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ABSTRACT

The next generation DVB-T2, DVB-S2, and DVB-C2 stan-
dards for digital television broadcasting specify the use of
Low-Density Parity-Check (LDPC) codes with codeword
lengths of up to 64800 bits. The real-time decoding of these
codes on general purpose computing hardware is interest-
ing for completely software defined receivers, as well as for
testing and simulation purposes. Modern graphics process-
ing units (GPUs) are capable of massively parallel computa-
tion, and can, given carefully designed algorithms, outper-
form general purpose CPUs by an order of magnitude or
more. The main problem in decoding LDPC codes on GPU
hardware is that LDPC decoding generates irregular memory
accesses, which tend to carry heavy performance penalties
(in terms of efficiency) on GPUs. Memory accesses can be
efficiently parallelized by decoding several codewords in par-
allel, as well as by using appropriate data structures. In this
paper we present the algorithms and data structures used to
make log-domain decoding of the long LDPC codes specified
by the DVB-T2 standard — at the high data rates required for
television broadcasting — possible on a modern GPU.

1. INTRODUCTION

The DVB-T (Digital Video Broadcast — Terrestrial) system
for digital television broadcasting is widely used for broad-
casting around the world. As high bitrate High-Definition
Television (HDTV) broadcasts become more prevalent, how-
ever, the need for a more spectrum efficient standard in-
creases. The DVB-T2 standard [1, 2] has been developed to
address this need. This standard offers significantly increased
capacity (bitrate) when compared to DVB-T. The increased
capacity comes at the cost of more complex components for,
among others, forward error correction (FEC).

The DVB-T2 standard makes use of two coding schemes,
featuring LDPC (Low-Density Parity-Check) codes [3] with
exceptionally long codeword lengths of 16200 or 64800
bits as the inner coding scheme. Furthermore, the stan-
dard specifies the use of an outer BCH (Bose-Chaudhuri-

Hocquenghem) code in order to reduce the error floor caused
by LDPC decoding. The second generation digital TV stan-
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dards for satellite and cable transmissions, DVB-S2 [4] and
DVB-C2 [5], respectively, also use very similar LDPC codes
to DVB-T2. Due to the long codewords involved, LDPC de-
coding is one of the most computationally complex opera-
tions in a DVB-T?2 receiver [6].

In this paper, we propose a method for highly parallel de-
coding of the long LDPC codes using GPUs (Graphics Pro-
cessing Units). While a GPU implementation is likely less
energy efficient than implementations based on for example
ASICs (Application-Specific Integrated Circuits) and FPGAs
(Field-Programmable Gate Arrays), the GPU has other ad-
vantages. Even high-end GPUs are quite affordable compared
to capable FPGAs, and GPUs can be found in most personal
home computers. GPUs are also highly reconfigurable sim-
ilarly to a general purpose CPU (Central Processing Unit).
These advantages make a GPU implementation interesting
for software defined radio (SDR) systems built using com-
modity hardware, as well as for testing and simulation pur-
poses.

In the paper, we describe the design of the algorithms and
data structures, which, when implemented on a modern GPU,
allowed us to reach the LDPC decoding throughput required
by DVB-T2, DVB-S2, and DVB-C2. While the design deci-
sions are generally applicable to GPU architectures overall,
this particular implementation is built on the NVIDIA CUDA
(Compute Unified Device Architecture) architecture [7], and
tested on an NVIDIA GPU. Furthermore, we examine the im-
pact of limited numerical precision as well as applied algo-
rithmic simplifications on the error correction performance of
the decoder. This is done by comparing the results of simulat-
ing DVB-T2 transmissions within a DVB-T2 physical layer
simulator using both the GPU implementation and more ac-
curate CPU-based implementations.

