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Abstract— Since the number of processing cores in a General
Purpose Processor (GPP) increases steadily, parallelization of
algorithms is a well known topic in computer science. Algorithms
have to be adapted to this new system architecture to fully exploit
the available processing power. This development equally affects
the Software Defined Radio (SDR) technology because the GPP
has become an important alternative hardware solution for SDR
platforms.

To make use of the entire processing power of a multi-
core GPP and hence to avoid system inefficiency, this paper
provides an approach to parallelize C/C++ code using OpenMP.
This application programming interface provides a rapid way to
parallelize code using compiler directives inserted at appropriate
positions in the code. The processing load is shared between all
cores. We use Matlab Simulink as a framework for a model-based
design and evaluate the processing gain of embedded handwritten
C code blocks with OpenMP support.

We will show that with OpenMP the core utilization is
increased. Compared to a single-core GPP, we will present the in-
crease of the processing speed depending on the number of cores.
We will also highlight the limitations of code parallelization.

In our results, we will show that a straightforward implemen-
tation of algorithms without multi-core consideration will cause
an underutilized system.

I. INTRODUCTION

In recent years, there has been a great progress regarding
SDR waveform development and the number of available
platforms on the market. The SDR platforms differ in the
architecture but also in the integrated digital processing units.
However, it can be observed that the use of GPPs in cooper-
ation with Digital Signal Processors or Field Programmable
Gate Arrays (FPGAs) becomes more important since they
enable fast signal processing and the use of various compilers.
Due to the fact that GPPs evolved from single-core to multi-
core chips to gain computing power by parallelization, this has
to been taken into account for the SDR waveform development
and hence the programming of algorithms.

An example for such an SDR platform is the Universal
Software Radio Peripheral (USRP) from Ettus Research [1].
The USRP comprises the radio frontend, the digital to analog
conversion and the resampling, which is handled by an FPGA.
The actual digital signal processing is shifted to a GPP running
on a host, which is connected to the USRP via the Universal
Serial Bus.

We will present an approach of adapting an existing model-
based waveform development environment to consider multi-
core GPPs. The environment will be based on Matlab Simulink
(hereinafter referred to as Simulink) and we apply OpenMP
for code parallelization due to the common shared memory

multiprocessing architecture of GPPs. Furthermore, we will
show the speedup of parallelized code for standard and more
complex signal processing operations.

Section II introduces the model-based design flow with
Simulink and the integration of OpenMP. In section III the
parallelization with OpenMP support and the results are
demonstrated with case studies. We will point out the oc-
curred difficulties and the solutions. Section IV outlines the
importance of multi-core consideration in programming and
summarizes the results.

II. THE TOOLBOX

Model-based Waveform Development with Simulink

As a framework for model-based software design we apply
Simulink from The MathWorks [2]. Not only the modeling
and simulation of dynamic systems, but also the possibility to
generate code for various digital signal processing hardware
meet the requirements of current SDR waveform development.
Simulink enables an intuitive way to model complex systems:
Signal processing elements, for example a digital filter, are
mapped to functional blocks. An entire system is created by
interlinking and parameterizing these blocks.

The basic waveform development approach, depicted on the
left hand side of figure 1, is derived from the Model Driven
Architecture and adapted to the physical layer of wireless
communication systems as described below [3][4].

The Computation Independent Model (CIM) describes the
requirements independent from the implementation and is
actually the specification of the radio standard. The transfor-
mation to the Platform Independent Model (PIM) is done by
implementing the waveform’s functionality in Simulink. By
extending the PIM with platform specific aspects, the Platform
Specific Model (PSM) is created. On the one hand, there
are infrastructural platform aspects like the data buses on the
system or the configuration of the RF frontends and ADCs and
on the other hand processor specific aspects for example the
adaption of algorithms for fixed-point representations. The last
transformation from the PSM to the executable code is done
in two steps: First, C-code is automatically generated using
the Real Time Workshop and afterwards compiled with the
Microsoft Visual Studio C++ compiler or the GNU compiler
collection (GCC).

OpenMP - Introduction and Usage

Open Multi-Processing (OpenMP) is an application pro-
gramming interface (API) that is jointly developed by software
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Fig. 1. Model-based waveform development with Simulink
and OpenMP support for multi-core GPPs

and hardware vendors since 1997. It is an open standard for
shared memory multiprocessing programming that focuses on
the parallelization of C, C++ and Fortran code [5][6][7]. The
API is implemented in various commercial and open source
compilers. The major advantage compared to other paralleliza-
tion approaches is its elementary possibility to parallelize an
existing application as we will demonstrate.

