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Software Defined Radio (SDR)

• Basic idea: implement as much as possible of receiver and/or
transmitter in software

• We focused on PC-based SDRs: enough sampling rate for most
applications + only some hundreds dollars

• Software: GNU Radio
• Free and open-source SDR development toolkit

• Provides framework to implement and interconnect blocks
• Extremely popular

• Supports most (if not all) SDR hardware
• Growing base of already-implemented blocks

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 2 of 15



Software Defined Radio (SDR)

• Basic idea: implement as much as possible of receiver and/or
transmitter in software

• We focused on PC-based SDRs: enough sampling rate for most
applications + only some hundreds dollars

• Software: GNU Radio
• Free and open-source SDR development toolkit

• Provides framework to implement and interconnect blocks
• Extremely popular

• Supports most (if not all) SDR hardware
• Growing base of already-implemented blocks

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 2 of 15



GNU Radio and Wireless Networks

• GNU Radio was originally conceived for stream-oriented
communications

Fig: An example flowgraph of gr-isdbt, our ISDB-T (DTV) receiver

• What if I want to work with packets?

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 3 of 15



GNU Radio and Wireless Networks
What if I want to work with packets on GNU Radio?

• Tagged Streams
• Specific samples may be “marked” with extra data (i.e. where a new
packet begins)

• Message passing
• Blocks may send and receive messages
• They work asynchronously and separated from the data stream
• Blocks may even receive messages from external apps
• Messages are actually PMTs: generic data containers which may
contain mostly anything, and in particular packets

Fig: An example flowgraph of gr-digital (packet_tx.grc)
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GNU Radio and Wireless Networks

Natural next step: What if I want to implement the Data Link Layer on
GNU Radio?

• What’s necessary?
• TX: Packets have to be sent when certain conditions are met (e.g.
free channel, slotted time), acknowledgements waited for a certain
time, packets re-sent, etc.

• RX: As packets are received, error checking/correction is performed,
re-ordering may be necessary, (n)acknowledgments sent, etc.

• The above includes the Medium Access Control mechanism

What’s necessary?
1 A Finite State Machine (FSM) to implement the protocol’s logic
2 Events to drive the FSM
3 Timing
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GNU Radio Wireless Networks

• We present GNU Radio Wireless Networks (GWN)
• It introduces gwnblock: an extension of GNU Radio’s basic block
which includes

• An implementation of a FSM, which may be specified very easily
• Events
• The possibility to handle time

• It is thus fully compatible with GNU Radio and integrates seamlessly
• We demonstrate it by discussing an ARQ (Automatic Repeat
ReQuest) implementation
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GWN Architecture
A typical GWN block:
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GWN Architecture

Events
• Events are characterized by:

• a Nickname which indicates the type of Event
• a Dictionary with additional information

• Specialized Events are provided: EventConfig, EventTimer and
EventComm, along with constructor functions

• example: EventComm represents an incoming packet, and as such
includes source/destination addresses and payload

Víctor González-Barbone, Pablo Belzarena, Federico Larroca, Martín Randall, Paola Romero and Mariana Gelós 8 of 15



GWN Architecture

Finite State Machine
• In addition to states and transitions, GWN’s FSM includes:

• Action: a function to be executed on a transition
• Memory: which may be handled in the action functions
• Conditions: a function which, if evaluates to False, the Action and
the transition are not executed

• FSM is actually a table of transitions with entries as:
(input,current_state)->(action, next_state, condition)

• Several methods to modify the FSM are provided (e.g.
add_transition, add_default_transition(), etc.)
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GWN Architecture

Handling of Time
• GWN timers generate Events (which are processed as any other

Event by the process_data() function)
• An arbitrary number of timers may be attached to a block
• Two timing mechanisms are provided in GWN’s current form:

1 Timers: Events are generated periodically for a number of times
2 Timeout: A single Event is generated after a certain time

• All timers may be stopped, reset or interrupted
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Creating a new block

Let’s do a simple example: Data Source (it generates data events
periodically and sends them out as GNU Radio messages)

1 New blocks are generated (as usual) through gr_modtool:
gr_modtool add -t sync -l python

2 Modify the code so that it inherits from gwnblock
class data_source(gwnblock):

3 Write the constructor (note that the number of timers is specified
here):
def __init__(self , interrupt=False , interval =1.0, retry=5,

src_addr=’’, dst_addr=’’, payload=’’, ev_dc={}, debug=False
):

# invocation of ancestor constructor
gwnblock.__init__(self , name=’data_source ’, number_in=0,

number_out =1, number_timers =1)

4 Write the process_data function to generate a new Data Event
and write it on the Event Port
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Creating a new block
Let’s do a more advanced example: an ARQ Stop and Wait transmitter
(it doesn’t send a new packet until an acknowledgement for the previous
one was received, and a timeout generates a re-transmission)

1 Create the new block as before, but include a timeout this time:
def __init__(self , ack_nickname=’CtrlACK ’, max_retries =3,

tout_nickname=’TimerACKTout ’, timeout =1.0, buffer_len =1000 ,
debug=False):

# invocation of ancestor constructor
gwnblock.__init__(self , name=’stop_wait_send ’, number_in =1,

number_out =1, number_timeouts =1)

2 We’ll use an FSM this time, so process_data may include simply
two lines:
def process_data(self , ev):

self.fsm.process(ev.nickname , event=ev, block=self)
return

3 Write the FSM. For instance:
def stop_wait_send_fsm(blk):

# Code to initialize the FSM goes here
f.add_transition (’TimerACKTout ’, ’WaitAck ’, stop , ’Stop’, [

’self.nr_retries␣>␣block.max_retries ’]) # retries
exceeded
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Demo
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Conclusions and Future Work

• We’ve been using GNU Radio for several years now (both education
and research), and wished to extend it to support packet
communications

• Event objects for inter block communication, conversion to and
from GNU Radio PMTs, and the integration of Event inputs and
outputs in a generic GWN block is the result of some years worth of
iterations of GWN

• GWN has been used successfully “on the field”

• Although the number of protocols already implemented in GWN is
still modest, being open and free we welcome contributions!

• Performance is an issue. We are evaluating a transition to a C++
implementation which should be transparent to users
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Thanks for your time!
Any questions?

Federico ‘Larroca’ La Rocca - flarroca@fing.edu.uy
https://github.com/vagonbar/gr-gwn
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