Prior related work can be found in [8—13]. We used sim-
ilar data structures to those presented in [8], though with dif-
ferent implementations of the algorithms and levels of paral-
lelism. The implementation described in [13] is quite similar
to the implementation presented here in that it describes a re-
altime GPU-based LDPC decoder for DVB-S2 LDPC codes.
As DVB-S2 and DVB-T2 codes are mostly identical, we com-
pare performance results against the results obtained in [13].



Differences in results, and their possible causes are discussed
in section 5. The implementations described in [9-11] were
written for different types of LDPC codes and very different
code lengths from the implementation described here, and are
thus hard to compare directly to our implementation.

An SDR implementation of a DVB-C2 receiver imple-
mented on a normal PC is discussed in [14], where the authors
use heavily simplified algorithms for FEC decoding in order
to reach realtime performance. In this case, a GPU LDPC
decoder could most likely provide significantly better error
correction performance while also reducing the load on the
main CPU.

The paper is laid out as follows. In section 2, we de-
scribe the basics behind LDPC codes, and the decoding of
such codes. In section 3, we describe the CUDA architec-
ture used in current NVIDIA GPUs. Section 4 describes the
proposed approach to LDPC decoding on a GPU. In section
5, we present performance measurements, both in terms of
throughput and error correction capability. Finally, section 6
concludes the paper.

2. LDPC CODES

A binary LDPC code [3] with code rate r = k/n is defined
by a sparse binary (n — k) X n parity-check matrix, H. A
valid codeword x of length n bits of an LDPC code satisfies
the constraint Hx? = 0. As such, the parity-check matrix
H describes the dependencies between the & information bits
and the n—k parity bits. The code can also be described using
bipartite graphs, i.e., with n variable nodes and n — & check
nodes. If H; ; = 1, then there is an edge between variable
node j and check node 1.

LDPC codes are typically decoded using iterative belief
propagation (BP) decoders. The procedure for BP decoding
is the following. Each variable node v sends a message L,
of its belief on the bit value to each of its neighboring check
nodes ¢, i.e. those connected to the variable node with edges.
The initial belief corresponds to the received Log-Likelihood
Ratios (LLR), which are produced by the QAM (Quadra-
ture Amplitude Modulation) constellation demapper [15] in
a DVB-T2 receiver. Then each check node c sends a unique
LLR L., to each of its neighboring variable nodes v, such
that the LLR sent to v’ satisfies the parity-check constraint
of ¢ when disregarding the message L,/ _,. that was received
from the variable node v’. After receiving the messages from
the check nodes, the variable nodes again send messages to
the check nodes, where each message is the sum of the re-
ceived LLR and all incoming messages L., except for the
message L., that came from the check node ¢’ to where
this message is being sent. In this step, a hard decision is
also made. Each variable node translates the sum of the re-
ceived LLR and all incoming messages to the most probable
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bit value and an estimate on the decoded codeword X is ob-
tained. If HXT = 0, a valid codeword has been found and a
decoding success is declared. Otherwise, the iterations con-
tinue until either a maximum number of iterations has been
performed or a valid codeword has been found.

The LDPC decoder is one of the most computationally
complex blocks in a DVB-T2 receiver, especially given the
long codeword lengths (n is 16200 or 64800, while k varies
with the code rate used) used in the standard. The best iter-
ative BP decoder algorithm is the sum-product decoder [16],
which is also, however, quite complex in that it uses costly op-
erations such as hyperbolic tangent functions. The min-sum
[17, 18] decoder trades some error correction performance for
speed by approximating the complex computations of outgo-
ing messages from the check nodes. The resulting computa-
tions that are performed in the decoder are the following. Let
C'(v) denote the set of check nodes which are connected to
variable node v. Similarly let V' (¢) denote the set of variable
nodes which are connected to check node c¢. Furthermore, let
C(v)\c represent the exclusion of ¢ from C'(v), and V(¢)\v
represent the exclusion of v from V' (¢). With this notation,
the computations performed in the min-sum decoder are the
following:

1. initialization: Each variable node v sends the message

Lv—m(zv) = LLR(’U)

2. check node update: Each check node c sends the mes-
sage
Le sy (mv) = H Sign(Lv’%c(fL’v’))
v’ eV (c)\v (1)
X i Lv’ c\Lov’
v’G%l(rcl)\vl - (37 )‘

where sign(z) = 1, if z > 0 and —1 otherwise.

