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ABSTRACT 
 
We discuss implementation aspects of a software-defined 
radio system that allows for dynamic waveform 
reconfiguration during runtime without interrupting data-
flow processing. Traditional software-defined radio systems 
execute a waveform statically, exactly as it is programmed. 
Reconfiguration is provided by executing a different 
waveform, which requires the system to stop processing 
data while reconfiguration occurs, and also may incur an 
unacceptable delay for some applications. Recent research 
has demonstrated basic reconfiguration by programming 
multiple branches into a waveform and dynamically 
switching between branches. This technique requires 
redundant resources and in general cannot be expanded to 
encompass all possible waveforms of interest, but, if 
implemented carefully, could be made to seamlessly process 
data. We propose a system that allows for dynamic insertion 
and removal of entire waveforms, individual constituent 
blocks, and block algorithm implementations tailored to 
specific processors. Our system performs this 
reconfiguration while maintaining processing state, 
seamlessly without interrupting data-processing, and with 
only the resources necessary for the given waveform and 
processors. In order to leverage this new level of 
reconfigurability, we created a new system component: a 
supervisor. This system supervisor monitors the state of 
each processor and waveform execution, and moves 
computations among available processors as their loads, 
capabilities, and block algorithm implementations allow. An 
example using a simple supervisor is provided to 
demonstrate the effectiveness of our system. 
 
 

1. INTRODUCTION AND MOTIVATION 
 
As software-defined radio (SDR) becomes more 
mainstream, devices using SDR will become more 
sophisticated. Already, such devices are moving from bulky 
handhelds with specialized processors and programming, to 
ones small enough to fit into a pocket – while using 

reprogrammable software executing on multi-core general-
purpose processors. In the not-so-distant future, devices will 
be using many-core processors and advanced graphics 
processing units (GPUs), with the ability to do real-time 
SDR for complex waveforms. 
 Device functionality is moving from a few static 
waveforms, to smartphone capabilities including web-
browsing, augmented reality, and communications including 
voice, video, and data – possibly all at the same time. These 
devices will be monitoring the whitespace and other 
devices’ communications, and cognitively altering their own 
communications to both use available bandwidth as well as 
to avoid bandwidth in use by others [1][2][3]. Such systems 
cannot rely on a few static waveforms; they must instead 
provide dynamic reconfiguration of waveforms during 
runtime in order to maximize both device utility and battery 
life. Further, some high priority functions will require high 
quality of service communications capabilities. Given these 
requirements, there will be a need to move computations 
between processors on such devices, without impacting data 
reception or transmission – i.e., providing seamless runtime 
data processing and waveform reconfiguration. 
 To demonstrate the practicality of such processing in a 
SDR, we have taken Surfer [4], our SDR framework – the 
collection of executables and libraries, header, resource, and 
data files for a given project – and augmented it in such a 
way that it can support both “all-in-one” processing blocks 
and a new block abstraction allowing for seamless 
processing. As part of the changes, we developed a new 
component – a supervisor – that keeps track of the load on 
the device’s processors as well as various SDR waveform 
execution parameters, and can modify waveform execution 
to meet user-specified requirements. We discuss these 
changes in Section 3, after providing relevant background 
information in Section 2 on how SDR processing works in a 
general sense. In Section 4, we describe a simple application 
and show the effectiveness of our technique through a 
simple load threshold detection supervisor. Conclusions and 
acknowledgements are then provided in Sections 5 and 6, 
respectively. 

Proceedings of SDR'11-WInnComm-Europe,   22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved197



2. BACKGROUND 
 
In this section, we discuss how current SDR frameworks 
perform data processing, in as broad terms as possible. Our 
goal is to provide enough relevant information such the 
changes described in Section 3 can be compared with the 
current methods; we are not trying to fully describe how 
GNU Radio [5] or SCA [6] does its processing, but rather to 
look at the way processing takes place in a general sense. 
 
