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Abstract—In modern radar systems, low probability of inter-
cept (LPI) waveforms are used to make detection by a potential
adversary difficult. This is accomplished using wideband wave-
forms, frequency hopping, and continuous waveforms (FMCW)
to reduce the signal profile. The low signal profile of the LPI
signal enables the radar to perform detection and or target
tracking while the target remains unaware. Several modulation
techniques such as polytime codes, polyphase codes, FSK, and
FMCW are used to produce LPI signals for transmission. From
the target side, the incoming LPI signal is wideband with
unknown center frequency, and low SNR. This paper looks at
the ability of spectral correlation along with a support vector
machine (SVM) in order to automatically classify the different
LPI signal types in a non-cooperative environment.

Index Terms—Low probability of intercept, Support vector
machines, Spectral correlation, Radar signals

I. INTRODUCTION

The initial development of radar technology was driven by

its ability to provide a tactical advantage by providing infor-

mation on the location and movement of targets at distances

beyond the range of the naked eye. This allowed risky surveil-

lance and reconnaissance missions to be done completely

without the target’s awareness. One major caveat to the use

of radar is that the transmitted pulse can be intercepted by a

target and used to locate the radar source, thus neutralizing the

advantage of stealth. For this reason, modern radars employ

what is known a low probability of intercept (LPI) waveforms

that are difficult for an intercept radio to detect. A typical

scenario for the use of an LPI radar system is seen by Figure

1 where the LPI radar has a range at which a target can be

detected of Rt. The intercept receiver has a range at which

a transmitted pulse can be intercepted of Ri. Rt is typically

an order of magnitude larger than Ri so that targets can be

detected without interception. LPI waveforms accomplish this

by using wide bandwidths, continuous waveforms rather than

pulsed waveforms, frequency hopping patterns, and narrow

radiation patterns. All of these contribute to viable waveforms

that are difficult to intercept. [1] LPI signals provide other

benefits in addition to being difficult to detect, and so their use

is not limited to military applications. These benefits include

high range resolution detection for short range applications,

low transmit power, and lower cost compared to solid state

components.

In [1] several different methods are used to classify LPI

radar waveforms. These methods generally involve time-

Fig. 1. LPI Radar Scenario

frequency analysis with the Wigner-Ville distribution, Choi-

Williams distribution, or quadrature mirror filter banks. Work

in each of [2]–[4] employs one of more of these analy-

sis tools in conjunction with neural networks to achieve

classification. Modulation classification for communications

signals has received more attention in the literature than radar

signal classification, but much of the work in this field can

be extended to radar signal classification even though their

objectives are markedly different [5]. In this work, spectral

correlation and support vector machines, which are the mech-

anisms behind the signal classification methods in [6], [7],

will provide the basis for our approach to LPI radar signal

classification. The use of spectral correlation density (SCD)

has been instrumental in a variety of signal processing and

classification tasks in communications, radar, and others [8]–

[11]. This tems primarily stems from its ability to detect and

characterize the presence of periodic features, such as pulse

repetition frequency or carrier frequency, even in the presence

of noise and other channel effects.

In Section II the models and assumptions are summarized.

In Section III we provide a theoretical background for the

SCD and its use. In Section IV we show the results of our

classification method on 12 different LPI signals and finally

conclude in Section V.
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II. MODELS

For LPI waveforms, the bandwidth, frequency hopping pat-

tern, or pulse duration are not known a-priori to the intercept

receiver, making detection much more difficult than for the LPI

radar. With these characteristics, it is a necessary assumption

for both detection and classification that the intercept radar

meet a minimum level of operating characteristics, such as re-

ceiver bandwidth, memory size, and computational resources.

It is important to note that detection is a necessary condition

before classification can even be considered and the latter is

definitely a difficult task. However, the primary contribution of

this work is to reveal the minimum operating requirements in a

detector that enable this classification. Therefore, it is assumed

that the signal has been detected and its center frequency and

bandwidth are known within a margin of error of ten percent.

