
Component Based

Software Engineering

approach on DSP Targets

2 / 2 /
2
0
1
1
/0

5
/2

0

Agenda

Motivations

Context

LwCCM/MyCCM

GPP - DSP unified approach (EULER)

Framework optimizations for DSP

Benchmarks

Perspectives

Conclusion

3 / 3 /
2
0
1
1
/0

5
/2

0

Motivations

DSP applications
Lower MAC / PHY (algos, reconfigurations, servo-
control,…)

Software constraints/challenges
Increasing systems complexity, portability, reuse level

Software architecture efforts needed on DSP

Separation of concern between technical and
business

Focus on a global SDR approach

Enrich the HW processor approach of the SCA

IDL on GPP, MHAL Comm on DSP

Need of a CBSE tool-aided approach
Experiment a THALES framework MyCCM

4 / 4 /
2
0
1
1
/0

5
/2

0

Context

THALES is having a unique approach combining the EU R&T

agenda with research for WF Portability

5 / 5 /
2
0
1
1
/0

5
/2

0

A THALES framework helping architects and developers to
develop CBSE Distributed Real-Time Embedded applications

MyCCM : MAKE YOUR COMPONENT CONTAINER MODEL

MyCCM = implementation of OMG Lightweight CCM

 Components interact via ports

Provided interfaces : facets

Required connection points : receptacles

Event sinks & sources

Components are described in IDL3 language

Components

encapsulate

application

business logic

O
F

F
E

R
E

D
 S

E
R

V
IC

E
S

 R
E

Q
U

IR
E

D
 S

E
R

V
IC

E
S

Facets Receptacles

CCM container

Business

Code

Component Interface

Event

Sinks
Event

 Sources

Attributes

Our works in EULER leveraged MyCCM background towards SCA based DSP extensions

N.B: MyCCM

does not

postulate

usage of

CORBA

6 / 6 /
2
0
1
1
/0

5
/2

0

MyCCM Development Process

Component specification in IDL3: interfaces, ports

Structural & collaboration aspects (deployment)

Real-Time tuning/constraints (deployment)

SCA resources generated by CCM component assembly
(option)

MAKE YOUR DESIGN 1

SCA Container

LwCCM container

LwCCM container

Business

Code
Business

Code

CF::Resource

CF::Port
input port

7 / 7 /
2
0
1
1
/0

5
/2

0

MyCCM Development Process

MAKE YOUR DESIGN 1

2 GENERATE

MyCCM

Generation of containers for various connectivity choices

 CORBA not mandatory

Generation of implementation template for Business Code

Generation of mirror components for Testing purpose

Generation of SCA deployment XML descriptors

8 / 8 /
2
0
1
1
/0

5
/2

0

MyCCM Development Process

MAKE YOUR DESIGN 1

/*
 * Created on: dd-mm-yyyy
 * Author: xxxxx
 */

#include "layers/mac/MACSupervision/MACSupervisionImpl.h"
#include <assert.h>
#include <log4cxx/logger.h>

namespace hdrn
{
 namespace mac
 {
 MACSupervisionImpl::SupervisorImpl::SupervisorImpl(
 MACSupervisionImpl& component)
 {
 //INSERT YOUR BUSINESS CODE
 }
 }
}

DEVELOP YOUR

BUSINESS CODE
3

DEPLOY 5

2 GENERATE

MyCCM

MyCCM

BUILD 4

9 / 9 /
2
0
1
1
/0

5
/2

0

Typical SCA 2.2.2 architecture

Mhal

Device

SCA

resource

MHAL

ports

MHAL Com GIOP(IIOP-MQIOP)

Linux µcOSII

 Issues

SCA resource interfaced to DSP through MHAL ports rather than functional ports

Hand-made transformation of « would be » IDL to pushpackets (byte payload)

Limitation to « oneway » interactions

Dsp Application

c1 c2

c3

Proprietary

implementation model

MHAL messaging

managment (IRS :

transformation/routing)

CF::Resource CF::Resource

CORBA

SCA OE

Core Framework

Pushpacket

payload

SCA

container

SCA links

Legend

SCA

ports In port

Out port

CF::Resource

10 / 10 /
2
0
1
1
/0

5
/2

0

Unified GPP-DSP approach

Native Test

Environment

GPP: Intel x86 Linux 2.6

THALES platform
based on THALES IPBB

GPP: PowerQuick II Linux 2.6

DSP: TI C6414 µcOSII

Prismtech platform
based on Spectrum SDR4000

GPP: MPC8541 INTEGRITY

DSP: TI C6416 DSPBIOS

IP

SERVICES

MAC PHY

SECURITY

SERVICES

XCVR

Motivation: meeting EULER portability requirements

1 WiMax-like waveform ported onto 3 platforms

CORBA everywhere
MHAL Comm based

11 / 11 /
2
0
1
1
/0

5
/2

0

Native Test Environment

PC: Intel x86 Linux 2.6

SCA container

SCA resource

OSSIE Core Framework

OmniORB

GIOP(IIOP)

