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Abstract—The exploitation of side-channel information (SCI)
poses a threat to the security of even the most sophisticated
systems. SCI generally refers to any information that is exposed
from a system employing encryption other than the original or
encrypted data. In wireless systems, this information can include
signal attributes such as received signal strength, bandwidth,
burst duration, modulation, and others. Although encryption pre-
vents an eavesdropper from being able to completely understand
traffic being generated between devices, SCI can be exploited
to potentially circumvent encryption. Traffic patterns are an
especially revealing form of SCI. For example, it has been shown
that particular traffic patterns can be used to identify a web
page that a user is currently browsing. Many existing techniques
used to exploit or extract SCI require knowledge of the protocol
being used between devices or being able to extract commonly
unencrypted information from protocol headers. In this paper,
we discuss how methods to hide physical layer parameters may
still be overcome using classification techniques.

I. INTRODUCTION

The fulfillment of security requirements such as data au-
thenticity, integrity, and confidentiality, has always been a
challenge for wireless communication systems. This is because
in wireless systems, both malicious and legitimate users have
access to the same media. In wired systems and malicious user
needs to connect physically to the communication system in
order to carry out attacks. With the proliferation of wireless
access technologies such as Bluetooth and Wi-Fi, the threat
of wireless the threat of wireless attacks has become a in-
creasingly important issue. Addtionally, with the increasing
availability of general-purpose software defined radios and
sophisticated tools, the threat of wireless attacks has become
more prominent. As a result there has been a substantial
increase in the academic, government, and commercial com-
munities in wireless security.

Communication systems typically adopt the OSI protocol ar-
chitecture for transporting information which includes several
layers. Information from one application to another typically
traverses from the upper the layers of the protocol stack
through the lower layers and then back up the stack again
like that seen in Figure 1.

The protocol stack contains the application, transport, net-
work, medium access control (MAC), and physical layers in
decreasing level on the stack. Information from upper layers
are always passed down to lower layers as “packets” of generic
data to be moved and could take many different forms. Hence,
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Fig. 1: OSI Protocol Stack

layers are usually only aware of parameters related to their
intended purpose and thus they present different vulnerabilities
and require corresponding security measures to be in place.
However, the physical layer can present vulnerabilities to other
parts of the stack. The physical layer, which defines how a
medium is used to relay bits that come from all other layers,
is naturally more vulnerable to attacks than in wired systems
[1]. It has been shown that through observing frame sizes at
the physical layer, the type of application being used can be
discerned [2].

There are several attacks that can be carried out against
wireless systems that mirror that of wired systems. Eavesdrop-
ping, denial of service (DoS), spoofing, man-in-the-middle,
and message injection are commonly discussed attacks in the
realm of security. In wireless systems, since eavesdropping
is easier to carry out, other attacks are become even more
threatening as well as a result. For example, in a wired
network, a common type of DoS attack simply overwhelms
a server with many requests for a service, rendering it unable
to properly serve many users. A malicous user might carry this
out without any knowledge of the state of the server or other
clients. In a wireless scenario malicious node can attempt to
prevent service for a only for a particular client instead of all
clients by understanding only manipulating some traffic.

In this work, background of the existing work in the field
of physical layer security in Section II is provided. It is then
shown how these existing approaches may be compromised
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using common classification techniques with cyclostationary
features in Section III. An eavesdropping scenario is the
simulated and the results are presented in Section V. Finally
we conclude in Section VI.

II. PHYSICAL LAYER SECURITY

In the realm of wireless security, physical layer security has
seen a substantial increase in interest as it has been shown
that encryption alone is not enough to achieve security re-
quirements. The physical layer of wireless systems is exposed
to both legitimate and nefarious users and this presents two
major threats to security: jamming and eavesdropping. In this
work, we focus primarily on threats related to eavedropping.

Eavedropping presents a threat to information confidential-
ity and is generally combatted using encryption. The success
of encryption lies entirely in the assumption that an eavesdrop-
per does not have enough computational capacity to “break”
the encryption scheme compared to the intended receiver that
has additional information about the incoming message. There
has been plenty of work with brute-force type attempts to
breaking encryption methods. However, the more imminent
threat to the efficacy of encryption is the leakage of side
channel information (SCI). Side channel information refers
to any information that is neither the encrypted payload data
(bits) or the unencrypted payload data (also bits). For example,
almost every protocol prepends a header to the data payload.
This header has a known format and sometimes contains fields
that are common or of predictable values. If such a field is
encrypted and is known to the eavesdropper it may be possible
to reverse-engineer the encryption key in a short time. This
is called a known plain-text attack. Other types of SCI that
have been exploited include signal strength, bandwidth, data
rate, and modulation scheme. These parameters are generally
relayed through PHY-layer headers in transmitted frames, but
they can also be inferred without the use of these bits using
various DSP or statistical techniques. Hence, the obfuscation
of SCI or prevention of SCI leakage has become an important
topic in wireless physical layer security.