There are a few families of LPI signals on which this work

will focus. The first is the traditional frequency modulated

continuous wave (FMCW), which is based on modulating the

frequency of the transmitted signal in a linear or non-linear

fashion. The next type of signal is the polyphase signal, where

the phase of a sinusoidal signal is modulated to produce a pulse

compression waveform. The polyphase codes that determine

the phase are based on approximations to stepped frequency

or linear frequency (LFM) waveforms. Polytime signals are

similar to the polyphase signals in that they are generated by

the modulation of a sinusoid’s phase, but do this by varying

the time spent at each phase state. There are several other

type of LPI signals that are included, such as frequency shift

keying and frequency hopping waveforms. A more detailed

description for each of these LPI signals can be found in [1].

A. Frequency Modulated Continuous Wave

The first type of radar waveforms are Frequency Modulated

Continuous Waves (FMCW). There are two types of FMCW

signals that will be generated, the basic sawtooth wave, and

the more useful triangular wave.

1) Sawtooth: The sawtooth waveform is a repetitious LFM

signal which can be described by:

s1(t) = sin 2π

[(

fc −
B

2

)

t+
B

2Tp
t2
]

, (1)

where fc is the carrier frequency, B is the bandwidth, and

Tp is the pulse duration. This signal can be generated to have

very large bandwidths while remaining easy for the radar to

process.

2) Triangular: The triangular wave is also based on the

LFM waveform. This allows the radar to resolve the range

and speed of multiple targets. The triangular wave keeps the

same beneficial aspects of the sawtooth waves described by

equation (1) and is described by:

s2(t) = sin 2π

[(

fc +
B

2

)

t−
B

2Tp
t2
]

. (2)

In the case of the triangular wave the duration of a pulse

will be 2Tp, this is because the equation (1) and equation (2)

are concatenated one after the other in order to produce the

increasing frequency and decreasing frequency components.

B. Polyphase Codes

The polyphase signal is generated from a sequence of

discrete phase values which is the signal’s polyphase code.

The polyphase code is derived by approximating a stepped

frequency or LFM waveform. The number of phase steps are

determined by the waveform they are trying to approximate.

Once the polyphase code is determined it is used to modulate

the phase of a sinusoidal continuous wave signal by increment-

ing the phase state for each time step. The codes implemented

will be the Frank, P1, P2, P3, and P4 codes described in the

following sections.

1) Frank: The Frank code is of the first type of polyphase

codes which are derived from a step approximation to a

LFM waveform using M frequency steps and M samples

per frequency. The number of phases in the Frank code are

Nc = M2 with each phase based on the ith sample from

i = 1, 2, . . . ,M of the jth frequency from j = 1, 2, . . . ,M .

φk = φi,j =
2π

M
(i− 1)(j − 1) (3)

2) P1: The P1 code is similar to the Frank code in that

its length is Nc = M2 but it derives the phases differently

from the stepped approximation to the LFM by using double

sideband detection.

φk = φi,j =
−π

M
[M − (2j − 1)][(j − 1)M + (i− 1)] (4)

3) P2: The P2 code has the same phase increment within

each phase group as the P1 code but its starting phase is

different. For the P2 code M must be even M = 2, 4, 6, . . . ,

this is because the code was derived with the desire for low

autocorrelation sidelobes .

φk = φi,j =
−π

2M
[2i− 1−M ][2j − 1−M ] (5)

4) P3: The P3 code differs from the previous polyphase

codes by not approximating the LFM waveform from a stepped

frequency but instead converting it to baseband using single

sideband detection. The phase for the kth sample is shown by

equation (6) where k = 1, 2, . . . , Nc.

φk =
π

Nc
(k − 1)2 (6)

5) P4: The P4 code is derived similarly to the P3 code

but uses coherent double sideband detection to determine

the phase states. The phase for the kth sample is shown by

equation (7) where k = 1, 2, . . . , Nc.

φk =
π

Nc
(k − 1)2 − π(k − 1) (7)

C. Polytime Codes

The polytime signals are similar to the polyphase signals

in that they are generated from a code which approximates a

stepped or LFM waveform. In the case of polytime codes their

are a fixed number of phase states and the time spent at each

state is varied over the duration of the code period. The codes

implemented will be the T1, T2, T3, and T4 codes described

below.
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1) T1(n): The T1(n) code is generated by the approxima-

tion of the stepped frequency waveform where the leading

segment is zero. Equation (8) describes the wrapped phase

versus time of the T1(n) code as:

φT1(t) = mod

{

2π

n

⌊

(kt− jt)
jn

T

⌋

, 2π

}

, (8)

where k is the number of segments in the T1(n) code, n

is the number of phase states, j = 0, 1, 2, . . . , k − 1 is the

segment number in the stepped frequency waveform, T is the

code period, t is time and ⌊. . . ⌋ is the floor operator.