2.1. Waveform as Graph, with Block Details 
 
Each SDR waveform can be described by an acyclic graph, 
whether performing packet or frame processing of data. 
Such a processing abstraction allows for a graphical 
interface (GUI) to describe a given waveform – e.g., the 
GNU Radio Companion [7], MathWorks’ Simulink [8], or 
National Instruments’ LabVIEW [9]. Such high-level GUIs 
are excellent for visualization purposes, and for users who 
are not interested in the underlying implementation details. 
GUI representations of SDR waveforms hide 
implementation details from the user, including how data is 
buffered between signal-processing blocks, the state of each 
block, and where computations are actually performed. 
Sometimes it is useful to delve into the inner workings of an 
SDR framework to better understand its functionality and 
how experiment with modifications to offer more robust 
performance. 
 Figure 1 shows a generic signal-processing block, 
including input and output buffers, the actual processing 
algorithm implementation, the block state, and the 
programming glue that holds the parts together. Some 
blocks will be input only (e.g., sinks, consumers), while 
others are output only (e.g., sources, producers); some do 
not need state (e.g., synchronous 2-stream adder) but most 
do (e.g., a FIR filter requires the N filter coefficients and the 
last N-1 samples, and possibly other variables depending on 
the actual implementation). The size and number of each 
block’s buffers can be related to those blocks preceding and 
following it; each buffer holds items of some specific type, 
entering and exiting at related, possibly identical, sample 
rates. 
 Each block is generally coded as a group of related 

variables and functions using those variables (e.g., a C++ 
class enclosing variables for state, and methods for handling 
processing and determining other relevant properties of the 
specific block). In some SDR frameworks, the block itself 
determines when it is ready to be scheduled to do processing 
– when there is enough input data and output buffer space, 
among the basic requirements – while in others it is handled 
by some external process. Some SDR frameworks evaluate 
the waveform as a whole a-priori to determine block 
scheduling timing and buffer sizes. 
 In the block configuration from Figure 1, all forms of 
dynamic runtime configuration require the equivalent of a 
switch, such as that in Figure 2, to handle selection of the 
block or waveform. Seamless data processing can be 
provided by switching between anywhere from individual 
blocks to whole waveforms. Note that the individual or 
group block state must be kept in sync between all blocks 
using the switch, or must be copied between blocks at 
switch time. Neither method  makes efficient use of memory 
resources and both add extra complexity to the waveform 
graph – whether in GUI or script form. Although the former 
method could be practically implemented for any specific 
block, there is a more efficient abstraction that we use to 
provide seamless data processing that will be discussed in 
Section 3. 
 
2.2. Data Processing and Reconfiguration 
 
In SDR frameworks, data processing occurs when a pre-
specified C++ method or C-style function is called (e.g., in 
GNU Radio the “general_work” method). This method 
resides within the signal processing block class or is 
assigned statically, such that using some other instantiation 
of the same algorithm requires creating a new block and re-
connecting the graph (e.g., via the switch from Figure 2). In 
current SDR frameworks, dynamic reconfiguration takes 
place via the switch, or by stopping graph execution 
(whether telling the blocks to stop or by stopping the 
external controller), replacing the block of interest, and then 
restarting the graph. Although for some applications the 
latter reconfiguration style can be made to work robustly, it 
is not, in general, seamless with respect to data processing 
continuity and cannot be applied to real-time signal 
processing in a completely general sense. Making use of a 
switch can allow real-time signal processing, but does not 
use resources efficiently, adds complexity to the waveform 
script or GUI, and can work only with those blocks within 
the switch – adding in new versions of the same block 
requires modifying the GUI or script. Again, in Section 3 
we provide a more robust abstraction that not only preserves 
the GUI or script, but also allows for seamless 
reconfiguration during real-time signal processing while 
providing more efficient use of resources. 
 Figure 1 – General diagram of a SDR signal-processing block 
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2.3. Surfer Basics 
 