The basic parallelization strategy is based on the fork/join
execution model as depicted in figure 2. The Initial Thread
forks in different threads (team of threads) that run in parallel
and share the calculation load, managed by the Master Thread.
The number of threads n is independent of the number
of processing cores in the GPP. After the parallel section,
all threads join and the Initial Thread continues. OpenMP
provides compiler directives to initiate the fork procedure and
to synchronize the parallel threads. Furthermore, it comes with
a list of inbuilt functions and environment variables.

Initial Thread

Master Thread Thread nThread 1 ...

Initial Thread
team of threads

fork

join

Fig. 2. OpenMP’s fork/join execution model

In the following, we will focus on C-code and explain
the components as well as the usage of OpenMP on the
typical Hello World example in listing 1. The main item of

the parallelization is the directive in code line 6: #pragma
omp parallel. A pragma indicates the compiler to ex-
ecute an inbuilt operation. In this case, omp parallel
instructs the compiler to activate the OpenMP API and hence
to parallelize the following code section. The programmer
should not worry about the initialization, the starting or the
termination of the threads since this is accomplished by the
API. Each available thread will execute the print command
and post its internal thread number. The appropriate function
omp get thread num becomes available by including the
OpenMP header file omp.h in line 2.

Listing 1. Hello World C-code example
1 #include <stdio.h>
2 #include <omp.h>
3

4 int main() {
5

6 #pragma omp parallel
7 {
8 printf("Hello World from thread %d\n",

omp_get_thread_num());
9 }

10

11 }

The output of the Hello World executable with four uti-
lized threads is shown in listing 2. To activate the OpenMP
support, it is necessary to set a compiler specific flag (e.g.
GCC: -fopenmp). This example demonstrates two important
things: First, the parallelization is achieved by adding one code
line and second, the order in which the threads finish their
tasks is not specified. The last one depends on the current
workload of each core and the involved scheduling of the
operating system.

Listing 2. Hello World output
1 Hello World from thread 1
2 Hello World from thread 3
3 Hello World from thread 4
4 Hello World from thread 2

One of the advantages of OpenMP is the feature to par-
allelize loops. Since loops are omnipresent in Digital Signal
Processing (DSP), this is the major application area and there-
fore the field of interest. Listing 3 shows the implementation
of a Multiply-Accumulate (MAC) operation. The elements of
the vectors b and c are multiplied separately and accumulated
to the corresponding element of a.

Listing 3. MAC C-code example
1 #pragma omp parallel for
2 for (i=0; i<N; i++) {
3

4 a[i] += b[i] * c[i];
5

6 }

The parallelization works as follows: The number of loop
cycles is distributed to the team of threads, depending on the
OpenMP scheduling. Each thread executes the loop content for
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an assigned range of the loop variable i. For example, thread 3
passes the loop four times using the values i={8,9,10,11}.

Due to the fact that no data dependencies inside the loop
exist (e.g. a recursive structure), no further modifications
regarding the parallelization of listing 3 are necessary. Oth-
erwise, OpenMP provides features to synchronize threads that
are demonstrated in section III.

OpenMP and Simulink

Parallelized C-Code can already be included in the modeling
of the PIM as depicted in 1. Simulink provides S-functions
for embedding C-code into a model. These specifically con-
structed functions can be handwritten or automatically gener-
ated using the legacy code tool. The S-functions can be treated
like ordinary C-code and can therefore be parallelized with
OpenMP. To simulate an integrated S-function in the PIM,
it has to be compiled to a Matlab Executable (MEX) file.
For generating an executable code, the S-function is directly
embedded in the overall model C-code and subsequently
compiled with OpenMP support. The last one has to be
activated in the Simulink build process.

In Simulink, signals can be processed sample- or frame-
based. That means that in every simulation step the operations
are performed on one sample or on multiple samples as
depicted in figure 3. Frame-based processing is the method
of choice due to the fact that it is a common format in real-
time systems and the fixed process overhead is distributed
across many samples. At the same time, frame-based pro-
cessing offers potential for performing parallelization: The
operation on one frame can be realized by a loop and hence
parallelized with OpenMP. The occurring difficulties like data
dependencies are discussed in section III.

