

# Approach to Solve the AGC API Issue in the Tactical SDR Domain

**A Waveform Provider Perspective** 

Security and mobility in a networked world.



#### Scope

#### Content

- Tactical Radio Scenario
- AGC Principle in Legacy Receiver
- AGC Principle in SDR Receiver
- SDR AGC Challenges
- WFA View on AGC
- AGC API Concept
- AGC API Summary
- Conclusion



#### **Tactical Radio Scenario**

#### **Near-Far Situation**

# I X₁

#### **Dynamic Range Example**

Long Antenna Distance

- Tx Power:
  - 40 W: 46 dBm
- Rx Sensitivity Threshold: 0
  - 0.3 µV: -114 dBm
- Path Loss at 2 m distance
  - 16 dB
- Dynamic Range:
- 144 dB

# Short Antenna Distance Rx $Tx_2$

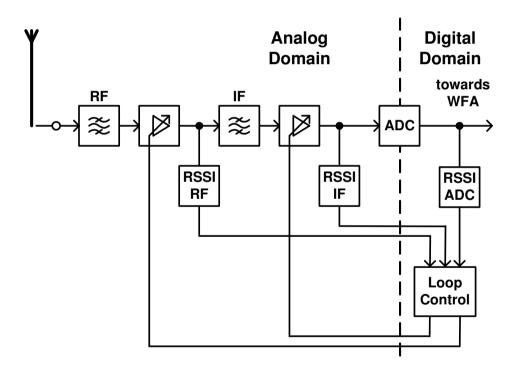
**Extraordinary Rx Dynamic Range Requirements** 

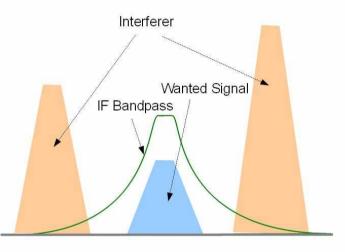
#### THALES

Title of presentation: Approach to Solve the AGC API Issue in the Tactical SDR Domain 27/06/11

Communication No uplink/downlink 0

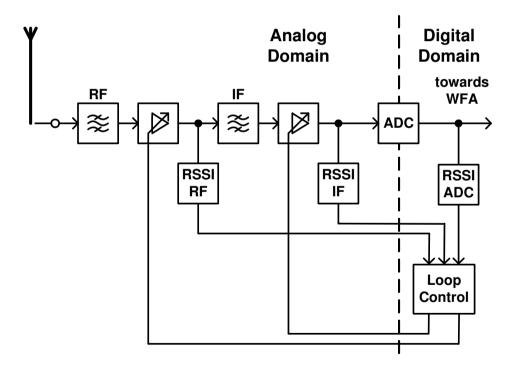
## Collocated

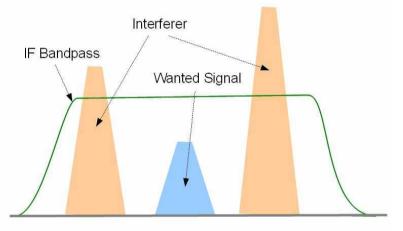

Minimum distances: 0


- **Peer to Peer**
- frequency spacing

### **Transmitters**

few meters


#### **Generic AGC behavioural model**






- AGC loop dynamic optimized to
  - waveform dynamic behaviour
  - channel dynamic due to fading
    - dependent on relative Tx Rx speed
    - and/or reflectors
- ADC level variation rather limited

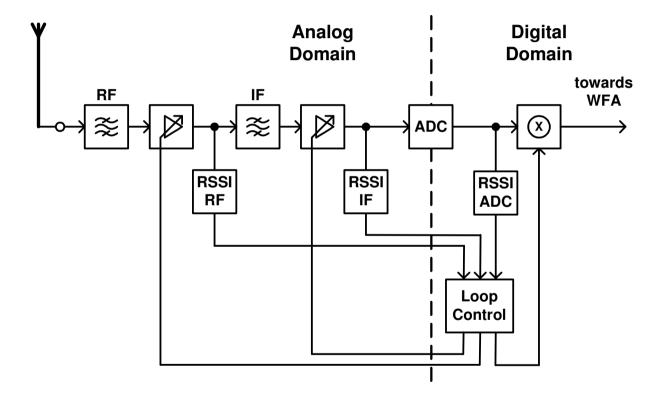
#### **Generic AGC behavioural model**





#### AGC loop optimization criteria

- dynamic behaviour of unknown transmitters in adjacent channels
- with unknown channel characteristica
- ADC level variation dominated by interfering signals


#### **Transceiver Challenges**

- ADC has to cope with high level difference between
  - input level of the wanted signal
  - $\sum$  level of various dominant signals