2) T2(n): The T2(n) code is generated similarly to the

T1(n) code by approximating the stepped frequency waveform,

but approximates one that is zero at its center frequency. When

using an odd number of segments k the zero frequency is the

center segment, and when k is even the zero frequency will be

between the two segments at the center. equation (9) describes

the wrapped phase of the T2(n) code as:

φT2(t) = mod

{

2π

n

⌊

(kt− jt)
2j − k + 1

T

n

2

⌋

, 2π

}

. (9)

3) T3(n): The T3(n) code is generated differently than the

previous two polytime codes. The T3(n) code is generated by

approximating a LFM waveform that is zero beat at its leading

edge instead of using the stepped frequency waveform.

φT3(t) = mod

{

2π

n

⌊

nBt2

2Tp

⌋

, 2π

}

(10)

Equation (10) describes the wrapped phase of the T3(n)

code, where B is the modulation bandwidth and Tp is the

period for modulation.

4) T4(n): The T4(n) code is generated conceptually similar

to the T3(n) code but approximates a LFM waveform which

is zero at its center frequency. Equation (11) describes the

wrapped phase of the T4(n) code.

φT4(t) = mod

{

2π

n

⌊

nBt2

2Tp
−

nBt

2

⌋

, 2π

}

(11)

D. Frequency-Hopping Radar

As opposed to the linear FMCW, radar frequency hopping

radar techniques utilize a set of frequencies that it changes

to in a random fashion impairing the ability of an intercept

receiver to intercept and jam the signal. While moving the

signal does not decrease the signal profile like FMCW or

phase modulation enabling a higher rate of detection, it

significantly decreases the chance of interception, allowing it

to be classified as an LPI signal.

1) FSK: In FSK radar a transmitted frequency is cho-

sen from a frequency hopping sequence with frequencies

{f1, f2, . . . , fN}, then it is transmitted for a corresponding

time period {t1, t2, . . . , tN}. For a continuous wave FSK radar

the transmitted complex signal will have the form:

s(t) = cos(2πfjt), (12)

where i = 1, 2, . . . , N .

2) Costas Frequency Hopping: The Costas code is a fre-

quency hopping scheme used in radar to provide unambiguous

range and Doppler measurements. It follows a sequence of

frequencies f1, . . . , fN which will be a permutation of the

integers 1, . . . , N . The permutation of the integers is governed

by:

fk+i − fk 6= fj+i − fj , (13)

for i, j, and k such that 1 ≤ k < i < i+j ≤ N . An example

of this sequence being fi = {2, 4, 8, 5, 10, 9, 7, 3, 6, 1}kHz.

III. THEORY OF SCD

A stochastic process x(t) whose mean and autocorrelation

function, Rx(τ) =
∫

∞

−∞
x(t − τ

2 )x(t +
τ
2 )dt, are periodic is

said to be wide-sense cyclostationary. Due to this periodicity,

a Fourier series whose coefficients are Rx(α, τ) are sufficient

to describe the cyclic autocorrelation function (CAF) of the

process. It is well known that the power spectral density

(PSD) is related to the Fourier transform of the autocorrelation

function. Then the Wiener relationship, which relates the

power spectral density (PSD) to the autocorrelation function

by Fourier transform, can be used to describe the SCD:

Sx(α, f) =

∫

∞

−∞

Rx(α, τ)e
−j2πfτdτ. (14)

Peaks in the SCD describe correlation in time between each

pair of frequencies in the PSD. Naturally, this gives the SCD

the ability to identify and characterize underlying periodicities

of the signal. Each LPI signal contains unique periodicities

that can be used to classify them and these have been well-

documented in [1]. The SCD is also granted a level of noise

immunity because there are no inherent periodicities in noise.

Thus, one might think of noise as spreading energy across all

possible periodicities evenly.

