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Abstract

This article studies different solutions to use the Graph-
ics Processing Units computing power for the Software De-
fined Radio environment GNURadio. Two main solutions
are considered. In a first implementation, which has already
been studied, the GPU is only considered as a fast additional
processor, with specific algorithms implemented. In a sec-
ond implementation, the specific characteristics of the GPU
are taken into account, and the environment runtime is re-
designed to accommodate for the presence of the GPU. In-
stead of using GPU optimized algorithms, this second solu-
tion uses classical algorithms on multiple arrays.

Both solutions are implemented and compared on different
operation types, and on a complete operation sequence. It
is clearly shown that using the second solution can provide
performance improvement, while the first one is inefficient
for SDR applications.
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1 INTRODUCTION

The fast development of wireless networks in the last years
has modified the implementation choices. While network de-
vices used to process the signal were traditionnally imple-
mented as hardware, hard-wired components, the aim now is
to have more and more flexible implementations, in order to
follow the improvements. A possible solution to reach this
flexibility is Software Defined Radio (SDR).

A SDR terminal takes the border between software and
hardware as low as possible. While traditional devices im-
plement all computationally intensive tasks in hardware, thus
pushing the border somewhere in the protocol layers, SDR
devices implement as few operations as possible in hardware,
quickly sampling the signal and using processors to process
this signal. As can be expected, the main limitation for this
promising implementation is the required processing power.
Signal processing operations are usually demanding opera-
tions. While optimizations could be done by designing ded-
icated SDR applications, this would limit flexibility. SDR
environments are thus the preferred option when designing
SDR application.

To cope with the required processing power, General-
Purpose computation on Graphics Processing Units
(GPGPU) is a possible solution. It allows processing
of data at a very high rate, providing a very high computing
power, well suited to image processing algorithms. This
is achieved by using Graphics Processing Units (GPU) as
conventional processing units. GPGPU can increase the
possible throughput, and it can ease the task of associated
General Purpose Processors (GPP), freeing them for other
applications or for protocols.

But benefiting from GPU is not a straightforward opera-
tion. SDR environments are usually designed for CPU archi-
tectures. CPU platforms are task parallel platforms, meaning
that several tasks can be run simultaneously. GPU architec-
tures are Single Instruction Multiple Data (SIMD) architec-
tures, designed to run simultaneously a single instruction on
a large set of data. This mismatch in the computing model
used, as well as the required framework for GPGPU which
leads to high memory transfer overhead and centralized man-
agement, means that deploying an SDR environment on a
GPU platform may not improve performance. The aim of
the work presented here is to define and compare different
possible software architectures for an efficient execution of a
specific SDR environment, GNURadio [1] on the GPU, in or-
der to keep the flexibility and ease of use of the environment,
while benefiting from the computing power of the GPU.

The paper is organized as follows. In Section 2, a presenta-
tion of the GPU architecture is given, as well as the SDR envi-
ronment used, the GNURadio environment, and some exam-
ples of previous works. In Section 3, the different solutions
which were considered are presented. Results for the stan-
dard implementation and for both solutions are presented in
Section 4 and conclusions are finally drawn in Section 5.

2 ENVIRONMENT AND PREVIOUS WORK

2.1 The OpenCL environment

The GPU environment used in this work, Open Computing
Language (OpenCL)[2] is a unified computing environment
standard, published by the Khronos Group, and designed to
enable heterogeneous parallel computing.

OpenCL is based on a hierarchical representation of the
computing platform, as presented in Figure 1. The platform
is divided between a host, usually a classical Central Process-
ing Unit (CPU) and Computing Devices. These computing

Proceedings of SDR'11-WInnComm-Europe,   22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved143



Figure 1. OpenCL platform representation

devices are made of Computing Units (CU), and each of these
units is built from Processing Elements (PE). The PEs are
the basic block of an OpenCL platform. Computing Units
are based on the Single Instruction Multiple Data (SIMD)
model, with all the processing elements executing the same
stream of instructions on a data vector. The OpenCL stan-
dard also allows the Single Program Multiple Data model
(SPMD), in which all the PEs execute the same program, but
are not linked to each others.