3. variable node update: Each variable node v sends the
message
Lyse(wy) = LLR(W)+ Y Leou(zy) ()
c’eC(v)\e
and computes
Ly(zy) = LLR(w) + > Leow(z,)  (3)

ceC(v)

4. Decision: Quantize &, such that &, = 1if L,(z,) > 0,
and 2, = 0if L,(x,) < 0. If HXT = 0, X is a valid
codeword and the decoder outputs x. Otherwise, go to
step 2.



Table 1: Properties of a subset of the LDPC codes supported in
DVB-T2. The columns for average column degree (ACD) and av-
erage row degree (ARD) show the average number of ones in the
columns and rows of H, respectively. The “edges” column shows
the total number of ones in H.

Rate | n k ACD ARD Edges
12 7200 3.0 54 48599
3/4 16200 11880 2.9 11.0 47519
5/6 13320 3.0 17.1 49319
12 32400 3.5 7.0 226799
3/4 | 64800 48600 3.5 14.0 226799
5/6 54000 3.7 22.0 237599
2.1. DVB-T2 code properties

The DVB-T2 standard [1] specifies LDPC codes with the
codeword lengths 16200 bits (short code) and 64800 bits
(long code). The code rate r k/n can be 1/2, 3/5, 2/3,
3/4, 4/5, or 5/6. Table 1 lists n, k, the average row and col-
umn degrees, as well as the total number of edges for a subset
of these code rates. The average row and column degrees re-
fer to the average number of ones in the rows and columns of
H, respectively. Please note that although the short codes are
identified as 1/2, 3/4 and 5/6 in table 1 (also identified as such
in [1]), the effective code rates for these codes are 4/9, 11/15,
and 37/45 respectively.

3. THE CUDA ARCHITECTURE

The NVIDIA CUDAJ7] architecture is used on modern
NVIDIA GPUs. The architecture is well suited for data-
parallel problems, i.e problems where the same operation can
be executed on many data elements at once. At the time of
writing this paper, the latest variation of the CUDA archi-
tecture used in GPUs was the Fermi architecture [19], which
offers some improvements over earlier CUDA architectures,
such as an L1 cache, larger shared memory, faster context
switching and so on.

In the CUDA C programming model, we define kernels,
which are functions that are run on the GPU by many threads
in parallel. The threads executing one kernel are split up into
thread blocks, where each thread block may execute indepen-
dently, making it possible to execute different thread blocks
on different processors on a GPU. The GPU used for run-
ning the LDPC decoder implementation described in this pa-
per was an NVIDIA GeForce GTX 570 [20, 21], featuring
15 so-called streaming multiprocessors (SMs) containing 32
cores each. The scheduler schedules threads in groups of 32
threads, called thread warps. The Fermi hardware architec-
ture features two warp schedulers per SM, meaning the cores
of a group of 16 cores on one SM execute the same instruction
from the same warp.
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Each SM features 64 kB of fast on-chip memory that
can be divided into 16 kB of L1 cache and 48 kB of shared
memory (“scratchpad” memory) to be shared among all the
threads of a thread block, or as 48 kB of L1 cache and 16
kB of shared memory. There is also a per-SM register file
containing 32,768 32-bit registers. All SMs of the GPU share
a common large amount of global RAM memory (1280 MB
for the GTX 570), to which access is typically quite costly in
terms of latency, as opposed to the on-chip shared memories.