For a digital signal, estimating the SCD has two commonly-

used methods which are optimized for computational effi-

ciency. They are called FFT Accumulation Method (FAM)

and Strip Spectral Correlation (SSC). The FAM is the most

efficient computationally and is calculated as follows:

XN ′ (n, k) =

r=N
′

/2
∑

r=−N ′/2

a[r]x[n− r]e−j2πk(n−r)Ts (15)

Sα
x (n, k) =

1

N

N−1
∑

n=0

1

N
′
XN ′

(

n, k +
α

2

)

X∗

N ′

(

n, k −
α

2

)

(16)

where N
′

and N together determine a resolution in both

the time and frequency domains and a[n] is an arbitrary win-

dowing function. Equation (15) is the sliding window discrete

Fourier transform (DFT) with window a[n]. For this work

N
′

= 256, N = 32, and a[n] is a hamming window of length

N
′

. The SCD estimate also contains some symmetries which

we leverage to make estimation even more computationally

efficient. These identities are noted in [12]:
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Fig. 2. Alpha Profiles of LPI Signals

Ŝα
x (f) = Ŝ−α

x (f)∗ (17)

Ŝα
x (f) = Ŝα

x (−f) (18)

The SCD itself contains enough information to determine

particular properties of each signal, however it contains far

too many points to be used directly for classification and

the number of points is significantly cut down by looking at

generic features. First, the |Sα
x (f)| is sufficient for classifica-

tion, therefore the identities in (18) allow for the estimation

of only one quadrant of the SCD. Second, the location of the

peaks is unique enough to examine a flattened version of the

SCD. The maximum of the SCD along the α axis is taken to

create an α−profile which contains significantly less points.

The α−profile for each signal of interest is shown in Figure

2.

It is clear from this figure that indeed, the SCD is symmetric

on the α axis and thus only half of it is necessary for

classification. Lastly, among the points in the α−profile, only

a few points are unique to each signal and should be used for

classification. Determining which of these points are good in

the use of classifiers can be done using the LASSO algorithm

which is implemented in MATLAB [13]. Ultimately, this

reduces the number of elements use from the original SCD

to a feature vector of less than 100 points.

Finally, a support vector machine is trained using the

“example” feature vectors for each signal in a process called

supervised learning. Support vector machines (SVMs) can be

used for this type of data. Support vector machines were first

introduced by Boser et al [14] in 1992. It has had successful

applications in many fields that involve classification and fits

into the broader study of supervised learning models. SVM

is a learning algorithm that is widely used due to its ability

to deal with high-dimensional data and efficiency in modeling

diverse data. As a supervised learning algorithm an SVM is

constructed offline by using a set of training data. It uses the

training data to construct a hyperplane that optimally separates

each class. This is sufficient only for linearly separable pat-

TABLE I
CONFUSION MATRIX FOR -5 DB SNR

2FSK P1 P2 P3 P4 Frank T1 T2 T3 T4 Costas FMCW

2FSK 47 0 0 0 0 0 0 0 0 0 0 0

P1 0 10 7 4 3 8 4 2 6 4 1 1

P2 0 2 8 5 8 7 2 2 7 7 0 0

P3 1 0 12 10 3 7 0 1 2 10 1 1

P4 0 6 9 5 5 8 4 0 6 9 1 0

Frank 0 3 12 4 3 9 5 0 4 9 0 0

T1 0 3 7 4 5 8 20 0 1 2 0 0

T2 0 1 3 7 1 5 4 18 3 2 0 0

T3 0 5 10 4 4 5 1 2 6 9 2 0

T4 0 5 2 4 6 7 5 2 5 17 1 0

Costas 0 7 8 5 3 3 2 2 4 1 16 0

FMCW 0 0 9 1 2 1 2 0 3 2 1 28

TABLE II
CONFUSION MATRIX FOR 10 DB SNR

2FSK P1 P2 P3 P4 Frank T1 T2 T3 T4 Costas FMCW

2FSK 47 0 0 0 0 0 0 0 0 0 0 0

P1 0 36 0 0 0 0 0 0 0 1 3 12

P2 0 0 32 0 0 0 0 0 0 3 4 0

P3 0 0 0 21 0 0 0 0 0 12 5 7

P4 0 0 0 0 12 0 0 3 0 13 15 10

Frank 0 0 0 0 0 10 0 1 0 9 2 20

T1 0 0 0 0 0 0 46 0 0 0 2 0

T2 0 0 0 0 0 0 0 51 0 0 0 0

T3 0 0 0 0 0 0 1 0 32 2 5 0

T4 0 0 0 0 0 0 1 1 2 51 0 0

Costas 0 0 0 0 0 0 0 0 0 0 51 1

FMCW 0 0 0 0 0 0 0 0 0 0 0 56

terns, but can be extended to other patterns by transformations

of the data.