Processing in OpenCL is divided in two parts:

• the kernels, which are executed on the Compute De-
vices,

• the host program which is executed on the host, and
which controls the execution of kernels on Compute De-
vices.

The data set on which a kernel must be executed is di-
vided using an index space. A kernel is instantiated for each
of the single element. This instantiation creates the work-
items. Each work-item of an index space executes the same
program. Work-items are then organized in work-groups.
A work-item thus has a global identification number (ID),
in the complete index space, and a local ID in the work-
group. Work-groups are submitted for execution to the Com-
pute Units. Work-items of a work-group are executed on the
PE of the associated Compute Unit. All commands to the
GPU, such as memory transfer requests or kernel executions,
are issued using a command queue.

Possible programming model for OpenCL programs are
Data Parallel or Task Parallel. Data Parallel is the preferred
model, since OpenCL architecture is designed as a SIMD pro-

cessing platform. Task Parallelism is obtained using a single
work-item, with a parallelization over the different CUs.

2.2 GNURadio architecture

The aim of this work is to use OpenCL and its GPGPU
capabilities for a SDR environment. The environment cho-
sen here is GNURadio. GNURadio is a project offering a
complete framework for Software Defined Radio and Signal
Processing applications. A SDR application can be repre-
sented as a sequence of processing blocks, with communi-
cation channels such as FIFOs between each block. These
flowgraphs, as they are called in GNURadio, can be built us-
ing predefined blocks.

GNURadio provides several elements:

• basic processing blocks, with a hierarchical classifica-
tion, and templates to easily develop new blocks. These
blocks are developed in C++,

• a runtime part, comprising a scheduler, communication
channels between the blocks, or a flowgraph interpretor,

• input/output (I/O) libraries, offering interfaces with pos-
sible sources and sinks of the platform, such as the
sound card, or the Universal Software Radio Peripheral
(USRP) and its extensions.

Two possible scheduling methods are actually imple-
mented in GNURadio:

• the first method uses a single process, and switches from
block to block,

• the second method uses one process (thread) per block,
with blocking communication channels.

The main advantage of environments such as GNURadio
lies in the runtime part, and in the flowgraph interpretor. It
also offers a wide variety of existing blocks.

2.3 Previous work

The use of GPU computing for SDR application is not a
new field of research. SDR applications are demanding appli-
cations, with high computing power requirements, and the in-
crease of the offered throughput in wireless standards means
that classical CPU approaches are not able to stand the data
rate anymore.

A first example of an existing solution is given in [4],
in which a hardware platform and software architecture are
given in order to enable GPU computation of SDR applica-
tions. This study is interesting, as it proposes a complete
WiMAX modem implementation, but the software platform
is not GNURadio, and the main aim is to present the global
architecture, not details on GPU management.
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On the implementation side, [3] and [5] propose two com-
plete studies of implementation of SDR on GPU. In [3],
polyphase channelization outside of any unified environment
is studied. Significant improvement can be seen in the results,
but the targetted application is well suited to GPU computa-
tion. In [5], Standard Communication Architecture is studied,
and possible integration of GPP elements in an architecture.
Results are very interesting on large set of samples. The pro-
posed solution of [5] is similar to the Direct Mapping solution
in this study.

The next sections present two approaches to the proposed
problem, and the results of these approaches when compared
to a classical CPU implementation.

3 SOFTWARE RADIO USING OPENCL

3.1 Design of a GNURadio application

A GNURadio application is a set of processing blocks,
linked together using FIFO channels, and can be represented
as in Figure 2. Each block has a processing function, de-
signed to process arrays of values, and to produce values.
An example of a processing block is a N-points Fast Fourier
Transform (FFT). The processing function of the block takes
as inputs N-values arrays, and outputs N-values arrays repre-
senting the FFT of the inputs.

Task 0 Task 1 Task 2

Task 5Task 4

Task 3

IQ Samples

Applications

Figure 2. Example application representation for GNURa-
dio

The FIFO channels are inter-blocks communication ele-
ments. They are designed to be used as links between pro-
cessing blocks, and are managed by the runtime part of GNU-
Radio. This runtime is used to run the processing functions
of the blocks. When the block is initialized, the estimated
number of input values required to produce a given number
of output values is processed. The runtime monitors the fill-
ing of buffers in order to call the processing function when
required.