The long latencies involved when accessing global GPU
memory can limit performance in memory intensive applica-
tions. Memory accesses can be optimized by allowing the
GPU to coalesce the accesses. When the 32 threads of one
warp access a continuous portion of memory (with certain
alignment limitations), only one memory fetch/store request
might be needed in the best case, instead of 32 separate re-
quests if the memory locations accessed by the threads are
scattered [7]. In fact, if the L1 cache is activated (can be dis-
abled at compile time by the programmer), all global memory
accesses fetch a minimum of 128 bytes (aligned to 128 bytes
in global memory) in order to fill an L1 cache line. Mem-
ory access latencies can also be effectively hidden if some
warps on an SM can run arithmetic operations while other
warps are blocked by memory accesses. As the registers as
well as shared memories are split between all warps that are
scheduled to run on an SM, the number of active warps can
be maximized by minimizing the register and shared memory
requirements of each thread.

4. DECODER IMPLEMENTATION

The GPU-based LDPC decoder implementation presented
here consists mainly of two different CUDA kernels, where
one kernel performs the variable node update (2), and the
other performs the check node update (1). These two ker-
nels are run in an alternating fashion for a specified maximum
number of iterations. There is also a kernel for initialization
of the decoder, and one special variable node update kernel,
which is run last, and which includes the hard decision (quan-
tization) step mentioned in section 2.

4.1. General decoder architecture

For storage of messages passed between check nodes and
variable nodes, we use 8-bit precision. As the initial LLR
values were stored in floating point format on the host, we
converted the LLRs to 8-bit signed integers by multiplying
the floating point value by 8, and keeping the integer part
(clamped to the range [—127,+127]). This effectively gave
us a fixed point representation with 4 bits for the integer part
and 3 bits for the decimal part. After the initial conversion
on the host, the GPU-side algorithms use exclusively integer
arithmetic.
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Figure 1: The arrays Hon and Hy n corresponding to example H
matrix.

GPU memory accesses can be fully coalesced if 32 con-
secutive threads access 32 consecutive 32-bit words in global
memory, thus filling one cache line of 128 bytes. In order to
gain good parallelism with regard to memory access patterns,
we designed the decoder to decode 128 LDPC codewords in
parallel. When reading messages from global memory, each
of the 32 threads in a warp reads four consecutive messages
packed into one 32-bit word. The messages are stored in
such a way that the 32 32-bit words read by the threads of a
warp are arranged consecutively in memory, and correspond
to 128 8-bit messages belonging to 128 different codewords.
This arrangement leads to coalescing of memory accesses.
Computed messages are written back to global memory in
the same fashion, also achieving full coalescence.

On the GPU, we use two compact representations, Hy
and H¢y, of the parity check matrix H. The data structures
were inspired by those described in [8]. To illustrate these
structures, we use the following simple example H matrix:

1111 00
0 01 1 01
1 00 1 10

H=

Hcn would then be an array of entries consisting of a
cyclic index to the entry corresponding to the next one in the
same row of the H matrix, while entries in Hy, 5 would con-
tain an index to the entry corresponding to the next one in
the same column. Each entry in Hey and Hy  thus rep-
resent an edge between a variable node and a check node in
the bipartite graph corresponding to H. The Heony and Hy v
structures corresponding to the example H matrix are illus-
trated in figure 1.

We use a separate array structure, M, to store the actual
messages passed between the variable and check node update
phases. The M structure contains 128 messages for each one
(edge) in H, corresponding the the 128 codewords being pro-
cessed in parallel. Each entry in M is one byte in size. The
structure is stored in memory so that messages corresponding
to the same edge (belonging to different codewords) are ar-
ranged consecutively. The entry M (i x 128+w) thus contains
the message corresponding to edge ¢ for the w:th codeword.
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Furthermore, we use two structures (arrays) R¢ and Cy
to point to the first element of rows and columns, respec-
tively, of the H matrix. For the example H matrix, we have
Re =10,4,7],and C¢ = [0,1,2, 3,9, 6]. The structure LLR.
contains the received initial beliefs for all codewords, and
will have n x 128 elements for an LDPC code of length n.
LLR(x x 128 + w) contains the initial belief for bit = of
codeword w.

