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Abstract—In Software-Defined Radio (SDR) domain, the en-
ergy consumption is a key aspect. However, the energy consump-
tion is usually determined only during gate-level simulation, when
the processor is designed and the application is mapped. This is
especially true for dynamic reconfigurable coarse-grain array
(CGA) processors used in the SDR where to our knowledge no
energy modeling exists above the gate-level.

In our contribution we propose a flow how to obtain the
energy numbers for opcode activation on different functional
units for different clock frequencies. Then we integrate the de-
veloped model into an instruction set simulator (ISS) to evaluate
energy consumption for the given application for different clock
frequencies. The results allow us to obtain global picture for
different frequencies before the processor is fully synthesized
and evaluate full applications at the ISS level from the energy
perspective already during mapping process.

Compared to our previous work, we obtain the energy per
opcode by simulation of the different heterogeneous functional
units (FUs) using gate-level simulations of physically synthesized
FU. Also, we demonstrate our approach on the wide-SIMD
(256b) heterogeneous multi-threaded instance and state-of-the-art
WLAN 4x4 40MHz application we mapped onto that instance.

I. INTRODUCTION

An SDR (Software Defined Radio) system is a radio com-

munication system in which physical layer components are

implemented on a programmable or reconfigurable platform.

The modulation and demodulation is performed in software

and thus the radio is able to support a broad range of frequen-

cies and functions concurrently. Nowadays, this is especially

attractive because of the soaring chip development cost and re-

spin rate in deep sub-micro era, extremely diversified market

demand for different wireless standards and the fast evolution

of those standards causing short time to market.

The SDR is usually composed of several processing cores.

To reach maximal energy efficiency, it is more efficient to

tune one (or more) cores to a given functionality (such as

digital front-end, baseband, forward error correction) rather

than to make a very flexible core. Various research works such

as [1] have pointed towards optimally adapting the processor to

make an Application Specific Instruction-set Processor (ASIP).

This gives at least an order of magnitude difference in the

energy efficiency compared to a general purpose DSP or RISC

processor and confirms the need for a more specialized and

heterogeneous ASIP solution.

In this paper we focus on energy modeling of major

energy consumption core on the SDR platform, the baseband

engine, which is implemented as dynamic reconfigurable array

processor. Compared to our previous work [2] we model both,

the static and the dynamic energy of the datapath in a more

accurate way and focus on the heterogeneous functional units

(FUs) of our new processor core. We synthesize and analyze

those units from energy perspective for different frequencies

and integrate the resulting model into our instruction-set

simulator (ISS). This allows us to obtain global picture for

different frequencies before the processor is fully synthesized

and evaluate full applications at the ISS level from the energy

perspective already during mapping process.

The rest of the paper is organized as follows. Section II

overviews the state-of-the-art. Section III introduces the dy-

namic reconfigurable array architecture template and its com-

piler and highlights the differences between our new and old

processor instance. Section IV explains in detail the derivation

of the power model for our new instance by obtaining the

power of the opcode on the given FU using physical synthesis

of the FU and power estimation flow at gate level. Section V

provides the results and Section VI concludes our contribution.

II. RELATED WORK

In the domain of compiler and processor exploration frame-

works a lot of frameworks exists at different levels. Some

of the frameworks target high level such as SUIF or Wrap-

IT, other are retargetable compiler frameworks such as GCC

or ACE CoSy. However, only a subset of those frameworks

provides also energy modeling.

Wattch [3] and SimplePower framework, which is based on

Simplescalar [4], enable architectural exploration along with

energy estimation. However, their power models are not geared

towards newer technologies, their parameter range is still too

restricted and are geared towards high performance systems.

These frameworks do not support architectural features impor-

tant for embedded handheld devices such as data parallelism

or SIMD (Single Instruction Multiple Data), clustered register

files, software-controlled memories etc. Most of those features

also occur in the dynamic reconfigurable array processors

we are targeting. Furthermore, the architecture design space

supported by these frameworks is oriented towards processing

subsystems of high-performance computing systems (com-

plementary to our design space) and not towards embedded

systems, which is our main focus.
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Epic Explorer [5] is (Very Long Instruction Word) VLIW

exploration framework, based on Trimaran [6] and supports

energy estimation of the processing system. However, the

architecture design space is limited to general purpose VLIWs.

Industrial tools like Tensilica’s XPRES [7], and Coware’s

Processor Designer [8] provide architectural and compiler

retargetability, but the supported design space is limited to

a restricted template. Some of the industrial players such as

Target’s Chess/Checkers [9] integrated the energy models at

the instruction set level to their frameworks recently. However,

their are targeting customized (Ultra-Low Power) ULP ASIPs

and not embedded Coarse-Grain Array (CGA) architectures.