We developed Surfer with a number of goals in mind; one in 
particular is to remove unnecessary complexity from the 
end-user’s experience, while maintaining high functionality 
and user-selectable flexibility in processing. Instead of using 
a single thread for all processing, or a thread per block, 
Surfer takes a middle-ground approach by queuing blocks 
for processing in block runners – with one block runner per 
thread. A key feature of Surfer is the use of thresholds on 
both input and output buffers that determine when the block 
should be processed; using thresholds results in constant 
overhead time per block, with that overhead processing 
spread across all active runners. Each Surfer block can have 
specific affinity for a given runner or ordered list of runners, 
choose the runner with the lowest load, or just use the first 
available. Block runners can provide functionality on a 
variety of processors, from the local CPU to an attached 
DSP and GPU (e.g., via OpenCL [10], NVIDIA CUDA 
[11], or AMD ATI Stream [12]). 
 

3. CHANGES FOR SEAMLESS PROCESSING 
 
We augmented Surfer to allow it to handle data processing 
seamlessly during runtime, keeping in mind an overarching 
goal of Surfer development: abstracting complexity away 
from the user. This section describes the concepts we 
implemented in this augmentation, including the splitting 
off of the processing from the signal processing block, the 
need for a new state construct that allows state memory to 
be shared across networks and between physical processors, 
and a new system monitor that allows for automated control 
of the augmented system. First we provide a brief synopsis 
of our use of OpenCL for accessing a GPU for signal-
processing purposes. 
 
3.1. OpenCL 
 
OpenCL, the “Open Computing Language”, is an open 
standard for implementing general-purpose computations on 
heterogeneous computing devices. We chose to use it 
because it provides better cross-platform compatibility than 
NVIDIA CUDA or ATI Stream alone, while still providing 

high functionality. Optimized signal-processing capabilities 
using CUDA or Stream could be created as alternatives to 
those provided by Surfer in OpenCL. 
 OpenCL performs computations via commands placed 
into a queue that is owned by a context containing one or 
more processing devices. Each queue supports commands 
for transferring data to and from any device within its 
context, as well as commands to execute a kernel – a 
program compiled specifically for one or more devices. 
Data transfer can be accomplished directly (e.g., similar to 
the UNIX C functions ‘bcopy’ or ‘memcpy’), or via a 
memory map. Data buffers can be allocated on the host or 
OpenCL device, and data easily transferred between them. 
 Most queue commands return an event that can be used 
as a dependency for other commands – for example, that a 
data transfer must occur before the kernel using that data is 
executed. Most commands can also take a list of events 
(e.g., as returned from other enqueued commands) that must 
finish before the command is executed. Command queuing 
can be done asynchronously, and in this way OpenCL 
allows for multiple commands to be queued in rapid 
succession so long as their event dependencies are correctly 
specified. 
 OpenCL signal-processing in a SDR for a given block 
follows the following chain of events: 
• init OpenCL constructs; 
• compile kernel from program; 
• to execute the kernel: 

1. data transfers from host to OpenCL device; 
2. kernel for execution 
3. data transfers from OpenCL device to host. 

The above chain of events can be separated into 3 distinct 
parts: initialization, kernel creation, and task execution. 
OpenCL constructs in this case are the context and queue, 
both of which might be used for multiple blocks. Hence we 
created an OpenCL-based block runner that contains these 
constructs. A OpenCL runner must be paired with any block 
executing OpenCL signal-processing. 
 Because the kernel can depend on runtime parameters, 
kernel compilation cannot take place until the waveform 
graph is fully defined. Once the kernel is compiled, 
assuming that the graph remains unchanged then this kernel 
does not need to be compiled again. 