A. Existing Countermeasures

Preventing SCI leakage has been carried out in a few ways.
First, SCI leakage can be prevented through effectively reduc-
ing the signal to noise ratio (SNR) seen by the eavesdropper
relative to the intended receiver. One effective technique for
accomplishing this is the use of low probability of intercept
(LPI) waveforms that are typically applied in the realm of
radar. Since the intended receiver knows the precise method
(sequence) by which the transmitted signal has been spread,
it achieves a spreading gain over the eavesdropper. Friendly
jamming or artificial noise generation also reduces the effec-
tive SNR at the eavesdropper by transmitting artificial noise
along with its message. By transmitting noise in unused space,
time, or frequency, the eavesdropper receives a disadvantage
over the intended receiver.

A common and critical assumption of existing work ad-
dressing the threat of eavesdropping is that the eavesdrop-

per has similar capabilities as the intended receiver. These
results are relevant to common scenarios where commercially
available receivers are used in malicious ways such as one
cell phone eavesdropping on another. In scenarios where a
receiver is specifically designed for surveillance purposes, it is
unlikely to be so restricted. There are very few, if any, existing
approaches to the issue of eavesdropping that can guarantee
an SNR advantage for the intended receiver in the presence of
an eavesdropper with sufficiently capable hardware.

One such technique that can be used to fulfill security
requirements even in the presence of a more capable eaves-
dropper is full frame encryption [3]. header bits that can be
used to determine important information about the frame such
as its length, modulation, coding scheme, and the protocol
are generally sent unencrypted. By encrypting these bits and
obfuscating the modulation and coding scheme, it becomes
much more difficult for an eavesdropper to effectively deter-
mine what may be happening at higher layers of the OSI stack.

III. SIGNAL CLASSIFICATION

In this section, the method by which signals of the same
modulation, but different coding scheme, can be classified
using cyclostationary features and modern machine-learning
techniques.

A. Cyclostationary Signals

Many signals and systems have been modelled as wide-
sense stationary stochastic processes where second-order
statistics of the signal remain constant with time, but whose
autocorrelation is independent of time. However, many man-
made signals exhibit a periodic or an almost-periodic autorre-
lation function because they contain various periodic structures
in time. From a practical perspective, if the received signal is
considered as a stochastic process that is a sum of both additive
white Gaussian noise (AWGN) and the signals of interest, they
each fall into the category of almost-cyclostationary processes.
The distinction between cyclostationary (CS) and almost-
cyclostationary (ACS) is an important distinction made in the
literature and more details can be found in [4]. Such signals
can be said to be cyclostationary or periodically correlated and
the analysis of this class of processes has been ongoing for
decades [5]. Over the years, cyclostationarity has been studied
rigorously in continuous and discrete, real and complex, and
stochastic and non-stochastic contexts [4].

As an example, let x(t) be a continuous-time real-valued
stochastic process. The process x(t) can be called wide-
sense cyclostationary if its autocorrelation function, Rx(τ) =∫∞
−∞ x(t− τ

2 )x(t+
τ
2 )dt, is periodic. Due to this periodicity,

the process x(t) can be expanded in a Fourier series such that

Rx(t, τ) =
∑
α∈A

Rαx (τ)e
j2παt, (1)

and

Rαx (τ) , lim
T→∞

1

T

∫ T/2

−T/2
Rx(t, τ)e

−j2παtdt (2)
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where τ is the lag parameter and A is the set of cycle
frequencies α such that Rαx (τ) 6= 0. Both the coefficients
Rαx (τ), which are called the cyclic autocorrelation functions
(CAF) and their Fourier transforms, which are called the
cyclic spectra of the process x(t), are useful in analysis and
classification of signals and processes. The cyclic spectra is
especially important for analysis as it represents the density
of correlation between two spectral components of a process
that are separated by α. This property is especially useful
for detection because a process that produces additive white
Gaussian noise (AWGN) contains no correlation between
spectral components making it readily discernible from many
signals.