Linux

MyCCM

CF::Resource

SCA container

CCM Component

-modem code

- legacy code

SCA

container

SCA connections

Legend

SCA

ports In port

Out port

CF::Resource

12 / 12 /
2
0
1
1
/0

5
/2

0

Porting on Prismtech platform

SCA container

SCA container

SCA resource

Openfusion Core Framework

Openfusion e*ORB

QuicComm GIOP(IIOP - MQIOP)

Integrity DSP/BIOS

SDR4000

GPP: MPC8541 INTEGRITY

DSP: TI C6416 DSPBIOS

MyCCM

CF::Resource

CCM Component

-modem code

- legacy code

SCA

container

SCA connections

Legend

SCA

ports In port

Out port

CF::Resource

13 / 13 /
2
0
1
1
/0

5
/2

0

Porting on THALES platform : approach

SCA resource

MHAL Comm GIOP(IIOP-MQIOP)

Linux µcOSII

IPBB

GPP: PowerQuick II Linux 2.6

DSP: TI C6414 µcOSII

CF::Resource

THALES Core Framework

PrismTech CORBA

functional

ports

UNIFIED IDL DESCRIPTION LEVEL

Specific

connections

CCM Component

-modem code

- legacy code

SCA

container

SCA connections

Legend

SCA

ports In port

Out port

CF::Resource

SCA container

SCA container

ISOLATES COMPONENT DEVELOPERS

FROM GPP-DSP COMMUNICATION ISSUES

HOW TO MINIMIZE PORTABLITY

EFFORTS ?

14 / 14 /
2
0
1
1
/0

5
/2

0

Proxy

Porting on THALES platform : solution

SCA container

Proxy

SCA resource

THALES Broker

MyCCM

PrismTech CORBA

MHAL Comm GIOP(IIOP-MQIOP)

Linux µcOSII

IPBB

GPP: PowerQuick II Linux 2.6

DSP: TI C6414 µcOSII

CF::Resource

THALES Core Framework

PrismTech CORBA

IDL/IDL3 component description

 MyCCM generates 1 Resource container + 1 GPP proxy

connectPort

SCA container

Specific

connections

CCM Component

-modem code

- legacy code

SCA

container

SCA connections

Legend

SCA

ports In port

Out port

CF::Resource

15 / 15 /
2
0
1
1
/0

5
/2

0

NO MANUAL CODE CORRECTION

FOR WF COMPONENTS

FROM ONE PLATFORM TO ANOTHER

Unified approach eases up porting

Native Test

Environment

GPP: Intel x86 Linux 2.6

IPBB

GPP: PowerQuick II Linux 2.6

DSP: TI C6414 µcOSII

SDR4000

GPP: MPC8541 INTEGRITY

DSP: TI C6416 DSPBIOS

16 / 16 /
2
0
1
1
/0

5
/2

0

Enrichment of MyCCM framework

Framework Optimisations for DSP

Support various memory allocators for interactions

Specification of threading properties (active object)

Generated SCA Resource

D

A
B

C

Threaded Ports

Thread 1

Thread 2

Thread3

Threaded Ports

described in

deployment

model

Memory footprint reduction
Structural modifications of the container architecture

inheritances, conditional compilation, optimized IDL/C++ generation

Footprint reduced by a factor of 5 from initial framework

Definition of a lightened IDL profile

Method

Object

« creates »

« creates »

« creates »

Memory Allocators

described in

deployment model

Global

Heap

Partition2

Partition1

Memory Allocators

Heap2

Heap 1

17 / 17 /
2
0
1
1
/0

5
/2

0

Memory Footprint (Texas C6416 – 600Mhz - 1Mbytes memory)

DSP Framework ~ 50Kbytes (5% on C6416)

MyCCM Runtime, Broker, MHAL Comm, POSIX subset, Allocators, …

Components Containers

Benchmarks

All sizes in kBytes

Reference Enriched

No threading 1,7 1,8

Threading support 2,8 4,6

Resource interface 5,1 6,2

Connections with GPP 8,5 9,7

TOTAL 18,1 22,3

DSP internal memory 1000 kB

BSP/RTOS 100 kB

Framework 50 kB

Per (complex) Resource 20 kB

Per additional internal Component 5 kB

~20% reduction

 on-going

REFERENCE

COMPONENT

portIn1

portIn2

portOut1

portOut2

short m1();

oneway void m2(in long,

 in short);

oneway void m1(in string);

oneway void m2(in payload);

oneway void m1(in short,

 in sType,

 in long);

oneway void m2(in payload);

short m1(inout payload)

long m2(inout short);

TYPES
typedef sequence<char,1024> payload;

typedef sequence<short,10> small_payload;

struct sType{ short _p1;

 long p2;

 small_payload p3; };

portIn3

oneway void m1(in short,

 in sType, in long);

oneway void m2(in payload);

long m3(in long, in short);

oneway void m4 (in short);

oneway void m1(in long);

void m2(inout small_payload);

portIn2

ENRICHED

COMPONENT

portOut1

portOut2

p
o

rt
In

1

18 / 18 /
2
0
1
1
/0

5
/2

0

Texas Instruments C6416 – 600Mhz

Co-located (No use of the middleware)
For any connections within the DSP (up to inter-Resources)