In the analytical power estimation domain which we are

also targeting in this paper, there exist various research works.

However, [10] is limited to the Lx processor, [11] is limited

to the TI C6x processor, [12] is limited to i486 and Sparc,

even though later it was extended also to other type of

processors [13]. [14], [15] are accurate but limited to ARM

only. The COFFEE framework [16] complements the Trimaran

framework with an energy estimation engine to provide com-

plete, consistent, flexible, fast and accurate power modeling

over a large architectural space with a large amount of state

of the art features. An energy estimator was used in [17] for

exploring different CGA interconnect architectures which is

complementary to our work. In [18] a hybrid functional and

instruction level power model has been proposed. However

it is mainly targeting the embedded general purpose RISC

processors such as ARM. Compared to this work, our approach

is more tightly coupled to a virtual machine simulation and

thus should be more accurate. Moreover it is targeting a very

data-parallel style namely a coarse grain array (CGA) type

of embedded processor with heterogeneous FUs and different

clock frequencies.

III. ADRES ARCHITECTURE AND BOADRES INSTANCE

In this section we explain the basics of our processor

architecture template. Then we compare our previous and

current instance.

A. ADRES architecture template

The ADRES architecture template [19], consists of an

(coarse grain) array (CGA) of basic components, including

functional units (FUs), register files (RFs) and an interconnect

network. The array contains three types of basic components:

FUs, storage resources such as RFs and read-only data mem-

ories, and interconnects that include wires, muxes and busses.

The ADRES architecture is a flexible template that can be

freely specified by an XML-based architecture specification

language as an arbitrary combination of those elements. The

architecture provides also support for multi-threading, hetero-

geneous CGA FUs and multiple memories. The computation-

intensive kernels, typically dataflow loops, are mapped onto

the reconfigurable array by the compiler using a modulo

scheduling technique [20] to implement software pipelining

and to exploit the highest possible parallelism, whereas the

Fig. 1. Architecture diagram of our baseband processor.

remaining code is mapped onto the VLIW processor. Ex-

cept of exploiting instruction-level parallelism with modulo

scheduling, also data-level parallelism is exploited by using

wide-SIMD FUs and task-level parallelism by implementing

the multithreading.

The DRESC compiler tool chain, supporting the architecture

template, consists of the IMPACT C compiler frontend [21]

and of the DRESC compiler backend. IMPACT, a VLIW

compiler framework, profiles and parses the C source code

to an intermediate representation (Lcode), and applies several

optimizations. These include extensive inlining and hyperblock

formation by means of predication to eliminate control flow

from inner loops. Those loops are then mapped onto the

ADRES array mode with a modulo-scheduling algorithm

exploiting the high parallelism of the loop kernels. This array

mapping is fully retargetable, as the target ADRES instance is

described in an XML file that is fed to the compiler together

with the C code of the application. Traditional ILP scheduling

techniques are applied to achieve high performance in the non-

kernel parts of the application by executing them in the VLIW

mode. The DRESC compiler backend generates scheduled

code for both the CGA and the VLIW.

B. BOADRES processor instance

In this paper we focus on power estimation of our new

BOADRES architecture instance (see Figure 1). Similar to

the previous FLAI-ADRES architecture instance [2], there

is also clear separation between VLIW mode (when VLIW

FUs are active) and CGA mode (when CGA FUs are active).

Compared to the FLAI-ADRES where all CGA FUs were

identical, BOADRES has four different types of CGA FUs:

256b vector FUs, 32b scalar FUs, 256b packing FUs, and

256b load/store FUs. Together with VLIW FUs this results

in five different types of FUs (see Figure 1). Similar to FLAI-

ADRES also BOADRES supports multithreading. Compared

to FLAI-ADRES, there are also different types of memories.

Besides the local memory for each thread and global memory

for cross-thread communication that were present also in the

multi-threaded FLAI-ADRES, there are also vector memories

attached to the vector load/store FUs.

93



pack FU

scalar FU

vector FU

vector LD/ST

VLIW FU

13.35%

35.31%

33.77%

11.49%

6.09%

(a) WLAN payload profiling

pack FU

scalar FU

vector FU

vector LD/ST
VLIW FU

13.73%

34.68%

35.78%

15.09%
0.72%

(b) LTE profiling

Fig. 2. Profiling of the opcode occurrence on different types of FUs in the
BOADRES processor for different wireless standards.