3.2 Direct Mapping Solution

The aim of this study is to make use of the GPU power in
the GNURadio environment. The first straightforward solu-
tion is the direct application mapping solution. This is the

strategy adopted in [5] for example, and in most previous
studies.

When using the Direct Mapping solution, the execution
environment is exactly the same as in a CPU-only execution,
except that some of the blocks are processed by the GPU.
GNURadio is clearly divided in a runtime part and a pro-
cessing part. Each of the processing block is thus made of
integration in the runtime environment, as well as a process
function used to actually process data.

In a first implementation, the runtime is kept, but the pro-
cess function of the block is modified in order to use the GPU
for processing of data. This means that the GPU is only used
to speed up the actual computation, while all the control is
done on a CPU, which thus becomes the OpenCL host. The
aim of this implementation is to benefit from the GPU power
to speed up atomic operation: specific algorithms are imple-
mented, which make use of the many-cores architecture of the
GPU to have an efficient basic operation. This is represented
in Figure 3.

Figure 3. Direct Application Mapping Solution

The main advantage to this solution is its simplicity. Noth-
ing needs to be changed in the environment. This solution
could basically be implemented in any SDR environment.
The only additional feature required is OpenCL initializa-
tion. It also easily allows hybrid GPU/CPU radio applica-
tions, since communication between the processing blocks is
done in the CPU subsystem, and data is only given to GPU
when needed (there is always a copy in system memory). This
opens the door to the integration of GPU as an additional,
very efficient, processor, but still allows CPU operation when
GPU implementation is inefficient.

This solution induces a very high memory transfer over-
head, since data to be processed must be transfered from the
CPU to the GPU, and the results must be written back. If
the results must be used as inputs to another GPU block, a
new memory transfer must be done. The cost of a memory
transfer in a GPU architecture is such that it might be better
to process even unefficient algorithms on the GPU, in order
to avoid useless memory transfers.

This means that in order to take into account the presence

145



of the GPU into the environment, and to avoid useless mem-
ory transfers, the runtime must be modified. In this modified
runtime, communication channels between the blocks, which
were untouched in the straightforward implementation, are
modified to accomodate for the GPU presence. Four types of
channels are implemented:

• CPU to GPU channels, when source block is run by the
CPU and sink block is run by the GPU,

• GPU to GPU channels, for communication between
GPU blocks,

• CPU to CPU channels, for communication between
CPU blocks,

• and GPU to CPU channels, for communication between
a GPU source block and a CPU source block.

The runtime is subsequently modified, in order to take
these new channels into account. Processing blocks are still
developed using the separation between runtime and process-
ing. The difference between both implementation lies in pro-
cess function implementation. Instead of sending required
data to the GPU, process, and copy the results, the function
is only in charge of activating the kernel, as can be seen in
Figure 4.

Figure 4. Direct Application Mapping Solution with special
buffers

Channels are implemented as mixed CPU/GPU entities.
For CPU to CPU channels, the classical GNURadio buffer
implentation is kept. For GPU to GPU channels, index man-
agement is done in the CPU, while data is kept in the GPU
memory. Transfers between CPU and GPU are done explic-
itly, using a special transfer block. This block does nothing
except the data transfer.

The main advantage of this second implementation is that
no more memory copies are required. Transfer can be done
asynchronously to the GPU memory, and two consecutive
blocks in GPU can keep memory in the GPU instead of trans-
fering data twice. But using this solution, mixed execution of

a single block by a CPU and a GPU is not possible anymore,
and the target of the block must be specified when instantiat-
ing the application.

For both solutions, another important point of this imple-
mentation is that with OpenCL, the bigger the dataset, the
more efficient the GPU becomes, as can be seen in Section 4.
Taking the example of a FFT, it becomes truly efficient when
the FFT is run on 32768 points, which is not common in radio
applications.

3.3 Making GNURadio data parallel

The Direct Mapping solution, while attractive with its sim-
plicity, suffers from drawbacks.

• In order to be efficient, a GPU application must maxi-
mize the use of the GPU. For the previous solution, this
means working on large sets of data, which are uncom-
mon in radio applications.