III. CASE STUDY AND RESULTS

In this section we provide case studies that show the
processing gain achieved by parallelization. All measurements
were performed on an AMD Phenom II X4 955 processor with
four cores. We used Matlab R2010a and GCC in its version
4.4.3 on a Ubuntu 10.04 64-bit system. Since the performance
is not dependent on platform specific APIs, the evaluations
are without SDR hardware considerations. The PIM was
transformed directly into an executable and benchmarked on
the processor. The Simulink model, which was used as a
template for all measurements, is depicted in figure 4. The
S-function block represents the parallelized C-code that was
adapted to the following case studies:

• Standard DSP operations
• Finite Impulse Response filter
• Fast Fourier Transformation

The processing time for the S-function is measured using
time stamp blocks and averaged over a meaningful number
of simulation steps. For each case study, we will show the
impact of different frame lengths N and the number of utilized
threads. The frame length is the number of samples in one
frame, which will be varied exponentially from N=8 to 8192.
The number of threads n will be 2, 3 and 4 since we use a
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time

Interupt Service Routineprocess one sample

time

time
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process multiple samples
in parallel

process multiple samples
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Fig. 3. Sample-based and frame-based signal processing in Simulink

quad-core GPP for the measurements. Each thread occupies
one core on the GPP due to the OpenMP scheduling. Using
more threads than available cores reduces the performance of
the parallelized code.
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Fig. 4. PIM template in Simulink

Figures of Merit

To measure the performance gain of parallelized applica-
tions, we introduce the dimensionless factors speedup and
efficiency. If a sequential running program consumes the
processing time t1 and a parallel running the time tn, the
speedup sn can be described as

sn =
t1
tn

. (1)

The index n specifies the number of threads used in parallel.
To point out the parallel scalability of the calculation problem,
the efficiency is introduced as

en =
sn
n

. (2)
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To give an example: An application on a dual-core processor
that utilizes all cores has a speedup of s2=180% and an
efficiency of e2=90%.

Case Study 1 - Standard DSP Operations

The first case study demonstrates the addition and multi-
plication of samples (equation 3, 4), the magnitude squared
and phase of complex samples (equation 5, 6) and the dot
product of two frames (equation 7). Whereas a, b and c are
real numbers, z is a complex one.

c(i) = a(i) + b(i), i = 0, . . . , N − 1 (3)
c(i) = a(i) · b(i) (4)
c(i) = |z(i)|2 (5)
c(i) = ∠z(i) (6)

c =

N−1∑
i=0

a(i) · b(i) (7)

Since the first four operations are structurally similar to
listing 3 and have no data dependencies within the frame, only
the implementation of the dot product is shown in listing 4.

Listing 4. Parallelized dot product implementation
1 c=0;
2

3 #pragma omp parallel for reduction (+:c)
4 for (i=0; i<N; i++) {
5

6 c += a[i] * b[i];
7

8 }

Since all threads add the result of the multiplication to the
same variable c, the reduction clause is used for synchro-
nization purpose to avoid race conditions. It causes that each
thread gets a local copy of the variable. The values of the
local copies will be summarized (reduced) into a global shared
variable once the threads join.

Results: Due to the fact that the performed operations are
based on standard GPP operations, the overhead generated
by the OpenMP thread scheduling cannot be compensated
for the measured frame lengths. Figure 5 shows exemplarily
the speedup and the efficiency for the magnitude squared
calculation of complex input samples.

In all three cases, the speedup is lower than 100% and
hence the parallelized version of the code is slower than the
sequential one. The measurements for the other examples show
similar results.

Case Study 2 - Finite Impulse Response Filter

This section introduces a more complex signal processing
example: The filtering of digital data with a Finite Impulse
Response (FIR) filter. Based on the Nh filter coefficients h(k),
the filter operation can be described as

y(i) =

Nh−1∑
k=0

h(k)x(i− k) . (8)
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Fig. 5. Speedup and efficiency of the magnitude squared calculation

The input signal x(i) is convolved with the coefficients h(k)
to calculate the filtered output y(i). A straightforward imple-
mentation of equation 8 is shown in listing 5.

Listing 5. Straightforward FIR filter implementation
1 for (i=0; i<N; i++) {
2

3 for (k = N_h-1; k>0; k--) {
4 buffer[k] = buffer[k-1];
5 }
6

7 buffer[0] = x[i];
8 y[i] = 0;
9 for (k= 0; k<N_h; k++) {

10 y[i] += buffer[k]*h[k];
11 }
12 }

It can be seen that this C-code shows data dependencies since
the values y[i] can not be calculated independently of each
other. For example, the buffer content is successively shifted
in each loop cycle and is therefore dependent on the previous
cycles. Even a FIR implementation based on a circular buffer
would lead to the same difficulties.

To parallelize the FIR C-code the data dependencies have to
be resolved. This means that the calculation of the output value
y[i] at the time step i has to be independent of all other
steps. The structure of the alternative FIR implementation is
depicted in figure 6. The buffer content is not manipulated
during the frame processing. But due to the fact that the
calculation window can arbitrarily be shifted, the structure can
be parallelized. Listing 6 shows the corresponding parallelized
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C-code. The variables temp and k have to be set as private
since each thread requires its own copy. Otherwise, the threads
would randomly manipulate the data with one another. After
the filtering, the buffer has to be refilled with the last Nh−1
samples of the input frame in order to guarantee a continuous
convolution.

