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Abstract—Multiple input and multiple output (MIMO) is one
of the key technologies used in wireless standards like LTE and
WiMaX. Matrix decomposition of the channel matrix in the form
of QR decomposition (QRD) is needed for advanced MIMO
demapping algorithms like sphere decoder. The implementation
of QRD has to be highly efficient due to its computation-
intensive nature. On the other hand, software defined radios
(SDRs) require flexibility in several forms, e.g. support for
different algorithms. The contradictory nature of flexibility and
efficiency requires tradeoffs to be made between them in SDR
development. In this paper, we analyze tradeoffs by using MMSE-
SQRD as a case study. We have implemented two algorithms for
performing SQRD in four different methods with varying degree
of portability, efficiency and reusability. Focus will given on a
library based SDR development approach in our investigations
where constraint aware mapping can be performed with tool
assistance at a high abstraction level.

I. INTRODUCTION

Multiple input and multiple output (MIMO) systems can

provide high throughput by exploiting multi-path propaga-

tion and diversity. It is one of the enabling technologies in

upcoming wireless standards like LTE and WiMax. One of

the highly complex components in a MIMO system is the

MIMO demapper, which separates the superposed received

data streams into the multiple transmitted streams. In order

to simplify and perform MIMO demapping efficiently, several

matrix decomposition methods are used in conjunction with

MIMO detection schemes. Since matrix decomposition repre-

sents a computation intensive component of a MIMO receiver,

its implementation has a direct impact on the over-all system

efficiency and therefore has to be highly efficient. This makes

the implementation of matrix decomposition challenging.

Flexibility, a key feature in software defined radios (SDRs),

is sought in several forms. For example, flexibility in choos-

ing algorithms and their implementation in a SDR hardware

platform can enable the radio to efficiently use, e.g. spectrum

resources, according to the different environmental conditions.

Portability, the ease with which an implementation of a wire-

less standard can be ported to different hardware platforms, is

another form of flexibility. Reusability is a common form for
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enabling flexibility in SDR development. For example, if an

algorithm or implementation can be reused for performing a

different functionality, it can (re)configured/programmed on-

the-fly.

Even though a flexible solution may not always yield the

same performance, e.g. with respect to energy, when compared

to a dedicated solution, the difference can be made tolerable

with careful engineering and application specific optimiza-

tions. A key advantage of reusability is the reduction of the

system development time and time-to-market. Portability can

be significantly increased with reusable components. However,

identifying such reusable components and implementing them

in a flexible and efficient way can be challenging.

Efficiency, which is also a prerequisite for SDRs, can take

several forms. For example, energy efficiency is paramount for

increasing battery life in mobile devices. Area efficiency has

become important, particularly in hand-held devices, due to

the growing need to accommodate more hardware elements.

It is well known that fully flexible hardware architectures,

e.g. general purpose processors (GPPs), are expensive in terms

of area and energy consumption. In order to improve energy

efficiency and at the same time meet the computation needs

of the application, heterogeneous hardware platforms are a

promising solution. Apart from the processing elements (PEs),

the type of implementation on a PE can play a vital role

on efficiency as well. For example, hand-coded assembly

implementation that is optimized for the architecture of a

processor can consume less cycles, by a few orders of magni-

tude, when compared to a generic C implementation. However,

implementation in C has high portability when compared to

assembly.

From the above discussions, it is clear that flexibility

and efficiency are contradictory in nature. Therefore, trade-

offs among them have to be made at every stage of SDR

development. However, in order to make the tradeoff decisions

it is important to quantify the differences in performance. This

requires implementation of an algorithm or a component on

a whole range of PEs, spanning GPPs, dedicated application

specific integrated circuits (ASICs), digital signal processors

(DSPs), field programmable gate arrays (FPGAs), etc. using

generic C, C with intrinsics and hand written assembly (for

programmable processors) and hardware description language
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(HDL) (for FPGA and ASIC). Such a comprehensive investi-

gation is beyond the scope of this paper. One of the main

focus of our investigations is to analyze the flexibility vs.

efficiency tradeoffs while implementing a wireless standard

using reusable algorithmic kernels.

Due to the offer of both portability and efficiency for SDR

development, the library-based Nucleus methodology [1] is

used as the backbone for our investigations. The Nucleus

methodology is based on a standardized library, consisting

of algorithmic computation intensive kernels, Nuclei. The

description of a wireless standard is done using the Nuclei

library as the basis. Due to the standardization of the Nuclei

library, vendors can provide efficient implementations for

Nuclei, known as Flavors, as a part of board support package

(BSP) for a hardware platform. Tools are used for selecting an

implementation from the BSP, that meets the constraints of a

wireless standard like latency. This paper can also be seen as

a case study for identifying a Nucleus, which can be reused

in several standards for performing different functionalities.