IV. CLASSIFICATION AND RESULTS

Each of the LPI signals of interest were generated in

MATLAB with the addition of white Gaussian noise so as

to create a range of SNRs between -5 and 10 dB. Then, the

SVM is trained on half of the generate feature vectors chosen

at random. Finally, the SVM is used to classify the remaining

feature vectors to evaluate the performance of classification.

The results of classification can be generally described in two

ways. First, a confusion matrix where the columns are the

input or actual modulation and the rows are the output or

predicted modulation.

The results for classification with each signal having -5 dB

SNR and 10 dB SNR in additive white Gaussian noise are

tabulated in Table I and II respectively. Among the signals of

interest, the Frank code is the most difficult to differentiate

from the others. Looking at Table I, although the Frank code

is being transmitted is being classified as the P1, P2, and P3

codes 3, 12, and 4 times respectively. Correctly classifying this

code can be found by value of the gray box in the Frank code

row by the sum of all of the values in the Frank code row.

This misclassification is partially alleviated in higher SNRs

according to Table II where although the Frank code is being

transmitted, it is only classified as T2, T4, and Costas 1,

9, and 2 times respectively. The overall results for all trials

along the entire range of SNRs are tabulated in Table III.

Overall, the signal that is most accurately classified is the

2-FSK signal. This is because the FSK signal has the most

unique α−profile of all of the signals such that even noise

4
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TABLE III
CONFUSION MATRIX FOR -5 TO 10 DB SNR

2FSK P1 P2 P3 P4 Frank T1 T2 T3 T4 Costas FMCW

2FSK 499 0 0 0 0 0 0 0 0 0 0 0

P1 0 204 26 13 12 18 31 18 38 35 29 65

P2 0 10 226 9 13 17 64 17 25 105 21 12

P3 1 3 35 199 9 15 20 23 13 132 17 35

P4 0 14 51 15 66 19 26 52 31 136 49 58

Frank 0 12 35 8 5 97 48 23 22 135 32 77

T1 0 8 37 19 12 16 375 0 8 9 18 1

T2 0 4 20 16 6 9 14 390 7 7 2 1

T3 0 24 33 11 11 25 20 18 220 65 36 21

T4 0 10 37 13 11 19 22 9 17 351 1 0

Costas 0 10 15 6 10 7 10 4 10 9 428 7

FMCW 0 2 11 1 3 2 2 0 3 2 1 484

SNR [dB]

-5 0 5 10

P
c
c

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fig. 3. Percent Correct Classification vs SNR

cannot easily cause a confusion between it an other signals.

Lastly, the overall percent correct classification Pcc is plotted

in 3. According to these results, if each of these signals are

to have equal probability of being transmitted, then at 5 dB

SNR it is expected that this could correctly classify the signal

of interest at least 70% of the time.

V. CONCLUSIONS

Low probability of intercept (LPI) waveforms are in many

modern radar systems to make detection by a potential adver-

sary difficult. A variety of methods are used to accomplish this

include frequency hopping and continuous pulsed waveforms.

Our results show that polytime codes, polyphase codes, FSK,

FMCW, Costas, and Frank codes, which are used are used

to produce LPI signals can be classified using the spectral

correlation density and support vector machines. At 0 dB

SNR, at least a 50% correct classification among 12 different

signals can be achieved. In many practical scenarios, such LPI

signals may be monitored for several pulses if interception is

the primary objective. Naturally, capturing more pulses will

increase the probability of correct classification as several

instances of the SCD can be used to classify the same signal.

Therefore, these results show that LPI signals can be classified

even in relatively low SNR (0 dB) or lower.
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