The cyclic spectrum at cycle frequency α of the process
x(t) can be written

Sαx (f) =

∫ ∞
−∞

Rαx (τ)e
−j2πfτdτ, (3)

which can interpreted as the time-averaged statistical cor-
relation of two spectral components seperated by cycle fre-
quency α as the bandwidth of each spectral component ap-
proaches zero. For this reason, the cyclic spectrum can also
be called the spectral correlation density (SCD). According to
this definition S0(f) is actually the traditional power spectral
density (PSD) of the process x(t). The SCD has been used
in a variety of signal processing and classification tasks in
communications, radar, and others [6], [7], [8], [9]. This
primarily stems from its ability to detect and characterize the
presence of cyclic features such as cyclic prefix length, symbol
period, or carrier frequency even in the presence of noise and
other channel effects.

B. Estimation of the SCD

The difficulty with using this feature is that it is compu-
tationally complex to estimate for digital signals. A single
estimate of the SCD of a reasonable resolution can require
up to 65,536 of 32-point complex FFTs. The SCD is read-
ily derivable in closed form for many continuous forms of
communications signals and a substantial efforts has been
made decades ago to estimate this quantity for a finite-
duration digital signal. For a digital signal, estimating the
SCD has two commonly-used methods which are optimized
for computational efficiency. The FFT Accumulation method
(FAM) [10] and Spectral Strip Correlation Algorithm (SSCA)
[11] are the two variations to estimate the SCD. The FAM,
due its data parallel computations and regular data access
patterns, offers opportunities for exploiting parallelism [12],
particularly on hardware architectures that allow fine-grained
parallelism. The FAM is the most efficient computationally
and is calculated as

XN ′ (n, k) =

r=N
′
/2∑

r=−N ′/2

a[r]x[n− r]e−j2πk(n−r)Ts . (4)
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Fig. 2: Classification System

Sαx (n, k) =
1

N

N−1∑
n=0

1

N ′XN ′

(
n, k +

α

2

)
X∗
N ′

(
n, k − α

2

)
.

(5)
where N

′
and N together determine a resolution in both

the time and frequency domains and a[n] is an arbitrary win-
dowing function. Equation (4) is the sliding window discrete
Fourier transform (DFT) with window a[n].

C. Classification by Cyclostationarity

The proposed system to classify signals can be seen in
Figure 2. The SCD is first estimated using the FAM method
with parameters, N

′
= 32, N = 256, and a[n] is a hamming

window of length N
′
. Second, the maximum is taken along

the α axis of estimate of Sαx (f) to narrow down the number of
features the classifier needs to train with. Next, these values
are normalized with respect to the maximum value in each
set so as to emphasize the relative values of all the features.
Then, using principal component analysis, the 4096 features
are narrowed down to 25 features that account for the majority
of the variance between the classes. To classify among each
class, a support vector machine with a linear kernel is trained
on a subset of the provided training data.

IV. SIMULATIONS

Simulations were constructed using GNU Radio to generate
signals for the classification system. The signals were gener-
ated with random data for every frame. Using different bits for
every frame ensures that classification is not done based on the
actual data in the frame. After this, several different channel
codes were implemented including a convolutional code of
rate 1/2, trellis code of rate 3/4, and no coding at all. These
codes are commonly used to decrease bit error rates in wireless
systems. Next, each bit was mapped onto a 16-QAM signal
constellation and pulse-shaped with an interpolating root-
raised cosine filter of transition with one-fourth the sample
rate. To simulate the reception of a bandpass signal, the signal
was then carrier modulated to a frequency of 1/4 the sample
rate. The signal was then carried through an additive white
Gaussian noise (AWGN) channel. The imaginary part of the
signal was then discarded so that the SCD features that will
be generated later are more rich.
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Fig. 4: Percent Correct Classification vs SNR

V. RESULTS

To evaluate the ability of the proposed classification system,
100 signals of each type of channel coding were generated for
each SNR tests. The classifier was trained on a random sample
of 1/3 of the total samples generated. The results are shown in
Figure 4. The results show that although the same modulation
is sent, it may be possible to determine the channel coding
with some degree of accuracy.

VI. CONCLUSIONS

In the field of wireless security, the exposition of side-
channel information poses a threat to many systems. It has
been shown in recent studies that even basic information about
a waveform such as the number of bits in each frame can
be used to compromise data confidentiality. Many techniques
have been proposed to deter eavesdropping of malicious users
that have similar hardware, but the scenario where eavesdrop-
pers have more capable hardware has not been studied in
detail. This work shows that even in the face of techniques
such as full frame encryption, which hides information critical
to determining the number of bits in a frame, it is possible to
classify the channel coding being used. This suggests that if
the dictionary of possible channel codes of obfuscating modes

are known to an eavesdropper, that with enough time and
samples the frame length could be determined with a high
degree of certainty.
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