The rest of the paper is structured as follows. The system

model that is used for our investigations is explained in

Section II. Our contributions and related work are given

in Section III. The algorithms that were implemented for

performing minimum mean squared error (MMSE) sorted

QR decomposition (SQRD) are explained in Section IV. The

different versions of implementing the MMSE-SQRD algo-

rithms and their building blocks are described in Section V.

Results and observations are presented in Section VI. Finally,

conclusions are drawn.

Notations: A matrix Q is denoted by a uppercase letter,

jth column of Q is indicated by a lowercase letter qj . Qj,k

indicates the matrix element at jth row and kth column. The

subscript in lowercase letter (which itself has a subscript of

uppercase letter) of a matrix QnT ×nR
indicates the dimension

nT × nR of Q (a square matrix has a single subscript). For

example, InT
represents an identity matrix of order nT . A

matrix with a subscript in lowercase letter a indicates a

submatrix Qa of the augmented matrix Q̄. Re{Qj,k} and

Im{Qj,k} indicate the real and imaginary parts of Qj,k

respectively. A complex and real number is represented by the

symbol, C and R respectively. The superscript H indicates the

Hermitian transpose. ‖.‖ denotes the Euclidean norm operator.

The superscripts ˆ and T indicate the estimated value and

transpose respectively.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with nT transmitting

and nR receiving antennas. The received nR × 1 dimensional

signal vector y can be expressed as

y = Hs + n (1)

where H is the nR × nT channel matrix, s is the nT × 1
transmitted signal vector and n is the nR × 1 noise vector

with zero mean and variance 1
2σ2

n respectively.

MMSE solution, which takes the noise in the system into

account for estimating the transmitted signal vector at the

receiver side, offers better bit error rate (BER) performance

when compared to zero forcing (ZF) solution (see Figure 1).

Therefore, this paper considers a MMSE solution for imple-

mentation. The channel matrix H has to be extended to the so

called complex-valued augmented channel matrix H̄, which is

defined as

H̄ =

[

H
√

nT

Es
σnInT

]

(2)

where Es is the transmitted signal power. InT
denotes a

nT × nT -dimensional identity matrix. The inverse of the

complex augmented channel matrix leads to the estimation

of the transmitted symbol vector ŝ.

ŝ = H̄−1

[

y

0nT

]

(3)
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Fig. 1. Uncoded BER performance of a 4×4 MIMO system using 16QAM
modulation for different MIMO preprocessing schemes

A. MIMO Processing

One of the most processing intensive blocks in the MIMO

receiver is MIMO processing (also mentioned as MIMO

demapping), which reverses the channel effects in order to

recover the transmitted stream from the received superposed

data streams. Figure 2 illustrates the block diagram of MIMO

processing. The functionality of MIMO processing can be

separated into MIMO preprocessing and MIMO detection. The

functionality of the preprocessing block depends on the MIMO

detection scheme. MIMO detection schemes can vary from

the simple linear detection method to the advanced methods

like sphere decoder (SD). Figure 1 illustrates the difference in

BER performance between successive interference cancelation

(SIC) and depth first, sphere decoding scheme.
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Fig. 2. Block diagram of the MIMO processing based on QRD

B. MIMO Preprocessing

For performing MIMO detection using the linear technique,

the preprocessor can compute the matrix inversion of H. Since

advanced MIMO detection schemes like SIC and tree-based

SD need the QR decomposition (QRD) of the channel matrix

H, the preprocessor computes QRD while using them.

Implementation of preprocessing block can be critical for

wireless standards that support very high throughput and

therefore should be highly efficient. To illustrate this point,

let us consider two scenarios in LTE standard. Assuming a

maximum speed of the mobile handset as 350 km/hour and

a carrier frequency of 2.5 GHz, the coherence time is given

by 1.2 milli-second (ms) [2]. With 1200 data carrying sub-

carriers, time to perform the QRD of H belonging to each

sub-carrier is: 1.2 ms / 1200 = 1 micro-second (µs). For a

slightly relaxed scenario with the speed of mobile handset as

45 km/hour (coherence time of 10 ms) and other conditions

being the same as above, the maximum time to perform QRD

is: 8.3 µs. In order to meet such low timing, implementation

of MIMO preprocessing must be highly efficient making it

challenging.