Figure 3 -- Split block with separate selectable flavors 

Figure 2 – Reconfiguration via synchronized switches, 
with each block implementing the same algorithm  
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 Once the OpenCL constructs and kernel are created, the 
actual steps to execute the kernel form a repeatable task. 
Hence we created a class for the specific purpose of issuing 
such repetitive tasks. This class allows the user to easily 
define event dependencies and all other relevant parameters. 
Once set up, task execution is entirely encompassed within 
the class, and the kernel execution is reduced to calling the 
task’s “execute” method (with no arguments). 
 OpenCL uses a runtime compiler that takes a string 
argument containing the program to be compiled; at least in 
theory a single program source can be used for any device 
that adheres to the OpenCL standard. Because OpenCL 
programs are strings, they can be manipulated as needed for 
specific needs during runtime (e.g., for an N:1 multiplexer 
block, setting the value of N without having to pass it in as 
an argument). We make use of this runtime compilation 
feature by setting program items such as data types and the 
number of input and output streams. 
 
3.2. Computation Flavors 
 
As implied when referring to Figure 2, some sort of switch 
is required to select the waveform, block, or computation 
being performed. Instead of switching between waveforms 
or blocks, we moved the switch inside the block itself, and 
separated the signal processing algorithm implementation 
into its own class. In place of the signal processing, we 
added a lookup-table containing instantiated signal 
processing algorithm implementations that all provide the 
same application-programming interface (API) – we call 
these flavors. This new block construct is shown in Figure 3 
with six possible flavors. Each flavor is given a string name 
(e.g., “generic”) and the list of names is made available 
external to the block so that any name in the list can be 
selected as the flavor to handle processing. The lookup table 
stores this selection as a pointer to the instantiated flavor, 
such that accessing it does not require searching through the 
table. 
 The idea behind flavors is that each provides identical 
functionality, such that given the same state and data input, 
each will produce the same output data to within machine 
precision. All flavors interface with Surfer on the local CPU 
on which Surfer is executing, and then also with the remote 
processing device to do the actual processing. Flavors are 
classes specifically designed for processing, and not allowed 
to store state or any other local data – those must remain in 
the state as found in the block that owns the flavors. Note 
that the actual state and buffer data need not reside on the 
local CPU’s memory, but rather can reside entirely on 
remote devices. From the flavors in the block’s table, any 
one can be selected to do processing – even switching 
between them for each time the block performs data 
processing – because state is stored separately from 
processing. Flavors make efficient use of resources because 

they contain only the code that has to be switched and 
nothing more; any method or variable common to all flavors 
is found in the block’s class. 
 Surfer provides at least one flavor for each block – the 
“generic” implementation for the host CPU – and an 
OpenCL implementation for blocks that can be efficiently 
programming in that language. The user can add flavors, 
either replacing or adding to those in any block’s table. Each 
block using flavors contains a default flavor – generally the 
first one added to the table – as well as an optional user-
supplied priority list ordering the available flavors. Each 
flavor can, but does not have to, be assigned to a specific 
block runner of its type – e.g., OpenCL flavors can only be 
executed within an OpenCL block runner, since they require 
different handling than a flavor executing on the local CPU. 
In this way, Surfer allows for either runtime or a-priori 
block scheduling. 
 Both Surfer and flavor compilation and execution are 
highly dependent on system-provided libraries, headers, and 
frameworks implementing and providing access to the 
classes, functions, and variables specific to the flavor’s 
programming. As such, usability is determined at three 
points: (1) at configure time: whether or not the required 
system-provided libraries, headers, and frameworks are 
available; (2) at compile time: whether the items found in 
(1) work with this implementation; and (3) at run time: 
whether the compiled block initializes correctly. As an 
example relevant to this work, during its configure stage of 
building, Surfer tests for the OpenCL library and primary 
header. If the library is found, the configure script tries to 
link against it to make sure that the library is readable and 
usable by the user. If the header is found, the configure 
script tries to use it to determine the version of OpenCL. 
Assuming all tests pass, then macros will be created that 
define OpenCL as being available for use when compiling, 
as well as the version. OpenCL currently comes in version 
1.0 or 1.1, with the latter being a superset of the former. 
Thus, during compilation, the OpenCL version macro is 
used to determine which OpenCL features to make use of. 
Assuming compiling succeeds, then when a block that 
includes an OpenCL flavor is instantiated by the user’s 
application, before the flavor is added to its block’s lookup 
table it will be initialized to make sure the necessary 
OpenCL function calls succeed – and if all three steps are 
successful then the OpenCL flavor becomes available for 
processing data. 
 The flavor abstraction for signal processing comes with 
very little overhead in terms of additional programming 
complexity or latency. The actual processing method / 
function call is handled through the lookup table, and hence 
incurs an additional pointer dereference, but otherwise the 
additional complexity is borne by the programmer / 
developer of the block and / or flavor. The point where 
potential overhead does occur is when a new flavor must be 
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initialized. This event occurs only once while that flavor is 
in active use, and hence the overhead latency associated 
with using this flavor – assuming it is used for a significant 
number of times – will be much less than the actual time 
spent processing. Hence there is an additional up-front cost 
to using flavors, but this cost will be negligible in long-term 
use. 
 