Direct call (Client and Server in the same thread): a few cycles

Threaded Call - Active Object (Client & Server in separated
threads, usage of message queues): a few µs – RTOS driven

Remote calls (Use the middleware solution)
For any connection to a GPP component

Two ways call : 9 to 15 µs (deterministic allocation scheme)

One way call : 4 to 10 µs (deterministic allocation scheme)

Need to consider transport timings

 ex: ~80µs for HPI 16bits with 1024bytes payload with
Linux/Xenomai (GPP) & µCOSII (DSP) on THALES PF

Depends on memory allocator used for exchanges
management (configuration parameter)

Benchmarks: Communication Timings

19 / 19 /
2
0
1
1
/0

5
/2

0

Perspectives

Take full advantage of Model-Driven approach with
MyCCM
Early RT Analysis (e.g usage of OMG MARTE)

Test Component generation

 Use of other CCM capabilities
 Support of Events (with publish/subscribe service)

 Support of additional interaction patterns (Connectors)

 Margins exploitable for further memory footprint
optimizations

 Take advantage of ESSOR architecture and SCA Next
evolutions
 ESSOR IDL profile for DSP & FPGA

 ESSOR MHAL Connectivity

 Optional elementary interfaces in CF::Resource

 Evaluate potential of full MHAL solutions

20 / 20 /
2
0
1
1
/0

5
/2

0

TOOL-AIDED APPROACH

Code

Generation

Buildi

ng

Modeli

ng

COMPONENT BASED
ARCHITECTURE

 Separation of concerns

 Relies on standards

Roadmap
 Common approach for GPP and

DSP teams

 Close to SCA Next preoccupation

 Reuse in ESSOR architecture

 Basis of THALES SDR DSP

Operating Environments

WF Design
 Importance of Software

architecture

 Experience in Real-Time

Embedded Development

Conclusion

Structured

Approach
Portability

Reuse

WF

Design
SDR

Roadmap

21 / 21 /
2
0
1
1
/0

5
/2

0

BACKUP

22 / 22 /
2
0
1
1
/0

5
/2

0

COMPONENT

EXECUTION INFRASTRUCTURE

LwCCM Containers

 Separation of concerns

 Business vs Technical code

 Shield middleware technical concerns to component developer

 Encapsulate common execution requirements

 Activation, port management, persistence, security, transactions, …

 Communicate with middleware (stubs/skeletons), use middleware
services

COMPONENT

COMPONENT

security trace time concurrency

Business Code
Business Code Business Code

23 / 23 /
2
0
1
1
/0

5
/2

0

MyCCM for SDR

An instantiation of MyCCM for SDR on GPP

Automatic generation of SCA resources and deployment

descriptors

 An instantiation of MyCCM for SDR on DSP

Specialisation of the MyCCM for SDR for more constraint

environments

Fast adaptation to architecture requirements

Choices can be postponed:

CORBA or not CORBA

Native (simulation/host) or Target

Fast integration, Easier portability

24 / 24 /
2
0
1
1
/0

5
/2

0

Benchmarks: Components

TEST

COMPONENT

portIn1

portIn2

portOut1

portOut2

short m1();

oneway void m2(in long, in short);

oneway void m1(in string);

oneway void m2(in payload); oneway void m1(in short,in sType, in long);

oneway void m2(in payload);

short m1(inout payload)

long m2(inout short);

TYPES

typedef sequence<char,1024> payload;

typedef sequence<short,10> small_payload;

struct sType{

short _p1;

long p2;

small_payload p3;

};

REFERENCE COMPONENT

ENRICHED COMPONENT

portIn1

portIn2

TEST

COMPONENT

portOut1

portIn3

oneway void m1(in short, in sType, in long);

oneway void m2(in payload);

long m3(in long, in short);

oneway void m4 (in short);

oneway void m1(in long);

void m2(inout small_payload);

portOut2

25 / 25 /
2
0
1
1
/0

5
/2

0

Benchmarks : Timings example

* Memory Partition Allocator

Interaction Type
Same

Thread
Time

local (a1) yes 30cycles (~50ns)

local (a2) yes 20cycles (~33ns)

asynchronous (a1) no 1794cycles(~2,3µs)*

asynchronous (a2) no 1062cycles(~1,77µs)*

synchronous (s1) no 2220cycles(~3,7µs)*

synchronous (s2) no 2240cycles(~3,7µs)*

remote asynchronous (a1) no 3791cycles(~6,3µs)*

remote asynchronous (a2) no 2697cycles(~4,5µs)*

remote synchronous (s1) no 7620cycles(~12,7µs)*

remote synchronous (s2) no 5740cycles(~9,6µs)*

(a1) oneway void pushData_ow(in payload,in sType)

(a2) oneway void doIt_ow(in long, in short)

(s1) void pushData(in payload, inout sType)

(s2) short doIt(in long, inout short)

TYPES

typedef sequence<char,1024> payload;

typedef sequence<short,10> small_payload;

struct sType{

short _p1;

long p2;

small_payload p3;

};