As shown in Figure 1, sorting the channel matrix before

performing QRD improves BER performance significantly,

resulting in the so-called SQRD. We have considered only

SQRD algorithms in this paper. As 2 × 2 MIMO is of

reasonable complexity and is proposed for LTE to achieve

a peak downlink download rate of 150 Mbps, we have not

considered higher order MIMO systems for implementation

in this paper. Moreover, most of the observations made from

our results are general in nature and applicable to higher

order MIMO systems as well. It is important to note that

one-time full-column sorted QRD (OTSQRD) technique in a

4× 4 MIMO system becomes fully sorted technique, referred

as SQRD, in a 2 × 2 MIMO system.

III. CONTRIBUTIONS AND RELATED WORK

In this paper, we have implemented two algorithms, mod-

ified Gram Schmidt (MGS) and Givens rotation (GR) for

performing MMSE-SQRD. The GR algorithm is implemented

in several ways that are based on algorithms and components

which are highly reusable. For example, the coordinate rotation

digital computer (CORDIC) algorithm, which has been used

for implementing GR, can be used for realizing several other

functionalities like phase correction [3]. Due to the nature of

implementation (without flexibility), MGS can be used as a

dedicated solution in this paper and can be used for comparing

the performance of the flexible implementations of GR. The

Texas Instruments C64x+ DSP is used as the PE for our

analysis. For analyzing the portability vs. efficiency trade-

offs, all the implementation-variants (mentioned as variants

in this paper) have been realized in floating-point C, fixed-

point C, fixed-point C with intrinsics and hand-optimized

Very Long Instruction Word (VLIW) assembly. This includes

both 16-Bit and 32-Bit implementations for analyzing different

input/output (I/O) data-width. Due to the high computational

complexity in performing QRD, it serves as a good case study

for our analyses on flexibility vs. efficiency tradeoffs.

Several methods such as GS-, LDL-, LR-, LU-, QR- and

Jacobi singular value decomposition (SVD) can be used for

performing matrix decomposition. Among them, QRD is a

popular candidate for MIMO preprocessing. This is due to

the necessity for QRD of the channel matrix in some ad-

vanced MIMO detection schemes like SD. Three most popular

algorithms for implementing a QRD are: the Householder

reflections algorithm [4, 5], the MGS algorithm [6, 7] and the

GR algorithm [8, 9]. As we are considering only the MGS and

GR algorithms, our focus is restricted to only these algorithms.

Numerous ASIC solutions have been published for im-

plementing QRD [10–13]. Authors in [11, 14] describe a

MIMO processing VLSI architecture on GR based QRD.

Both architectures use the CORDIC algorithm. The tradeoffs

between finite word length precision, which is determined

by the number of CORDIC iterations, and latency has been

investigated in [11]. Similarly, VLSI architectures based on

MGS for QRD are presented in [6, 15, 16].

Several decomposition methods have been implemented on

FPGAs as well [17–20]. The performance differences between

the QRD algorithms, due to the differences in the fixed-

point implementations, can be clearly seen in the mentioned

publications.

QRD implementations on both floating- and fixed-point

DSPs exist. The authors in [21] have analyzed the performance

differences of numerical algebra algorithms between imple-

mentation in a fixed-point DSP, using TI C64x+ and a floating-

point DSP, using TI C67x+. Several matrix decomposition

methods like SVD, Cholesky, LU, QRD and Gauss-Jordan

have been implemented on a floating-point TI 6713 DSP and

analyzed with respect of computational complexity, latency

and memory requirements in [22].

Most of the above works have predominantly focused on

developing efficient implementations of matrix decomposition

algorithms for MIMO receivers. Though algorithms have been

implemented after making complexity and numerical stability

comparisons, the analysis on flexibility vs. efficiency tradeoffs

which is essential for SDR development is missing. Further-

more, reusability and portability investigations are missing as

well. This paper tries to fill these gaps by analyzing and

implementing the MGS and GR algorithms for performing

MMSE-SQRD. In order to automate SDR development, we

lay focus on the aspects that are important for tool assistance

throughout our investigations.
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IV. ALGORITHMS

The MMSE-SQRD of a complex augmented channel matrix

H̄ using the MGS [23] and sequence of GRs is presented

in this section along with the computational complexity for

a 2 × 2 MIMO system. The modifications for performing a

one-time full column sorting before executing QRD which is

equivalent to a full iterative sorting for a 2× 2 MIMO system

are highlighted.