3.2. Dynamic Structure Variables 
 
Given multiple flavors that provide execution on different 
processors and/or using different compilers, the state must 
be made transportable between processor memories and 
cross-processor interpretable. A standard C++ class 
instantiation / C structure can be copied between threads of 
the same application, and even shared between different 
processes executing on the same processor / OS. But, in 
general, neither can safely be used by different processors / 
OSs, whether copied or shared in some common memory, 
due to differences in alignment requirements, type sizes, and 
endianness. Hence, a new state construct was put in place to 
address these deficiencies; we designed this new construct 
to meet the following requirements: 
• To allow for simple copying, all variables and their 

padding and alignment must be stored within a 
contiguous memory space; 

• Each variable must be able to be aligned independent of 
all other variables as well as the memory space; 

• The memory space must be resizable to accommodate 
changing array-style user parameters, e.g., the number of 
filter coefficients and string names; 

• Both the C++ and C interfaces to variables must be 
consistent independent of where the actual memory 
space is allocated or how it is sized; 

• All variables must be available for accessing before and 
after resizing (not necessarily during), and all variable 
values must remain the same before and after resizing; 

• Any variable can be dynamically added to and removed 
from the structure, without affecting the other variables; 

• The C++ API should match that for scalars and standard 
library (std::) vectors and strings, such that these 
variables are as close as possible to drop-in replacements 
for the standard C++ ones; and 

• The resulting C structure must provide all of the 
information needed within its contiguous memory space, 
such that all variables can be found and interpreted on 
the host processor – independent of any differences in 
endianness or type sizes. 

 Given the nature of this construct, we call variables 
using it dynamic structure variables. An example of a block 
state using this construct is provided in Figure 4, including 
five variables of different types and how each relates via a 
handle (pointer to pointer) to the actual memory allocated 
for it. The structure header information and glue necessary 

for variable interpretation are shown in their correct 
locations, but are not further described here. Individual 
variable alignment inside the structure is provided knowing 
that many SIMD commands require their arguments to be 
aligned, but for many block states it can be ignored. The 
user accesses each variable in C++ through its dynamic 
structure counterpart – internally via doubly-dereferencing 
the handle – and does not in general have access to the 
middle-layer pointers because they are subject to change as 
variables are added, removed, or resized. No matter where 
the actual memory space is allocated, the variable’s value  
(scalar or array) remains the same through first copying the 
current value to the new location and then updating the 
pointer value; the handle value always remains valid once it 
is set. 
 
3.3. Supervisor 
 
In order to leverage the dynamic functionality provided by 
flavors in an automated manner, information must be 
collected on both the flavor functionality (e.g., throughput, 
latency, energy use, overhead time) and system state (e.g., 
CPU load, network utilization). Surfer already provides the 
basic capabilities for collecting this data; we added modules 
for collecting the CPU use for a specific process down to 
individual threads in the process. We also introduced a 
system supervisor as the focal point for collecting and 
utilizing this data. Surfer creates a default supervisor at boot 
time that collects no data but also does not modify 
waveform execution. The user can overload this default with 
a different supervisor – e.g., one that monitors CPU load 
and then can changes the flavor of certain blocks based on 
user preferences. In creating a new supervisor, the user can 
select from Surfer-provided functionality-monitor modules, 
or use ones created outside Surfer.  
 Although a supervisor does not directly schedule blocks 
for processing, it can indirectly influence this processing 
through the changing of input and output buffer threshold 
values. More importantly, the supervisor can switch flavors 
for any block where there are multiple flavors available, and 
where the user has specified affinity to multiple flavors 