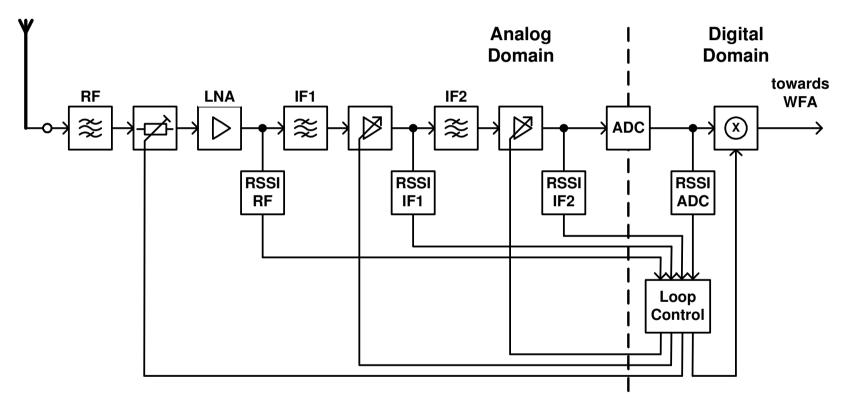
#### within IF range

- $\Rightarrow$  Extraordinary spurious free dynamic requirements to the ADC
- A properly acting AGC loop will modulate the amplitude level of the wanted Rx signal
  - inversely to the aggregate receive level of the interfering signal mixture
  - $\Rightarrow$  Level compensation required in transceiver Rx chain

#### Level compensation behavioural model






Title of presentation: Approach to Solve the AGC API Issue in the Tactical SDR Domain 27/06/11

- WFA dealing with the sampled receive signal will have to
  - compensate the signal variations of the wanted signal by WFA internal AGC methods
  - cope with distortion effects caused by gain variations within Rx chain
  - properly control the AGC behaviour in real time
    - to minimize distortion effects impact on received information quality:
      - BER: Bit Error Rate
      - Voice intelligibility
- WFA dealing with the sampled receive signal will not have to
  - deal with the internal design of the transceiver Rx chain!

8 /

#### **Multi stage gain variation**

#### • to be hidden at the platform API towards WFA

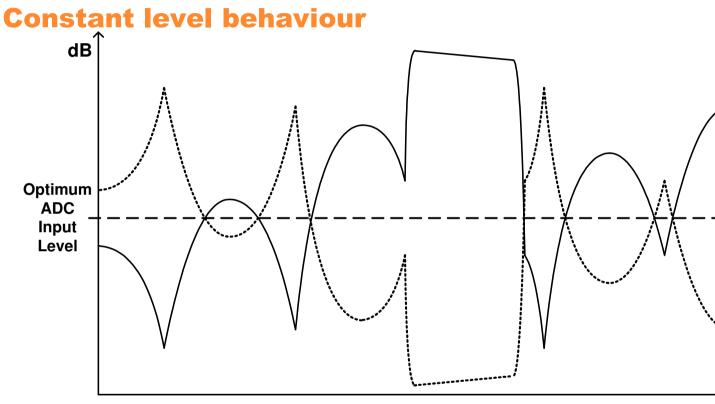


#### AGC API shall be intellegible from WFA designer's point of view!



- WFA dealing with the sampled receive signal will have to
  - compensate the signal variations of the wanted signal by WFA internal AGC methods
  - cope with distortion effects caused by gain variations within Rx chain
  - properly control the AGC behaviour in real time
    - to minimize distortion effects impact on received information quality:
      - BER: Bit Error Rate
      - Voice intelligibility
- WFA dealing with the sampled receive signal will not have to
  - deal with the internal design of the transceiver Rx chain!




- WFA dealing with the sampled receive signal will have to
  - compensate the signal variations of the wanted signal by WFA internal AGC methods
    - requires Software AGC within WFA
      - but no particular impact on AGC API
    - WFA issue only

- WFA dealing with the sampled receive signal will have to
  - compensate the signal variations of the wanted signal by WFA internal AGC methods
  - cope with distortion effects caused by gain variations within Rx chain
  - properly control the AGC behaviour in real time
    - to minimize distortion effects impact on received information quality:
      - BER: Bit Error Rate
      - Voice intelligibility