A. MMSE-SQRD based on modified Gram-Schmidt

The MMSE-SQRD operation based on the MGS algorithm

is listed in Algorithm 1. The augmented complex-valued

channel matrix H̄ is assigned to Q̄ matrix, R is initialized

with a zero matrix, 0nT
and the permutation matrix P with

InT
. First, the column norm vector α of each column in Q̄

is calculated (lines 1 to 3). Next, a full column sorting is

performed. The column q̄i with the smallest squared l2-norm

is processed first. Finally, the actual QRD is done as shown

from lines 7 to 14 in Algorithm 1.

The diagonal element Rj,j is calculated as shown in line 8

and is used for dividing the column q̄j (line 9). The upper

diagonal elements in row j of R are computed according

to Rj,k = q̄H
j q̄k, where k = j + 1, j + 2, ..., nT . In each

sub-iteration, column qk is updated according to line 12 in

Algorithm 1. The MGS algorithm executes the QRD in nT

steps, with the result as shown in Equation 4.

H̄ = Q̄RP
T

=

[

Qa

Qb

]

RPT (4)

Input: Q̄ = H̄,R = 0nT ×nT
,P = InT

1: for i = 1, 2, ...nT

2: αi = ‖q̄i‖
2

3: end

4: for i = 1, 2, ...nT

5: sort columns in Q̄ and P, corresponding to norm α
6: end

7: for j = 1, 2, ...nT

8: Rj,j =
√

q̄H
j q̄j

9: q̄j = 1
Rj,j

· q̄j

10: for k = j + 1, j + 2, ..., nT

11: Rj,k = q̄H
j q̄k

12: q̄k = q̄k − Rj,kq̄j

13: end

14: end

Output: Qaj,i = Q̄j,i with j = 1, 2, ...nT , i = 1, 2, ...nR

Alg. 1: MMSE One-Time-Sorted QRD based on MGS

The MGS algorithm is mainly based on multiplication

(C×C and C×R), inverse and square root operations. Table I

illustrates the count of basic operations in performing one

MMSE-SQRD operation using MGS algorithm for a 2 × 2
MIMO system.

Operation Count

SQRT 2

INV 2

C × C 9

R × C 5

TABLE I
OPERATION COUNT FOR PERFORMING MMSE-SQRD USING MGS

ALGORITHM IN A 2 × 2 MIMO SYSTEM

B. MMSE-SQRD based on Givens rotations

The MMSE-SQRD operation performed using a series of

GR is listed in Algorithm 2. Initialization of Z is done

according to Equation 5. Z is a compound matrix of the

augmented complex-valued channel matrix H̄, an nT × nT -

dimensional identity matrix and a zero matrix in the lower

right section of matrix Z. The right side of the Z matrix is used

for concatenation of the GRs to form the unitary Q̄ matrix.

The GR algorithm upper triangularizes the left half of matrix

Z. Permutation matrix P keeps track of the sorting.

Z(0) =

[

H InT
√

nT

Es
σnInT

0

]

(5)

where Z has the dimension of (nR +nT )× (nT +nR). The

outcome of the GR algorithm after the last iteration N is

Z(N) =

[

R QH
a

0 QH
b

]

(6)

The column norm vector α of H̄ is calculated in lines

1 to 3 of Algorithm 2. A full column sorting is executed

between lines 4 and 6. The procedure for QRD is illustrated

from line 7 to 10. The MMSE-SQRD operation using GR

algorithm computes the Q̄ and R matrices in nT steps. In

each step, a series of GR is computed and multiplied with Z

to eliminate the j+nR, i+nR−1, ..., i+1 rows of zi. In other

words, each rotation zeros an element in the subdiagonal of

the given matrix, forming an upper-triangular R matrix. The

concatenation of all applied GR forms the unitary matrix Q̄. In

each step, the rotation is only executed on two specific rows.

The complex-valued matrix processing using GR is an

extension of the real-valued matrix processing and can be

separated into two operations: C → R and R → 0. C → R

operation transforms a complex matrix entry Zp,k from the

complex plane into the real plane. The rotation matrix θC of

C → R operation is given by

θC(p, φ) =

[

1 0
0 e−iφ

]

p
(7)

p

with rotation angle

φ(p, k,Z) = − arctan

(

Im{Zp,k}

Re{Zp,k}

)

(8)

θC(p, φ) is a 2-dimensional identity matrix with e−iφ at
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Input: Z = Z(0),P = InT

1: for i = 1, 2, ...nT

2: αi = ‖h̄i‖
2

3: end

4: for i = 1, 2, ..., nT

5: sort the first nT columns in the first nR rows of Z(0)

and P, corresponding to α
6: end

7: for j = 1, 2, ..., nT

8: perform a series of GRs, θu such that rows j +
1, ..., nR + nT of column zj become zero