Figure 4 – Conceptual example of a block state using dynamic 
structure variables 
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(e.g., choose a flavor whose processor has a lower load than 
the current flavor’s, or to move back to a flavor with higher 
affinity once its processor load is below a given threshold). 
 

4. APPLICATION EXAMPLE 
 
Figure 5 shows a simple application graph that demonstrates 
that even a basic supervisor monitoring the CPU load can 
provide good performance and seamless processing using 
the new Surfer flavors. Approximately 9 seconds worth of 
narrowband FM (NBFM) data was taken using an Ettus 
USRP1 [11] and GNU Radio, and stored into a file. The 
NBFM data is decimated within the USRP1 from 64 Mega-
samples/second (MS/s) down to 250 kS/s. Each stored 
sample is a complex-valued (I&Q) integer with 2 bytes per 
value or 4 bytes / sample, requiring 1 M-byte/s throughput 
for real-time processing. This file is then used as the data 
source for the example, where the FM signal is rate limited 
to 250 kS/s and then decoded via a quadrature demodulator. 
The resulting audio signal is downsampled by a factor of 10, 
to 25 kS/s, via a low-pass FIR filter using 1651 taps and 
with a cutoff frequency of 2.7 kHz. The resulting audio 
signal was then stored back to another file. For 
downsampling when using the host CPU, we intentionally 
used a non-optimized FIR filter that requires more CPU 
utilization than an optimal one (i.e., rather than using SIMD 
specialized instruction sets such as SSE, AltiVec, or 
NEON). Both the quadrature demodulator and downsampler 
have flavors allowing execution on the local CPU as well as 
the host-computer’s GPU (via OpenCL), and their Surfer 
blocks were configured to prefer using the local CPU to 
OpenCL. A supervisor was monitoring the CPU load of the 
host computer, and was programmed with a threshold of 
60% max CPU load before switching flavors. 
 With a graphical CPU load display running, we started 
Surfer executing the graph in Figure 5, and then separately 
started an external process that fully loaded the host CPUs 
for a short duration. As shown in Figure 6, shortly after the 
external process reached our user-set threshold of 60% CPU 
utilization, the supervisor started moving blocks from 
executing on the local CPU to using OpenCL – which 
generates a smaller CPU load for Surfer. During the switch 
in flavors, as well as the entire time the external process is 
running, Surfer continues processing data both seamlessly 
and in real time. Once the external process finished 

execution and the CPU load dropped below 60%, the Surfer 
supervisor started switching flavors back from OpenCL to 
the local CPU. This switch resulted in the local CPU 
executing all of the application’s flavors again, hence the 
resumed moderate load. Throughout this example, the host 
OS is running other user and system tasks, and hence there 
is a difference between the total CPU load and that incurred 
by Surfer alone. There is also a short lag before the 
supervisor switches flavors, due to the load detection 
algorithm. Note that Surfer maintains real-time throughput 
during the entire waveform execution time. This example 
demonstrates that the technique we developed for allowing 
runtime dynamic reconfiguration can successfully process 
data seamlessly. 
 

5. CONCLUSIONS 
 
We have developed an SDR framework with the capability 
of performing seamless dynamic runtime reconfiguration. 
We accomplished this task by taking the standard signal-
processing block programming, and separating the actual 
processing into its own class. In the place of the processing 
functionality, a lookup table is used to store the possible 
processing flavors. Each flavor for a given block meets the 
same API requirements, such that given a specific state and 
inputs, each will generate the same outputs (within machine 
tolerance). The flavor abstraction allows for the ability of 
SDR-based devices to seamlessly switch processors where 
the actual signal processing takes place. 
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