• While some SIMD processing blocks can benefit from
a GPU implementation, other data-dependant functions
are completely unefficient when executed by a SIMD
processor.

In order to provide a solution to these two points, another
software architecture has been designed, which tries to trans-
form any GNURadio application into a data parallel applica-
tion working on large sets of data. The main idea of this solu-
tion is that, instead of keeping the input by input model, with
OpenCL kernels designed in order to locally optimize a func-
tion, a large number of data are processed simultaneously, by
kernels implementing the complete function, as represented
in Figure 5

Figure 5. Data parallel solution
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This solution implies modification of the runtime and of
the processing blocks. The runtime must be adapted to the ac-
cumulation of data in the inputs, by allocating bigger buffers
for example, or by waiting for more data before processing. It
also implies that the latency may increase. But it has several
advantages.

• It is not necessary to find a GPU-optimized version of
all operations in order to be efficient, since the kernels
implement the same algorithms as on a CPU.

• GPU usage is maximized.

• Even data dependent operations can be processed and
improved, as long as it is not a stream operation. This
means that, as long as the data-dependency characteris-
tic is only true for specific known vectors, it is possible
to run them concurrently. On the contrary, if the data-
dependency is a stream characteristic, meaning that all
the operations will always depend on previous results,
with no reset, then it is not possible anymore.

But memory usage can quickly become a problem, since
the need to store more input may lead to unsufficient mem-
ory space. And depending on the requirements, the latency
induced by this solution may be too high.

4 RESULTS

4.1 Presentation

In order to validate the two approaches, four applications
have been developed and executed:

• a Fast Fourier Transform (FFT), for which efficient
SIMD algorithms exist,

• an IIR, for which no SIMD algorithms exist, due to a
feedback value in the processing,

• a demapper block, to see the effect of GPU on data ma-
nipulation blocks,

• a sequence of all three blocks (mapper, IIR, FFT, iFFT,
IIR, demapper) in order to check the efficiency of the
solution in a "real" environment.

For each of the applications, results are given for CPU
approach, and for the pertinent GPU approaches. The per-
formance indicator used here is the time required to process
100,000 arrays.

The computer used for the experiments is based on an In-
tel Core i5 760, which is a quad core CPU at 2.80 GHz, with
8 MB of cache. The GPU is a NVidia GTS450, which is a
cheap GPU, with 128 cores (processing elements), organized
in four 32 cores multiprocessors (compute units). Core fre-
quency is 738MHz. Available memory for the GPU is 1GB.

The implementation is not yet fully operational. GPU
buffers are not fully implemented in the results presented.
While this is not an issue for single operation experiments,
it has a big impact on the sequence, since for each block, in
order to have correct results, data must be transferred from
the CPU to the GPU and back.

4.2 FFT

The first operation implemented is the FFT. This operation
is one of the most used operation in radio applications. Re-
sults are presented in Figure 6 for small, usual array sizes.
Results show the time in milliseconds required to process
100,000 2N FFT, with N varying from 5 (32 points) to 13
(8192 points).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5  6  7  8  9  10  11  12  13

t
i
m
e
(
m
s
)

N

CPU

OO

DM-1

DM-2

Figure 6. Results for FFT

As can be seen on the results graph, the direct mapping so-
lution is not an efficient solution. Even more surprising, the
version with dedicated buffers between the blocks (DM-2)
is less efficient than the version with explict transfers in the
blocks (DM-1). This is due to the overhead of buffer man-
agement. Since the FFT application uses only one block, the
amount of memory transfer stays the same. The second solu-
tion is useful only when multiple blocks are used. The DM
solution becomes more interesting than the CPU for a FFT
size of 32768 points, which is unrealistic in a radio applica-
tion.

On the contrary, the data parallel solution (OO for overall
optimization) is more efficient than the CPU solution for FFT
less than 4096 points. For a classical 1024 points FFT, the
CPU solution takes 190 ms to process the 105 FFT, while the
GPU solution takes 156 ms to process the same FFTs, which
is a 18% gain.