9: Z = (
∏inR

u=(j−1)nR+1 θu)Z
10: end

Output:

Rj,i = Zj,i with i, j = 1, 2, ..., nT

QH
a j,i = Zj,i+nT

with j = 1, 2, ..., nT , i = 1, 2, ..., nR

Alg. 2: MMSE One-Time-Sorted QRD based on GR

position p, p. The elimination of real valued matrix elements

is performed by R → 0 operation. The rotation matrix for

R → 0 operation is given by

θR(q, p, φ) =

[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]

q
p

(9)

q p

with rotation angle

φ(q, p, k,Z) = − arctan

(

Re{Zq,k}

Re{Zp,k}

)

(10)

Both C → R and R → 0 operations can be further

separated into basic vectoring and rotation operations. The

vectoring operation rotates a complex value into the real

plane and provides the rotation angle. In other words, the

vectoring operation performs the computation of the rotation

angle (shown in Equation 8). Furthermore, it obtains the angle

needed for rotating the real valued matrix elements (shown in

Equation 10).

The rotation operation rotates one complex value into an-

other by a specific angle. It is important to note that the

rotation operation has to be performed, using the rotation

matrices 7 and 9, on the other entries in the rows of Z which

are affected by C → R and R → 0 operations. Table II lists

the required number of these basic operations for performing

MMSE-SQRD on a 2 × 2 MIMO system. Note that the GR

algorithm can be easily parallelized, however, it needs a higher

number of operations when compared to MGS algorithm for

performing MMSE-SQRD.

V. IMPLEMENTATIONS

The building blocks, which have been reused for different

variants of implementation, are first presented in this section

followed by the variants themselves.

Basic Operation Count
Vectoring Rotation

C→ R 4 7

R→ 0 4 16

TABLE II
NUMBER OF BASIC OPERATIONS FOR PERFORMING MMSE-SQRD USING

GR ALGORITHM IN A 2 × 2 MIMO SYSTEM

A. Building Blocks

1) TI IQMath Library: In order to increase the implemen-

tation efficiency and decrease the time-to-market, TI provides

IQmath library [24] with implementations of well-known

mathematical functions for the C64x+ DSP. This library is

a collection of mathematical 32-Bit fixed-point functions.

Table III lists the functions from the IQmath library that are

used in our MMSE-SQRD implementations.

Algorithm Name Processing time
in cycles

MGS
IQNsqrt 79
IQNdiv 73

GR
IQNsin 56
IQNcos 54

IQNatan2 118

TABLE III
LIST OF USED FUNCTIONS FROM THE IQMATH LIBRARY

The same functions were used for both 16-Bit and 32-Bit

implementations, except inverse and square root functions.

Hand written optimized implementations of these two func-

tions, which gave a better performance when compared to

the 32-Bit IQmath library functions, were used for 16-Bit

implementation.

2) CORDIC: The CORDIC algorithm is versatile algorithm

widely used in digital signal processing applications. Typically,

it is used for performing a vector pseudo-rotation of a given

two-dimensional vector in a sequence of micro iterations with

discrete step size. One advantage of the CORDIC algorithm

is that it can be implemented by employing, predominantly,

shift and add operations.

CORDIC

Kernel

CORDIC

Vectoring

Preprocessing

CORDIC

Vectoring

Postprocessing

Fig. 3. Implementation of CORDIC vectoring

Figures 3 and 4 show the implementation of vectoring and

rotation operations using CORDIC. n denotes the number of

applied CORDIC iterations and k represents the scaling factor

with which the final result is multiplied. The rotation angle is

marked as φ.

Note that the CORDIC implementation in the rotation mode

can be modified for computing sine and cosine values of a
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CORDIC

Kernel

CORDIC

Rotation

Preprocessing

CORDIC

Rotation

Postprocessing

Fig. 4. Implementation of CORDIC rotation

given rotation angle φ, it is denoted as sincos implementation

in this paper.

B. Variants of Implementation

The different variants for implementing the algorithms are

presented in this section. Highly portable implementations are

done in floating-point and fixed-point using generic C. Both

16-Bit and 32-Bit versions have been implemented in the

fixed-point format. Highly optimized VLIW code has been

hand-written in assembly suiting the DSP architecture. Since

the implementations of the MMSE-SQRD algorithm using

MGS algorithm are straight forward and follows exactly the

same procedure as shown in Algorithm 1, it is not discussed

here. MMSE-SQRD implementation using GR provides more

variety in implementation. Three such variants are:

1) GR-Plain: Implementations denoted by GR-Plain use

the IQmath library to execute GRs. As shown in Figure 5,

implementations of the trigonometric functions (IQNatan2,

IQNsin and IQNcos) from the IQmath library are used to com-

pute the rotation angle for the GR, mentioned in Equations 8

and 10. The rotation operations are executed using complex

multiplication operations.

