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Reduced complexity MIMO detection: The LORD algorithm 
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MIMO detection



 

Exhaustive-search Maximum-Likelihood (ML)


 

Find the transmitted sequence minimizing the square norm of the error matrix:



 

For M2-QAM modulation it requires search of M2T symbols (brute-force approach)


 

Rapidly unfeasible for growing T transmitting antennas 
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Soft-output near-ML MIMO detection: the LORD algorithm


 

High performance gain over state-of-the-art detectors (ZF, MMSE)


 

The hard-output version has performance comparable with that of Sphere Decoder


 

Optimal (ML) max-log soft-output for T=2, near optimal for T>2


 

Candidate list set has linear instead of exponential dependency on T



The LORD algorithm

A. Pre-processing


 

Channel estimation matrix H decomposition using H = QR factorization


 

Multiple QR decomposition (one for each T) to compute LLRs efficiently


 

Enabling spatial Decision Feedback Equalization (DFE)


 

For static channel, computed once per frame (latency with no impact on throughput)

B. Detection


 

For each T and each M2-QAM symbol, compute M2 Euclidean Distances (EDs) :

C. Soft-output LLR generation


 

For each bit bi of the constellation, compute the difference between the minimum EDs 
evaluated over the two sets S+(bi ) and S-(bi ) defined by bi =0 and bi =1 respectively
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For each transmitting antenna T and for each received symbol, compute 
M2 Euclidean Distances (EDs) to demodulate M2 -QAM symbols:

For 2 transmitting antennas, it consists of computing:


 

Partial ED (PED) metrics of the reference layer (PED1 )


 

Symbol estimate of the subsequent layer based on spatial DFE


 

PED metric of the subsequent layer (PED2 )


 

ED metric as sum of all the PEDs (ED= PED1 + PED2 )

The LORD algorithm – Detection
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The LORD algorithm – Soft-output generation

For each bit bi of the M2-QAM constellation:



 

Identify the two sets S+(bi ) and S-(bi ) corresponding to bi =0 and bi =1 respectively 



 

Subtract the two minimum EDs evaluated over the sets S+(bi ) and S-(bi )

b0 b1 b2

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 0 

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 0

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 1 

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 1
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Block Processing Engine template architecture
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Flow-control: b-instruction 
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Vector processing: d-instruction
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Block diagrams (macros)
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Pipeline of macros using memory alias
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Registers used as memory 
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Mapping of the LORD algorithm: a 3-stage pipeline



 

Detection
1. Compute the PED of the reference layer (PED1 ), the DFE and (part of) the PED for the 

subsequent layer (PED2 ) 

2. Compute (rest of) PED2 and the ED from the PED1



 

Soft-output generation
3. Evaluate the LLRs
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Compute the PED of the reference layer (PED1 ) 



 

Compute the DFE and (part of) the PED for the subsequent layer (PED2 ) 

Mapping of the LORD algorithm: macro #1

macro #1
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Compute the PED2 and the ED from the PED1 of macro #1



 

Generate the LLRs using the EDs computed by macro #2 

r1 comm2.ed

r2

r3
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Rest of
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EDsEDs

Mapping of the LORD algorithm: macro #2 and #3
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macro #2

macro #1

macro #3
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Mapping of the LORD algorithm: pipeline and timing

Vector length depends 
on the number of carriers 
processed with a single 
instruction 
(4 in this case).

Vector length depends 
on the number of carriers 
processed with a single 
instruction
(4 in this case).

For adequate vector 
lengths the execution of a 
bunch of basic 
instructions does not 
affect total execution time 

For adequate vector 
lengths the execution of a 
bunch of basic 
instructions does not 
affect total execution time

Loop on 13 vector 
instructions for a total of 
52 IEEE 802.11n OFDM 
symbol carriers 

Loop on 13 vector 
instructions for a total of 
52 IEEE 802.11n OFDM 
symbol carriers

vector instructionvector instruction

flow-control instructionflow-control instruction





 

Processing time for one IEEE 802.11n OFDM symbol @400MHz



 

Real-time capabilities for both 16-QAM and 64-QAM can be achieved using 
a cluster of 4xBPEs with minimum vector length of 4 carriers
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Performance of LORD on the BPE
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Synthesis results

BPE 4

 

BPE
Technology STMicroelectronics CMOS 65nm

Area 0.9mm2 3.6mm2

Clock 400MHz

Detector Type near-ML SO

Max theoretical Gops 12 48

Near-ML detector Gops 9.6 38.4

Utilization (%) 80

Throughput [Mbit/s] @ 16-QAM 98 392

Throughput [Mbit/s] @ 64-QAM 38 152
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