4.3 IIR

The second application is an Infinite Impulse Response,
which is a data dependant operation, meaning that the result
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for element i of an array depends on the result for element i−
1. Results are not drawn for the Direct Mapping application,
which yields very bad results, since no optimized algorithm
exist for the IIR, and all the IIR computation is done on a
single processing element.
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Figure 7. Results for IIR

The IIR implemented is a fixed size IIR, working on ar-
rays of 2N samples, and no dependency between two arrays.
Once again, results presented in Figure 7 are time results for
100,000 arrays. The GPU solution is also better than the CPU
solution. GPU time for an array of 1024 samples is 151 ms,
while the CPU time is 283 ms, which gives us a 47% gain in
time using the GPU. The decrease of the gain when the size of
the array increases is due to the limited buffer size. When the
size increases, less arrays can be stored in the buffers between
the blocks, which means that the GPU is not fully used. As
an example, the NVidia profiling tool for the GPU shows a
97% GPU use for a 1024 samples array, while this usage falls
down to 51% for a 8192 samples array. If sufficient memory
is available, and big arrays must be processed, increasing the
buffer size increases the gain. Buffer size must be chosen to
be able to store 128 arrays in order to maximize GPU usage.

4.4 Mapping/Demapping

The last single operation is a demapping operation for a
QPSK modulation. The aim of this operation is to map the
received samples with the associated binary signification. In
a QPSK modulation, a sample is used to represent 2 bits. The
demapping operation is not a signal processing operation, it
only involves data manipulation.

Results for demapping of 100,000 arrays of size 2N are
presented in Figure 8. Results for the Direct Mapping solu-
tion are once again disappointing for array sizes below 32768,
and are thus not shown on the Figure. As an example, demap-
ping 100,000 1024 samples arrays using the DM-1 solution
takes around 3 seconds, which is 100 times the time required

by the OO solution.
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Figure 8. Results for demapper

The GPU is once again more efficient than the CPU, with
gains going up to 90% for the 1024 samples array (344 ms
for the CPU, versus 31 ms for GPU implementations). The
efficiency of the GPU for the demapping operation is clearly
shown in these results.

4.5 Sequence

Finally, in order to evaluate the performance of the GPU
in the case of a complete application, all three previous op-
erations are performed on the arrays. Results for the Direct
Mapping solution are not shown, since the efficiency of both
solutions is very bad when compared to the CPU solution (al-
most twice the time for the DM-1 solution, and 1.5 times the
required time for the DM-2 solution).

Results for the OO solution and for the CPU are presented
in Figure 9.
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The CPU solution benefits here from the task parallelism.
It can be seen that results for the complete sequence are sim-
ilar than results for the demapper. The GPU does not allow
task parallelism, thus leading to cumulated processing times.
It is also interesting to notice that timing results include read-
ing test samples from file and writing results to file. Since
the GPU buffer is not fully implemented yet, processing time
includes useless data transfers.

Results still show that the GPU solution is more efficient
than the CPU solution when the array size is lower than 4096
points. When this size is reached, the CPU becomes more ef-
ficient. Gain for 1024 points is 22% (350 ms versus 270 ms).

5 CONCLUSION

This study has shown two possible methods to include
GPU in the GNURadio environment. The direct mapping
method, which uses the GPU as an efficient CPU, with no
real integration in the environment, is unefficient, and yields
worse results than the CPU version. This was the method
discussed in the GNURadio mailing lists.

The new method proposed in this article does not use GPU
specific optimization for the block implementation. Instead, it
focuses on processing several arrays at the same time. Since
radio applications are mainly stream applications, with the
same sequence of operations applied to all arriving samples,
it is possible to extract data parallelism from the application.
The resulting SDR environment performs around 20% better
than the CPU application, using a powerful CPU and a cheap
GPU. These results are expected to become much better when

a fully functional GPU buffer is implemented in the environ-
ment.

Several improvements and discussions are considered
based on this study. First of all, a working GPU buffer im-
plementation is currently under way. Given the early results,
it is expected that processing time for the complete sequence
application can be divided by at least 2 for big arrays. Once
the buffer implementation is complete, the focus of this study
will be integration in an embedded environment, with two
main questions:

• what will the results be in an embedded environment ?

• given the constraints of embedded environments, espe-
cially in terms of power consumption, is the GPU a vi-
able solution ?
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