IQNatan2

IQNsin

IQNcos

Complex

MPY

Complex

MPY

Fig. 5. Implementation of GR using the IQmath library

2) GR-CORDIC: Implementations denoted by GR-

CORDIC use only the CORDIC kernel for the vectoring and

rotation operations in order to perform a GR. As illustrated in

Figure 6, the CORDIC implementation in vectoring operation

computes also the rotation angle, which is further applied for

performing rotation operations using the CORDIC kernel.

CORDIC

Vectoring

CORDIC

Rotation

CORDIC

Rotation

Fig. 6. Implementation of GR-CORDIC using only the CORDIC kernel

3) GR-Hybrid: In order to avoid the trigonometric opera-

tions which consume several cycles in the GR-Plain implemen-

tation (see Table III) and CORDIC rotations, which consume

more cycles when compared to complex multiplications (see

Tables V and VIII), the GR-Hybrid variant is implemented.

The vectoring and sincos building blocks, using CORDIC

kernel, are used for computing the rotation angle for GR. Fast

complex multiplications are used for executing the rotation

operation. Figure 7, depicts the block diagram of the hybrid

implementation.

CORDIC

Vectoring

CORDIC

SinCos
Complex

MPY

Complex

MPY

Fig. 7. Implementation of GR-Hybrid using the CORDIC kernel and complex
multiplications

VI. RESULTS

In this section, performance of the implementations for

performing MMSE-SQRD in terms of BER and processing

time (using cycle count) are presented.

A. BER

The floating-point MMSE-SQRD implementations are used

as a reference for comparing the BER performance of fixed-

point implementations. For all BER simulations, a i.i.d.-type of

channel matrix is used. SNR in decibels (dB) is the ratio of the

average energy per transmitted constellation symbol vector and

the AWGN noise with zero mean and variance σ2
n. The channel

matrix entries are distributed according to CN (0, 1). The 2×2
MIMO system employs two spatial separated streams with

QPSK modulation using Gray mapping and non-systematic

{171, 133}8 convolutional code with a code rate of r = 1/2.

Each carrier is used for data symbols. Perfect channel and

noise estimation have been assumed. SIC is used as the MIMO

detection scheme for all simulations.
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Fig. 8. Coded and uncoded BER for MGS and GR-plain implementations
with 16-Bit and 32-Bit I/O data-width

Figure 8 shows the BER results of both 16-Bit and 32-

Bit implementations using the MGS and GR-Plain variants.
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Figure 9 illustrates the BER performance of the implementa-

tion variants using CORDIC, namely GR-CORDIC and GR-

Hybrid. Note that the Q format1 has been adjusted in the

implementation to achieve closer to floating-point performance

for all the variants of implementation. Therefore, performance

differences are minimal between these variants. The applied Q

formats for the 16-Bit and 32-Bit variants are the following,

MGS: Q4.11 and Q5.26; GR-Plain: Q2.13 and Q5.26; GR-

CORDIC and GR-Hybrid: Q3.12 and Q3.28.
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Fig. 9. Coded and uncoded BER for CORDIC based implementations with
16-Bit and 32-Bit I/O data-width for different CORDIC iterations

B. Processing Time

For all the measurements in this section, the TMS320C6000

C Compiler v6.08 with ”-o3 -pm” options has been used.

Program code and data are stored in L1RAM, with caches en-

abled. Table IV presents the processing time in terms of cycles

consumed by the floating-point and fixed-point implementa-

tions of the MGS and GR-plain variants. The cycle counts for

CORDIC based implementation-variants, with varying number

of CORDIC iterations, are presented in Tables VI and VII.

Note that only the best case cycle counts are presented in all

the tables.

Cycle count
Implementation MGS GR-Plain

Float C 11126 89536

C 32 457 1974

C 16 443 1917

ASM 32 410 1906

ASM 16 231 1762

TABLE IV
PROCESSING TIME IN CYCLES FOR PERFORMING MMSE-SQRD USING

THE MGS AND GR-PLAIN IMPLEMENTATIONS

1Q format represents the fixed-point number format where the number of
fractional bits and integer bits is specified. For example, Q2.13 represents a
16-bit number with a sign bit, 2 integer bits and 13 fractional bits.

