radio and Python.

6.2. MSE Results

Two different experiments were executed to gauge the perfor-
mance of the two equalizers. The first involved observing the
MSE of each equalizer as the SNR of the Watterson model was
varied from 10 to 50 dB, with a step size of 5 dB. Each point
was averaged over 5000 trials. Figures 2 and 3 show the results
of these experiments for poor and moderate channels.

Mean Squared Error of Equalizers: Poor Channel Conditions
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Figure 2: MSEs of LMS and CMA for Poor Channel Conditions as a
Function of SNR

As the figures show, for both poor and moderate channel con-
ditions, the LMS-DD equalizer has a much smaller MSE com-
pared to the CMA equalizer. This may be due to the LMS-DD
equalizer having "a-priori" knowledge of the signal’s modula-
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Figure 3: MSEs of LMS and CMA for Moderate Channel Conditions
as a Function of SNR

tion, giving it an advantage over the CMA equalizer. However,
for both equalizers, the MSE does decrease as the SNR of the
channel is increased, as expected.

As stated earlier, a vector sink block in GNU Radio was used
to store the equalizer’s output. A head block was then used
to limit how many samples were stored in the vector. Subse-
quently, the second experiment involved observing the MSE of
each equalizer as the number of samples outputted from the
equalizers were varied. These trials were performed with the
channel having an SNR of 10 dB, under poor and moderate con-
ditions, with a range of 50-300 samples and a step size of 10
samples. Similar to the first experiment, each point was averaged
over 5000 trials. The results of these experiments are shown in
figures 4 and 5.
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Figure 4: MSEs of LMS and CMA for Poor Channel Conditions as a
Function of Number of Samples

Similar to the results from the first experiment, the LMS-DD
equalizer has a smaller MSE than the CMA equalizer, under



Proceedings of WInnComm 2017, Copyright © 2017 Wireless Innovation Forum All Rights Reserved

Mean Squared Error of Equalizers: Moderate Channel Conditions
4.8 1

1 —8— CMA- Watterson Model
\ LMS- Watterson Model
=5.0 4 L

—-5.2

5.4 1

MSE (dB)

5.6 1

—5.8

—6.0

T T T T T T
50 100 150 200 250 300
Number of Samples

Figure 5: MSEs of LMS and CMA for Moderate Channel Conditions
as a Function of Number of Samples

both poor and moderate conditions. As a sanity check, the MSE
does decrease as the number of samples is increased again, as
expected. However, it is noteworthy that at a low number of
samples, the equalizers seem to have a similar performance un-
der poor and moderate conditions. The above experiments were
then repeated to obtain MSE results from usage of both the Wat-
terson and non-linear channel models. Figures 6 and 7 show the
MSE results when the Watterson and non-linear model are used
as the SNR of the channel is varied. Figure 8 shows the MSE
results in a similar experiment, with the number of samples sent
to the equalizer being varied, but the channel set at an SNR of
10 dB under poor conditions.
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Figure 6: MSEs of Equalizers Under Poor Linear/Non-Linear Condi-
tions as a function of SNR

Figures 6, 7, and 8 show that using the non-linear channel
model produces a higher MSE than using the Watterson model.
This is to be expected as the non-linear model provides more dis-
tortion to the signal prior to being processed by the equalizer. It’s
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Figure 7: MSEs of Equalizers Under Moderate Linear/Non-Linear
Conditions as a function of SNR
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Figure 8: MSEs of Equalizers Under Poor Linear/Non-Linear Condi-
tions as a Function of Number of Samples

interesting to observe, however, that despite this added complex-
ity the LMS-DD equalizer still produces an MSE smaller than
that of the CMA-equalizer under non-linear conditions. Figures
6 and 7 also indicate that the LMS equalizer under non-linear
conditions has an MSE that is comparable to that of the CMA
equalizer when using the Watterson model, which again affirms
the LMS equalizer’s superiority in these experiments. In ad-
dition, it seems that increasing the SNR is not effective towards
reducing the MSE in this scenario. Figure 8 affirms these results
but provides some additional insights as it appears the equaliz-
ers seem to again have a similar performance when the number
of samples collected from the output of the equalizer is small.
However, as the number of samples is increased, despite the
LMS-DD equalizer having a better performance, figure 8 indi-
cates there is not a significant reduction in the MSE when using
the non-linear model. These results imply that further signal
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processing techniques will need to be implemented to compen-
sate for non-linear effects.

7. CONCLUSION

The objective of this paper was to observe the performance
of LMS and CMA equalizers in restoring signals transmitted
through linear and non-linear Ionospheric models. It was shown
in all experiments that the LMS-DD equalizer had a smaller
MSE than the CMA equalizer, which could be due to the LMS
knowing the constellation of the transmitted equalizer whereas
the CMA did not, due to it being a blind equalizer. As expected,
it was shown that usage of a non-linear Ionospheric model pro-
duced higher MSEs compared to using the Watterson model.
However, it’s noteworthy that despite these added complexities
the LMS equalizer had a better performance than that of the
CMA equalizer. These experiments also indicated that increas-
ing the SNR, as well as the number of samples outputted from
the equalizer, are not sufficient means for handling these non-
linear effects. This implies that additional signal processing
techniques are required to fully recover a signal corrupted due
to non-linearities in the HF channel.

One of our next steps will be incorporating different adaptive
equalizers/equalization techniques; such as, Minimum Mean
Square Equalizers (MMSESs), Neural Networks and Volterra
Equalizers, and observing their performance over similar exper-
iments. As in this paper, the effectiveness of these equalizers
will be classified based on their average MSE as well as ad-
ditional metrics such as BER and convergence rate. We will
research/investigate the ionosphere’s unstable behavior to craft
a more realistic non-linear model. In addition, we will work
towards having analysis of the equalizers’ performances when
transmitting over the air, to capture the real-time impact of Iono-
spheric reflections on a signal transmitted through the HF band.
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