For the variable node update, we let each thread process
four consecutive codewords for one column of H, and simi-
larly each thread of the check node update kernel will process
one row of H. Thus, 32 consecutive threads will process one
column or row for all 128 codewords.

The procedure for the variable node update is roughly as
follows, given an LDPC code defined by an (n— k) X n parity
check matrix. We launch n x 32 threads in total.

e Given global thread id ¢, we process column ¢ = ||
of H, and codewords w = (¢ mod 32) x 4 to (¢
mod 32) x 4+ 3.

Read four consecutive LLR values starting from
LLR(cx 128+ w) into 4-element vector m. We expand
these values to 16-bit precision to avoid wrap around
problems in later additions.

Let i = Cg(c)
For all edges in column c:

o Copy the four consecutive messages (8-bit) start-
ing from M(i x 128 + w) into 4-element vector
msg. This is achieved by reading one 32-bit word
from memory.

o Add, element-wise, the elements of msg to the el-
ements of m and store the results in m.

o Leti = Hyn(i). If i = C¢(c), we have processed
all edges.

e For all edges in column c:

o Again, copy four messages (8-bit) from M(: x
128 + w) to M(¢ x 128 4+ w + 3) into 4-element
vector msg,.

Perform m — msg (element-wise subtraction of
four elements), clamp the resulting values to the
range [—127,+127] (since m contains 16-bit in-
tegers, and msg contains 8-bit integers) and store
the result in msg.

Copy msg back to the memory positions of M(i x
128 + w) to M(i x 128 + w + 3).

Leti = Hyn(i). If ¢ = C¢(c), we have processed
all edges.



e Variable node update completed.

The check node update launches (n — k) x 32 threads,
and the procedure is the following:

e Given global thread id ¢, we process row r = Lé] of H,
and codewords w = (¢ mod 32) x 4to (¢ mod 32) x

4+ 3.

Define four 4-element vectors sign, min, nmin and
mi. Initialize elements of sign to 1, and elements of
min and nmin to 127.

Let i = Re(r).
Let 5 = 0 (iteration counter).
For all edges in row 7:

o Copy four consecutive messages starting from

M (i x 128 4+ w) into 4-element vector msg

For all element indices = € [0..3], if |msg(z)| <
min(z), let min(x) |msg(z)| and set
mi(z) = j. Otherwise, if jmsg(z)| < nmin(x),
let nmin(z) = lmsg(z)|.

Also, for all z € [0..3], let sign(z) be negative if
msg(x) x sign(z) is negative, and positive other-
wise.

Set j equal to j + 1.

Leti = Hen (7). If ¢ = Re(r), we have processed
all edges.

o letj=0.
e For all edges in row 7:

o Copy four consecutive messages starting from

M(7 x 128 + w) into 4-element vector msg.

For all x € [0..3], if mi(x) # j, let msg(x) =
sign(sign(z) x msg(z)) x min(z). Otherwise,
if mi(z) = j, let msg(z) = sign(sign(z) x
msg(z)) X nmin(z).

Copy msg back to the memory positions of M (7 x
128 + w) to M(4 x 128 + w + 3).

Set j equal to j + 1.

Leti = Hen (7). If i = Re(r), we have processed
all edges.

e Check node update completed.

The special variable node update kernel that includes
hard decision, adds an additional step to the end of the vari-
able node update kernel. Depending on if m(z), for z €
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[0..3], is positive or negative, it writes a one or zero value to
index ¢ X 128 4+ w + «x of an array structure B as specified
in the last step of the min-sum decoder procedure described
in section 2. The B structure is copied back from the GPU to
the host upon completed decoding.

4.2. Optimization strategies

In this subsection, we discuss various design choices made
during implementation to improve decoding speed. The opti-
mizations were verified by benchmarking, as well as profiling
of the implementation.