Clock cycles taken by the CORDIC implementations have

been divided into three parts: preprocessing, CORDIC kernel

and postprocessing. Cycles taken by the CORDIC kernel

depends on the number of CORDIC iterations. Total number

of cycles for executing a CORDIC operation can be given by:

lV ec, Rot, SinCos =lpre + lk · nco + lpost (11)

lV ec, lRot and lSinCos indicate the total number of cycles

consumed for performing vectoring, rotation and sincos oper-

ations respectively (described in Section V-A2). nco denotes

the number of CORDIC iterations. lpre, lk and lpost represent

the number of clock cycles for preprocessing, CORDIC kernel

and postprocessing respectively. Table V outlines the number

of cycles consumed for performing these operations.

Kernel Vectoring Rotation Sine Cosine
lk lpre lpost lpre lpost lpre lpost

Float C 493 372 372 348 348 348 496

C 32 8 38 52 38 52 38 52

C 16 8 25 29 24 25 24 26

ASM 32 6 14 16 18 20 18 20

ASM 16 6 12 14 16 15 16 15

TABLE V
PROCESSING TIME IN CYCLES FOR IMPLEMENTING THE BUILDING

BLOCKS DESCRIBED IN SECTION V-A2, SEPARATED INTO PRE-,
POST-PROCESSING AND CORDIC KERNEL

CORDIC iterations (nco)
Impl. 2 4 6 8 10

Float C 45544 80764 115130 149642 184158

C 32 3243 3739 4235 4731 5227

C 16 2340 2855 3338 3830 4327

ASM 32 1759 2134 2500 2878 3247

ASM 16 1481 1855 2227 2600 2972

TABLE VI
PROCESSING TIME IN CYCLES FOR PERFORMING MMSE-SQRD USING

THE GR-CORDIC IMPLEMENTATION, (lGR−CORDIC )

CORDIC iterations (nco)
Impl. 2 4 6 8 10

Float C 33677 51515 68807 86082 103353

C 32 1684 1940 2199 2452 2708

C 16 1374 1632 1886 2142 2398

ASM 32 1137 1330 1521 1718 1904

ASM 16 953 1145 1337 1529 1721

TABLE VII
PROCESSING TIME IN CYCLES FOR PERFORMING MMSE-SQRD USING

THE GR-HYBRID IMPLEMENTATION, (lGR−Hybrid)

Equations for estimating the cycle counts while using GR-

CORDIC and GR-Hybrid implementations are given in Equa-

tion 12 and 13 respectively.
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lGR−CORDIC =lSort + nV ec · (lV ec(nco) + loa)+ (12)

+ nRot · (lRot(nco) + loa)

lGR−Hybrid =lSort + nV ec · (lV ec(nco) + lom)+

+ nSinCos · (lSinCos(nco) + lom)+ (13)

+ nCMPY · (lCMPY )

lSort represents the processing cycles for performing one-

time sorting (which is a full sorting in a 2 × 2 MIMO

system). lV ec, lRot and lSinCos indicate the cycles consumed

for vectoring, rotation and sincos operations respectively.

lCMPY denotes the average cycle count for performing a

complex multiplication. nV ec, nRot, nSinCos and nCMPY rep-

resent the number of vectoring, rotation, sincos and complex

multiplication operations. The number of required complex

multiplications is the sum of all rotations listen in Table II.

The factors loa and lom mark the overhead due to the address

and memory & address operations respectively. Note that the

cycle counts for the implementations using CORDIC depend

on the number of CORDIC iterations. The processing time

taken by the constant items is presented in Table VIII.

lSort lCMPY loa lom

32-Bit 151 6 4 7

16-Bit 50 5 1 9

TABLE VIII
PROCESSING TIME IN CYCLES FOR CONSTANTS

C. Discussion

Moving from a floating-point C implementation to a highly

optimized assembly code brings the most improvement by

a factor of 48 in MGS and the least improvement by a

factor of 31 in GR-CORDIC implementation (for 2 CORDIC

iterations). The maximum and minimum reductions in terms of

cycle count when moving from a floating-point to a fixed-point

implementation are noticed in GR-Plain (by a factor of 45) and

GR-CORDIC (by a factor of 14) (for 2 CORDIC iterations)