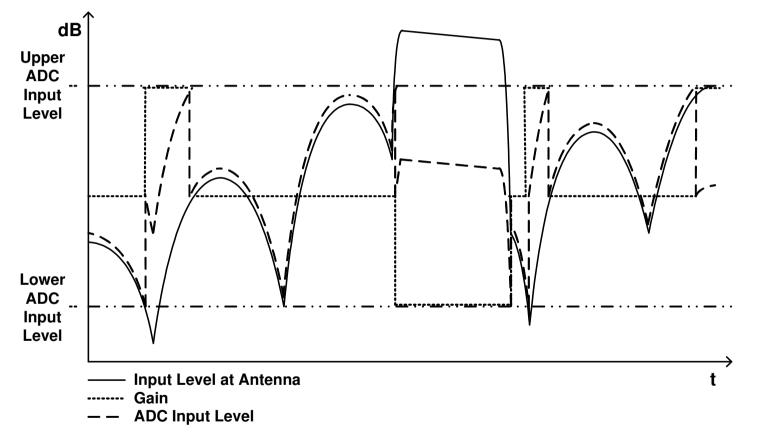
12 /

#### AGC API Concept (4)

t



— Input Level at Antenna


#### ----- Gain

- – ADC Input Level
- causes rather continuous (slope dependent) distortion on receive signal
- Distortion may be limited by limitation of gain slope
  - preferably independently for gain increase and gain decrease slopes

Title of presentation: Approach to Solve the AGC API Issue in the Tactical SDR Domain 27/06/11

#### AGC API Concept (5)

#### **Floating level behaviour**



#### causes impulsive distortion on receive signal

• at quasi-random instants

Title of presentation: Approach to Solve the AGC API Issue in the Tactical SDR Domain 27/06/11

- WFA dealing with the sampled receive signal will have to
  - compensate the signal variations of the wanted signal by WFA internal AGC methods
  - cope with distortion effects caused by gain variations within Rx chain
  - properly control the AGC behaviour in real time
    - to minimize distortion effects impact on received information quality:
      - BER: Bit Error Rate
      - Voice intelligibility
    - Utilizing the knowledge about the (most) vulnerable phases of the waveform
    - Disable gain variation in such phases
      - Real time control towards transceiver Rx chain

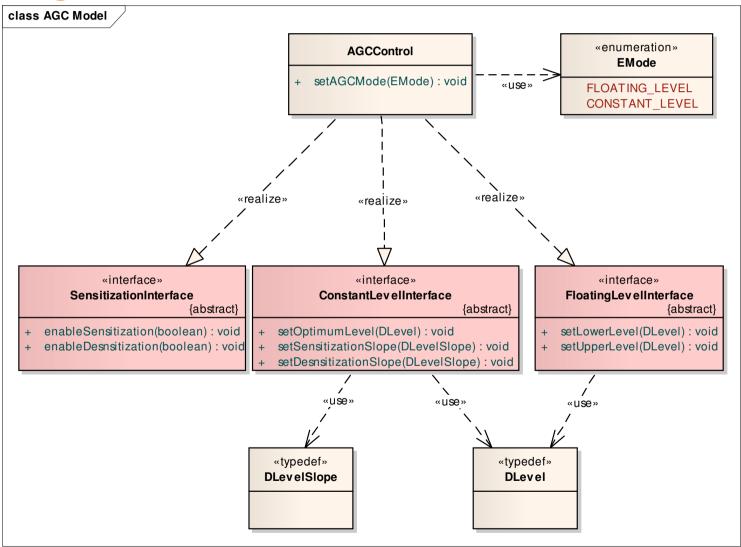
#### **Case: Constant Level**

- setOptimumLevel
  - specifies the optimum ADC input level [dB<sub>FS</sub>]
    - i.e. the ADC level to be quasi fixed (= constant) by the AGC algorithm
- setSensitizationSlope
  - specifies the maximum gain increase speed [dB/s]
- setDesensitizationSlope
  - specifies the maximum gain decrease speed [dB/s]
- enableSensitization
  - snables/disables gain increase
- enableDesensitization
  - snables/disables gain decrease



#### **Case: Floating Level**

- setUpperLevel
  - specifies the upper boundary of the floating ADC input level [dB<sub>FS</sub>]


#### setLowerLevel

- specifies the lower boundary of the floating ADC input level [dB<sub>FS</sub>]
- enableSensitization
  - enables/disables gain increase
- enableDesensitization
  - enables/disables gain decrease

Remark: In case of Floating Level, gain in/decrease speed shall be as fast as possible.

#### AGC API Summary (3)

#### **UML Diagram**



#### **Platform API**

- suited for configuration and real time control of the AGC located within any tactical SDR receiver
- takes into account that even decades of adjacent channels may pass the IF analog filter in front of the ADC
- provides a flexible, but transparent AGC loop dynamic behaviour control adaptable to the dynamic behaviour of the receive scenario
- allows a WFA supplier to control the impact on the receive signal distortion according to
  - o continuous noise model
  - *impulsive* noise model
- requires no knowledge of the individual receiver design
- ensures waveform application portability onto any tactical SDR platform

19 /





#### **Eberhard Kölble**

- Phone: + 49 7231 15 3823
- Mobile: + 49 172 813 06 52
- Fax: + 49 7231 15 3488
- Email: Eberhard.Koelble@thalesgroup.com
- Web: www.thalesgroup.com