Notice that, in both main kernels, we copy the same four
elements to msg from M twice (once in each loop). The
second read could have been avoided by storing the elements
into fast on-chip shared memory the first time. Through ex-
periments, however, we noticed that we got significantly im-
proved performance by not reserving the extra storage space
in shared memory. This is mostly due to the fact that we can
instead have a larger number of active threads at a time on
an SM, when each thread requires fewer on-chip resources.
A larger number of active threads can effectively “hide” the
latency caused by global memory accesses.

Significant performance gains were also achieved by us-
ing bit twiddling operations to avoid branches and costly in-
structions such as multiplications in places where they were
not necessary. The fact that this kind of optimizations had
a significant impact on performance suggests that this im-
plementation is instruction bound rather than memory ac-
cess bound despite the many scattered memory accesses per-
formed in the decoder. Through profiling of the two main
kernels, we also found that the ratio of instructions issued per
byte of memory traffic to or from global memory was sig-
nificantly higher than the optimum values suggested in opti-
mization guidelines [22], further suggesting that the kernels
are indeed instruction bound.

An initial approach at an LDPC decoder more closely re-
sembled the implementation described in [8], in that we used
one thread to update one message, instead of having threads
update all connected variable nodes or check nodes. This lead
to a larger number of quite small and simple kernels. This
first implementation was however significantly slower than
the currently proposed implementation. One major benefit of
the proposed approach is that fewer redundant memory ac-
cesses are generated, especially for codes where the average
row and/or column degree is high.

As mentioned in section 3, the Fermi architecture allows
the programmer to choose between 16 kB of shared memory
and 48 kB of L1 cache, or vice versa. We used the 48 kB
L1 cache setting in the final implementation, as we did not
use any shared memory. This clearly improved performance
compared to the alternative setting.



Table 2: GPU decoder average throughput in Mbps (Megabits per
second), long code (n = 64800). Minimum throughput in parenthe-
ses.

Rate | 20 iterations 30 iter. 50 iter.

12 163.4 (160.1) 112.5(110.9) 69.3 (68.7)
3/4 164.1 (160.6) 1129 (111.4) 69.5 (68.9)
5/6 157.2 (153.9) 107.9 (106.3) 66.4 (65.9)

Table 3: GPU decoder average throughput in Mbps, short code (n =
16200). Minimum throughput in parentheses.

Rate | 20 iterations 30 iter. 50 iter.

12 186.1 (179.4) 128.6 (125.1) 79.5(78.2)
3/4 192.4 (185.2) 133.1(129.6) 82.4(81.0)
5/6 189.6 (181.8) 131.2(127.3) 81.2(79.7)

5. PERFORMANCE

In this section, we present performance figures for the
CUDA-based LDPC decoder presented in section 4, both in
terms of throughput and error correction performance. We
show that we have achieved throughputs required by the
DVB-T2 standard with acceptable error correction perfor-
mance.

5.1. Throughput measurements

The GPU used for measuring performance was, as men-
tioned, a GeForce GTX 570 card [20, 21]. The host com-
puter was equipped with an Intel Core i7 950 quad core CPU
running at 3.07 GHz, as well as 6GB of DDR3 RAM. It ran
the 64-bit version of Ubuntu Linux 10.10 with Linux kernel
version 2.6.35.

Decoder throughput was measured by timing the decod-
ing procedure for 128 codewords processed in parallel, and
dividing the codeword length used (16200 bits for short code
length, and 64800 bits for long code) times 128 by the time
consumed. Thus, the throughput measure does not give the
actual useful bitrate, but rather the bitrate including parity
data. To gain an approximate useful bitrate, the throughput
figure must be multiplied by the code rate. We benchmarked
the decoder for both the short and long codeword lengths sup-
ported by the DVB-T2 standard. Moreover, we measured
three different code rates: 1/2, 3/4, and 5/6.