respectively. In fixed-point implementations, maximum and

minimum difference between C 32 and ASM 16 are found

in MGS (by a factor of 2) and GR-Plain respectively (by a

factor of 1.1), other implementations vary between the factors,

1.6 and 1.7. Even with 4 CORDIC iterations, the minimum

difference between MGS and GR based implementations is

found to be a factor of 5 (while using GR-Hybrid). When we

compare with GR-CORDIC, the difference rises to a factor of

8 for 4 CORDIC iterations and almost by a factor of 10 for

6 CORDIC iterations, which is a more fair comparison when

considering BER performance. However, one of the key draw-

backs of the SQRD implementation using MGS algorithm is

the bad numerical stability, predominantly due to the division

operation resulting in a high dynamic range. This results in a

degradation in BER performance at higher dBs, which can be

noticed in MGS 16-bit implementation (Figure 8). Moreover,

the GR algorithm can be easily parallelized. This makes it

attractive for VLSI implementations.

When the C64x+ DSP is operated at the maximum clock

frequency of 584 MHz, 16-Bit and 32-bit assembly imple-

mentations of MGS algorithm need only 0.39 µs and 0.7 µs

respectively for performing a SQRD. Among the GR based 16-

Bit assembly implementations, GR-Plain, GR-CORDIC and

GR-Hybrid (both with 6 CORDIC iterations) need 3 µs, 3.8 µs

and 2.3 µs respectively for one SQRD operation. From the pro-

cessing time, it can be clearly seen that only the fixed-point C

and assembly implementations of the MGS algorithm can meet

the timing constraints while considering the most demanding

scenario of 1 µs for one SQRD operation in LTE. However,

other 16-Bit assembly implementations become attractive for

other scenarios that are less demanding, e.g. lower number

of data carrying sub-carriers, lower speed of the mobile set,

etc. For example, in the second scenario described for LTE in

Section II-B, CORDIC based implementations can easily meet

the timing constraint of 8.3 µs and can be more attractive due

to the reusability.

Our results show the amount of performance that needs

to be sacrificed when going for flexible implementations.

Though, the MGS algorithm does not offer the same amount

of flexibility in terms of implementation-variants like GR

algorithms and is numerically unstable, it is very suitable

for DSP architectures. On the other hand, SQRD implemen-

tation using CORDIC offers full flexibility, where CORDIC

iterations can be varied depending on the need. Moreover,

CORDIC algorithm can be reused for implementing several

other functionalities, like shown in [3].

Our analysis has highlighted that merely increasing porta-

bility is not a solution for SDRs, particularly for new standards

that demand high performance. Performance requirements

and energy efficiency have to be considered by all means.

However, this will decrease portability when adopting tradi-

tional approaches for SDR development. This calls for more

sophisticated SDR development approaches.

Library based approaches are highly desirable for increasing

reusability in system development. However, in order to in-

crease portability and efficiency, the components of the library

have to be standardized for which efficient implementations

can be provided by vendors for a PE [1]. Moreover, the

components of a library should be independent of wireless

standards and must be reusable. We have shown that using

algorithmic kernels, like CORDIC, can enhance reusability and

offer more flexibility in implementations. At the same time,

they can be implemented efficiently as well. Enhanced versions

of the implementations using the algorithmic kernel, suiting

architecture of a PE, as highlighted by GR-Hybrid implemen-

tation, can always be implemented for better performance, if

needed. Still, portability effort is considerably low.

The architecture of a PE plays a huge role in reducing

processing time and increasing energy efficiency. This has

been highlighted by more DSP friendly MGS algorithm com-

pared to GR. Therefore, extreme care must be taken while
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”mapping” an algorithm onto a PE, particularly while using

heterogeneous hardware platforms. This in turn highlights the

need for quick ”mapping” exploration at a high abstraction

level, presumably at component level, for reducing the time

needed for performing the exploration. We have derived

equations that accurately estimates the cycles which could

indeed can be used by tools to perform mapping exploration

automatically.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the analysis on flexibility

vs. efficiency tradeoffs that need to be made while developing

SDRs by using the computation intensive MMSE-SQRD,

which is widely used in MIMO receivers, as a case study. Two

algorithms for performing SQRD were investigated and effi-

ciently implemented in several versions. Flexible versions of

implementations with varying degree of reusability, portability

and efficiency have been implemented. Though the dedicated

implementations differ in processing time by good margin

when compared to flexible implementations, efficient imple-

mentations with reusable algorithms can still provide flexibility

and can be used in scenarios with tight constraints, like

latency. Accurate equations which can be used for performing

constraint-aware mapping at a high abstraction level with

tool-assistance have been derived. As outlook, the analysis

of flexibility vs. efficiency tradeoffs can be continued by

implementing more computation-intensive wireless physical

layer algorithms on different hardware architectures.
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