Listing 6. Parallelized FIR filter implementation
1 #pragma omp parallel for private(temp, k)
2 for (i=0; i<N; i++) {
3 temp = 0;
4 for (k=0; k<N_h-1-i; k++) {
5

6 temp += buffer[k]*h[k+i+1];
7 }
8 if (i < N_h-1) {
9 for (k=0; k < i+1; k++) {

10

11 temp += x[i-k]*h[k];
12 }
13 }
14 else {
15 for (k=0; k < N_h; k++) {
16

17 temp += x[i-k]*h[k];
18 }
19 /* Refill buffer */
20 if (N-1-i < N_h-1) {
21

22 buffer[N-1-i] = x[i];
23 }
24 }
25

26 y[i] = temp;
27 }

0

01

Input Buffer

Output

1

0

Coefficients

Calculation
window

Fig. 6. Parallelized FIR filter implementation structure

Results: Figure 7 shows the results for the parallelized FIR
filter implementation and Nh=100 coefficients. With an input
frame length of 16 samples, the parallelized version is already

faster than the sequential one. The results depend highly on the
frame size. The nearly constant processing overhead caused by
the OpenMP thread scheduling becomes smaller compared to
the calculation effort, which increases with the frame length.
The same is true for the number of coefficients since it affects
equally the calculation effort. The utilization of the processor
cores is most efficient by the use of only two or three threads
and represents almost 100% for frame lengths greater than
1024.
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Fig. 7. Speedup and efficiency of the parallelized FIR filter
implementation with 100 coefficients

Case Study 3 - Fast Fourier Transformation

The Fast Fourier Transformation (FFT) is one of the most
important operations for digital communication and spec-
tral analysis. The basic structure of a length N=8 Radix-
2 FFT with time domain reduction is depicted in figure
8. After reordering (bit reversal), the time domain samples
pass Ns= log2(N) stages successively. In each stage, Nb=

N
2

butterfly operations are performed. Due to the fact that the
butterflies can be calculated in parallel, this is the starting
point for the code parallelization with OpenMP.

To avoid data dependencies in the implementation, the
indexes of each butterfly input must be a function of
the current stage l=0, . . . , Ns−1 and the current butterfly
m=0, . . . , Nb−1. The same applies to the exponent n of the
twiddle factor Wn=e−j2π

n
N . Listing 7 shows the structure of

the parallelized FFT-Code.

Listing 7. Parallelized FFT implementation
1 /* Bit reversal (Time domain reduction) */
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Fig. 8. Radix-2 FFT structure with N=8 complex input samples

2 #pragma omp parallel for
3 for (i=0; i<N; i++) {
4

5 /* Calculate the bit reversed index */
6 [...]
7 }
8

9 /* FFT Calculation */
10 /* N_s sequential operations */
11 for (l=0; l<N_s; l++) {
12

13 /* N_b parallel operations */
14 #pragma omp parallel for
15 for (m=0; m<N_b; m++) {
16

17 /* Calculate the indexes of the
butterfly inputs according to m,l*/

18 [...]
19

20 /* Calculate the twiddle factors
according to m,l*/

21 [...]
22

23 /* butterfly operation */
24 [...]
25 }
26 }

Results: Similar to the results of the FIR filter, the paral-
lelized version of the FFT shows good results with respect
to the speedup and the efficiency (figure 9). The speedup
starts at a frame length of 32 complex samples and increases
continuously. With a length of 1024, the efficiency represents
more than 80% for every case. The most efficient utilization
is again obtained by the use of only two threads.

IV. CONCLUSION

We presented an approach to include OpenMP into Simulink
in order to enhance a model-based waveform development
with multi-core GPP support. Parallelized code can be sim-
ulated and executed within an entire communication system.
Since OpenMP undertakes the task of managing the parallel
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Fig. 9. Speedup and efficiency of the FFT calculation

threads, the parallelization of code is simplified to the point
of just one code line.

The results show that an OpenMP-based code parallelization
can speedup algorithms and increase the efficiency of multi-
core GPPs. Nevertheless, the computational complexity of
DSP problems has to dominate the processing overhead,
caused by the thread scheduling, before the parallelization
becomes profitable. In other words, the more basic operations
(+,−, ·, /) are parallelized at once, the more efficient the
parallelization gets. Furthermore, existing algorithms have to
be parallelized at first to resolve data dependencies. But once
they are parallelized, the algorithms can be executed on various
multi-core GPPs with a scalable speedup.
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