The time measured included copying LLR values to the
GPU, running a message initialization kernel, running the
variable node and check node update kernels for as many it-
erations as desired before running the variable node update
kernel including hard decision, and finally copying the hard
decisions back to host memory. In these benchmarks we did
not check wether we had actually arrived at a valid codeword.
This task was instead handled by the BCH decoder. If desired,
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the GPU could check the validity of a codeword at a perfor-
mance penalty (penalty depending on how often we check for
validity). This may for example be done together with hard
decision in order to be able to terminate the decoder early
upon successful recovery of all 128 codewords. In this case,
however, we specify a set number of iterations to run before a
final hard decision. Note that the Ho and Hy n structures
only need to be transferred to the GPU at decoder initializa-
tion (i.e. when LDPC code parameters change), and that this
time is thus not included in the measured time.

The measured throughputs are presented in table 2 for
long code, and in table 3 for short code configurations. We
decoded 10 batches of 128 codewords and recorded the av-
erage time as well as the maximum time for decoding a
batch, giving us the average throughput as well as a mini-
mum throughput (shown within parentheses in the tables) for
each configuration.

5.2. Results discussion

Annex C of the DVB-T2 standard assumes that received cells
can be read from a deinterleaver buffer at 7.6 x 106 OFDM
(Orthogonal Frequency-Division Multiplexing) cells per sec-
ond [1, 15]. At the highest modulation mode supported by
DVB-T2, 256-QAM, we can represent 8 bits per cell. This
means that the LDPC decoder should be able to perform at a
bitrate of at least 60.8 Mbps (Megabits per second). As we
can see from the results, the proposed implementation is able
to meet this realtime constraint even while performing 50 it-
erations.

DVB-S2 [4] and DVB-C2 [5, 23] use the same codeword
lengths as DVB-T2, though they specify partly different sets
of code rates to suite their application domains. DVB-C2 may
require processing up to 7.5 x 10° cells per second, which,
coupled with a maximum modulation mode of 4096-QAM,
gives us 90 Mbps maximum required throughput. DVB-S2
also may require about 90 Mbps maximum throughput [13].
By interpolation of the values in table 2, we observe that we
should be able to meet the throughput requirements of these
standards at up to roughly 35 iterations.

As mentioned, the GPU-based LDPC decoder described
in [13] decodes DVB-S2 codes, and as such should be com-
parable to the implementation presented in this paper. The
implementation details of this decoder are not explained in-
depth in [13]. The paper does, however, state that the min-
sum algorithm is used for decoding, and that 8-bit data rep-
resentation is used, which both also apply to the implemen-
tation discussed in section 4 of this paper. The level of par-
allelism differs, however, where the implementation in [13]
decodes 16 codewords in parallel, while the implementation
described in section 4 of this paper decodes 128 codewords
in parallel. We do not know in detail how the parallelism
is realized in [13], however we believe 128 parallel code-
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Figure 2: Simulation results for 64-QAM long code configurations
when using GPU and CPU implementations of LDPC decoder algo-
rithms.

words will allow for improved memory coalescing, due to
the fact that Fermi GPUs can read up to 32 successive 32-
bit words very efficiently when accessed by the 32 threads in
a warp [19]. The higher level of parallelism does introduce
some additional latency in a receiver chain, which is how-
ever only on the order of fractions of a second considering the
high throughputs involved. The authors of [13] do however
use lookup tables stored in fast constant memory to calculate
message addresses, whereas we fetch the address offsets from
global memory.