The heterogeneous FUs w.r.t. bit-width in BOADRES mean

that energy of each opcode depends on the type of the unit

the opcode was issued. E.g. mov operation has different energy

on 32bit scalar FU and on 256bit vector FU. Thus the energy

does not depend on the opcode only, but also on the FU type

where the code was issued. The FUs of the same type can

have different instructions supported. E.g. some of the vector

FUs might support complex multiplication cmul16, others not.

The energy thus depends on the concrete unit the opcode is

executed on, but for the purpose of this paper we assume that

all the FUs of the same type have the same characteristics

and support the same instruction set. As we will see in the

Section V this is still giving relevant results.

IV. POWER MODEL DERIVATION

In this section we analyze the wireless applications w.r.t.

different opcodes used, then we synthesize the type of FUs

which are mostly active in the wireless applications and

perform power estimation on those units for different opcodes

and arguments and finally we integrate those results in our

ISS.

A. Opcode profiling

Before doing power profiling of different opcodes, we

have to know which opcodes are most used and what is

the distribution across the different types of FU. Thus before

starting with creation of the energy model, we profiled two

wireless application, LTE 2x2 20MHz and WLAN 4x4 40MHz

payload using our Adres Virtual Machine (AVM) Instruction

Set Simulator (ISS). The distribution of the operations across

the different types of FUs is depicted in Figure 2.

As we see from the Figure 2, more than 2/3 of the opcodes

are issued in 256bit vector FUs and 32bit scalar FUs, so

those will be also the FUs that we will profile (especially

because 256bit vector FUs will be power hungry). Less than

1/3 of the opcodes is issued on pack FUs and 256bit vector

load/store FUs. We will not synthesize those FUs for the

energy profiling purpose, but we will estimate those values

based on the synthesized 256bit vector FUs. Only few percent

of the opcodes are executed on the VLIW. For WLAN,

the amount is larger due to much tighter timing constraints

(4µs compared to 500µs in LTE), smaller CGA kernels and

the multi-threading applied. For VLIW FUs we estimate the

power consumption based on synthesized scalar FUs and their

opcodes.

B. Functional unit synthesis

As mentioned in Subsection III-B, the energy of the opcode

depends on the type of the FU the opcode is issued on. Most of

the opcodes are issued on the vector and scalar FUs as depicted

in Figure 2. Thus we decided to focus on those types of FUs

and derive the power consumption of the other types of FUs

based on the synthesis of vector and scalar FU. As mentioned

in Subsection III-B the energy within the same type of FU

can differ based on what type of instruction set is supported

on that FU. In this paper, we assume that for the same type

of FU, the same (maximal) instruction set is supported. We

have synthesized one scalar FU and one vector FU with the

maximal instruction set for different clock frequencies (1GHz,

800MHz and 600MHz) using Cadence RTL Compiler Ultra

physical synthesis [22] and TSMC 40nm standard library.

After the synthesis, we have applied the different opcodes on

the given type of FU and have analyzed both, the leakage

(static) and switching (dynamic) power that is consumed when

an opcode is used. Thus, we can have a detailed view on

the leakage as well as switching power, but in this paper we

work only with the total power, even when breakdown into

leakage and switching power is always possible. The power

does not depend only on the opcode but also on the input

data. Thus we have developed two models, first where the

opcode is analyzed with the random input data, the second

where the opcode is analyzed with the real data from our

AVM ISS. We call the first model RAND power model and

the second one AVM power model. The power numbers for

the AVM power models are lower compared to RAND power

model. This has two reasons; First, the data toggling for the

same opcode when the input data is derived from AVM is

not so large, because of similarity of the data for the same

opcode. Second, not all the bits are toggling for real data.

E.g. for the complex multiplication cmul16 with three source

operands, the first two are the two 32bit complex numbers (in

8 SIMD slots) that will be multiplied, the third operand is the

shift factor applied after the multiplication. The shift factor is

using usually only a few bits and not all 256 input bits of the

third source. On the other hand, in reality the opcodes will be

interleaved with other opcodes, so we assume that the realistic

numbers will be between the RAND and AVM power model.

C. Power estimation

In Figure 3 we see comparison of the RAND and AVM

power model for ten most frequently occurring opcodes in

WLAN 4x4 40MHz payload processing for the vector FU

and the scalar FU for 1GHz. The power is normalized to

most consuming operation power, which is complex conjugate

multiplication ccmul16 on a vector FU. We see large differ-

ence between the vector and scalar operations, e.g. 256bit

complex conjugate multiplication ccmul16 is consuming 6×
more power than the 32bit complex conjugate multiplication

ccmul2. This is less than factor of 8 because of the control

overhead, that both, the vector and the scalar FU have to bear.