The GPU used in [13] was an NVIDIA Tesla C2050 [24].
While based on the Fermi architecture, the C2050 differs
from the GTX 570 in several ways, such as clock frequencies
and memory bus width, making direct performance compar-
ison by comparing throughput values difficult. A rough esti-
mate on the speed differences between the two cards could be
based on the differences in SM clock frequency and the num-
ber of SMs. The C2050 has 14 SMs running at 1.15 GHz,
while the GTX 570 has 15 SMs running at 1.46 GHz. The
authors of [13] reported a throughput of 75.8 Mbps per 30 it-
erations of the 1/2-rate long DVB-S2 code. From table 2, we
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can see that we obtained a throughput of 112.5 Mbps for the
same code and the same number of iterations. Dividing the
throughputs by number of SMs times clock frequency, we get
4.7 and 5.1 kbps per cycle per SM for the implementations
in [13] and in this paper, respectively. This comparison is
not valid in case an implementation is memory bound rather
than arithmetic bound, however, as global memory bandwidth
would then be the likely bottleneck.

5.3. Error correction performance

Many dedicated hardware LDPC decoders use a precision
of 8 bits or less for messages, and should thus have simi-
lar or worse error correction performance compared to the
proposed implementation. Within the simulation framework
used for testing the decoder, however, we had implementa-
tions of LDPC decoders using both the sum-product algo-
rithm (SPA), as well as the min-sum algorithm. These im-
plementations were written for a standard x86-based CPU,
and used 32-bit floating point message representation. The
performance of this CPU version was measured in [6]. As
it was not as highly optimized — in not using SIMD (sin-
gle instruction, multiple data) instructions, and being single-
threaded — as the GPU implementation, we do not compare
its performance to the GPU implementation in this paper.

We simulated DVB-T2 transmissions using both CPU-
based implementations as well as the proposed GPU-based
implementation, in order to determine the cost of the lower
precision of message representations as well as the use of
min-sum over SPA in terms of decoder error correction ca-
pability.

Figure 2 shows simulation results for a 64-QAM config-
uration at the code rates 1/2 and 5/6 of the long code. The
simulations were performed on signal-to-noise ratio (SNR)
levels 0.1 dB apart. For each SNR level, simulations were
allowed to run until 20 FEC blocks containing erroneous bits
(after BCH decoding) had been encountered, or until at least
2048 blocks had been simulated without finding 20 erroneous
blocks. The average bit error rate (BER) was calculated by
comparing the sent and decoded data. A channel model sim-
ulating an AWGN (Additive White Gaussian Noise) channel
was used. The maximum number of LDPC decoder iterations
allowed was set to 50.

As we can see in figure 2, the lower precision GPU im-
plementation performs very close (within 0.1dB) to the CPU
implementation on the AWGN channel. The impact of using
the simplified min-sum algorithm as opposed to the superior
SPA algorithm is much greater than the choice of precision.
The error correction performance advantage of the SPA al-
gorithm also remains small (please note the fine scale of the
x-axes of figure 2), however, with approximately a 1.3 dB ad-
vantage for 1/2-rate and less than 1 dB for 5/6-rate at a BER
level of 104



6. CONCLUSION

In this paper, we have presented an implementation of an
LDPC decoder optimized for decoding the long codewords
specified by the next generation digital television broadcast-
ing standards DVB-T2, DVB-S2, and DVB-C2. This imple-
mentation is a highly parallel decoder optimized for a mod-
ern GPU architecture. We have shown that we can achieve
the throughputs required by these standards at high numbers
of iterations, giving good error correction performance. Fur-
thermore, we have shown that our implementation compares
well with another similar implementation [13].

In the future, we hope to integrate this decoder with other
software defined signal processing blocks to build a com-
pletely software defined, realtime, receiver chain. In [6], it
was shown that besides the LDPC decoder, the QAM constel-
lation demapper — converting received constellation points
in the complex plane to LLR values — is one of the most
computationally complex blocks in a DVB-T2 receiver chain.
As the demapper produces the input to the LDPC decoder (a
bit deinterleaver does however separate the two signal pro-
cessing blocks), a good next step would be to perform both
the demapping and LDPC decoding on the GPU, reducing the
need to send data back and forth between the host computer
and GPU.
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