We also see big disproportion between the RAND power

model and the AVM power model. As mentioned before, this is
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Fig. 3. Comparison of power (normalized to ccmul16) for different opcodes on different types of FUs (first ten opcodes are for vector FU, last ten for scalar
FU) running at 1GHz when using the random input and input from our AVM ISS.

due to more toggling in the RAND power model input and also

using all 256bits for all three inputs of the FU. The difference

is the biggest one for the operations with shift factors such as

ccmul16, cmul16 or mul16 w as discussed in Subsection IV-B.

D. Integration of the power model into the ISS

After obtaining the power numbers for RAND and AVM

power model for vector and scalar FUs synthesized for 1GHz,

800MHz and 600MHz and deriving the power numbers for

packing, load/store and VLIW FUs we integrated those num-

bers into our AVM ISS. Compared to our previous work for

FLAI-ADRES [2] we derived special energy map for each

type of FU as below:

std::map<unsigned short, std::vector<float> >

energy_map[NUMBER_OF_FU_TYPES];

boost::assign::insert( energy_map[FU_TYPE] )

( OPC , boost::assign::list_of()(POWER_LIST) );

where the POWER LIST is the power list for differ-

ent types of energy (static/dynamic/sum), different power

models (RAND/AVM) and different clock frequencies

(1GHz/800MHz/600MHz) for the given opcode on the given

type of FU. After this addition, our ISS also does provide

information of the power consumed in the given cycle on given

FU based on opcode that is issued in that cycle on that FU.

V. RESULTS

We have used our developed power model integrated into

AVM ISS to provide the power insight on the WLAN 4x4

40MHz payload processing. The results are depicted in Fig-

ure 4 and Figure 5.

In Figure 4 we see the dynamism in the power depending

on the time (clock cycle). We can clearly distinguish regions

with high power corresponding to the CGA mode. First region

is corresponding to CFO compensation, following four regions

representing the four CGA radix loops of 128pt FFT, the

two only slightly higher regions correspond to two CGA

tracking loops running on the scalar FUs and equalization and

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000  1200  1400  1600

P
o

w
e

r 
(n

o
rm

a
liz

e
d

 t
o

 c
c
m

u
l1

6
)

Cycle

Lower bound 1GHz
Lower bound 800MHz
Lower bound 600MHz

Reference 1GHz

Fig. 5. Average power (normalized to ccmul16) for different kernels WLAN
4x4 40 MHz payload for different clock frequencies (1GHz, 800MHz and
600MHz) when using the AVM energy model and the reference of the
CFO estimation and 128pt FFT utilizing the power-flow at gate level (logic
synthesis).

demapping processing being the last two regions. The upper

bound corresponds to the RAND power model, the lower

bound corresponds to the AVM power model. For comparison,

we provided also the reference that is corresponding to running

two individual kernels, namely CFO compensation and 128pt

FFT, on the fully synthesized BOADRES (logic synthesis)

where our model was calibrated towards the logic synthesis of

the fully synthesized BOADRES. The details of the calibration

are out of the scope of this paper, but from comparison with

128pt FFT and CFO compensation we can see that our model

is pretty accurate after calibration.

In Figure 5 we depict the comparison of the power when

comparing the AVM power model for different frequencies.

We have averaged the power over each kernel loop and have

put also the reference for CFO estimation and 128pt FFT

similar to Figure 4. The derived model can be used to obtain
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global picture of the power consumption of the application

and its dynamics as well as the idea of power consumption for

different frequencies before the processor is fully synthesized.

As mentioned before, it allows us also evaluate full appli-

cations at the ISS level from the energy perspective already

during mapping process. To compare power consumption of

BOADRES processor with another SDR baseband solutions is

out of the scope of this paper. It is also rather difficult task,

because the processors have to be designed with the same

technology, the test applications have to be the same and the

results have to be obtained from chip measurements to have

fair comparison.

VI. CONCLUSION

In this paper we presented the derivation of the power

model of our new BOADRES processor architecture and

utilization of the model for obtaining better insight on the

power consumption of wireless application we are mapping

on the processor. The derivation of the model has its clear

steps and can be repeated for any other instance. In our future

work we would like to focus on the derivation of the model

when each FU within the same type has different instruction

set and better calibration of our model.
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