
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

SOFTWARE IMPLEMENTATION OF

NEAR-ML SOFT-OUTPUT MIMO DETECTION

Teo Cupaiuolo, Daniele Lo Iacono
Advanced System Technology

STMicroelecronics Italy
teo.cupaiuolo@st.com, daniele.loiacono@st.com

ABSTRACT

The continuous emerging of new communication standards
is pushing towards the introduction of the Software Defined
Radio (SDR) concept. SDR is enabled by performing
computational intensive task in software rather than using
dedicated hardware. Within the SDR framework, Soft-
Output (SO) Multiple-Input Multiple-Output (MIMO)
detection is still a major challenge, which only few papers
have dealt with so far. In this paper we describe the
implementation of the Layered ORthogonal Lattice Detector
(LORD) SO MIMO detector on the programmable Block
Processing Engine (BPE). Results show that real-time
MIMO detection can be achieved using a cluster of four
BPEs running at 350 MHz (65 nm STMicroelectronics
CMOS technology) and delivering up to 150 Mbit/s for the
64-QAM modulation, 2×2 antennas configuration.

1. INTRODUCTION

ultiple antennas wireless communications currently
enjoy great popularity because of the demand of high

data rate such as multimedia services. MIMO transmission
consists of the simultaneous transmission of T complex
symbols using T transmit antennas. MIMO systems take
advantage of multi-path propagation to increase the diversity
gain and enhance channel capacity on frequency-selective
fading channels when operating in a rich scattering
environment.
 Among the others, a significant example of a system
endorsing MIMO combined with OFDM is provided by the
next generation Wireless Local Area Networks (WLANs),
see e.g., the IEEE 802.11n standard [1].
 Despite the increasing interest in commercial baseband
software implementation, available literature on Soft-Output
(SO) MIMO detection mainly targets Application Specific
Integrated Circuit (ASIC) design [2][3][4]. Although it
remains a major challenge due to high computational
complexity, a few examples already exist implementing
MIMO over programmable architectures.

 IMEC has been the first, and indeed one of the few
disclosing a software implementation of a full 2×2 MIMO
OFDM transceiver. IMEC proposes a platform embedding
the ADRES processor, a coarse-grain Application Specific
Instruction Set Processor (ASIP) specifically designed for
communications [5]. Similar work has been disclosed by
ETH using a dual-core platform based on the fine-grain
ASPE processor [6]. Both solutions target the Minimum
Mean Square Error (MMSE) algorithm, which is highly sub-
optimal when compared to near-ML detection [7].
 Recently IMEC enhanced the ADRES platform so as to
support near-ML detection for a 2×2 IEEE 802.11n [8]. The
platform evolved from a 4-way SIMD to a 16-way SIMD to
deliver a maximum throughput enabling real-time 64-QAM
detection.
 This paper presents a software implementation of the
Layered Orthogonal Lattice Detector (LORD), a SO near-
ML MIMO detection algorithm [7]. The algorithm has been
mapped on the Block Processing Engine (BPE), a fine-grain
vector processor specifically optimized for intensive
wireless communications [9].
 The paper is organized as follows: Section 2 details the
target system model and recalls the LORD algorithm;
Section 3 presents the BPE core; Section 4 describes the
mapping of LORD on the BPE; Section 5 summarizes the
results.

2. MIMO DETECTION

2.1. SYSTEM MODEL

In order to simplify the notation we consider a frequency
non-selective MIMO communication system with T
transmits and R receives antennas. For OFDM systems, like
those of interest for 802.11n WLANs, the following
equations are to be intended valid per sub-carrier in
frequency domain.
 The signal received at each antenna is therefore a
superposition of the T transmitted signals corrupted by
multiplicative fading and additive white Gaussian noise. The
complex path gains are samples of zero mean Gaussian

M

SDR'10 Session 7D- 1

701

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Random Variables (RV) with variance σ2 = 0.5 per
dimension. Fading processes for different transmit and
receive antenna pairs are assumed to be independent.
Complex gains are assumed constant over the duration of a
codeword and vary independently from one codeword to
another (i.e. quasi-static block fading). Ideal Channel State
Information (CSI) at the receiver is assumed (i.e. the R×T
channel matrix H is perfectly known). The transmitted signal
can be represented as a vector X of size T×1, where the t-th
symbol st taken from a generic M2-QAM constellation is
transmitted by the t-th antenna. Under these assumptions, the
received R×1 vector Y is given by:

NHXY +=
T

Es , (1)

where ES is the total per symbol transmitted energy (under
the hypothesis that the average constellation energy is

1|s| 2
k =) and N is the noise vector of size R×1, whose

elements are samples of independent circularly symmetric
zero-mean complex Gaussian RVs with variance N0/2 per
dimension. The signal-to-noise-ratio (SNR) per receive
antenna is ES/N0.
 ML detection over a MIMO channel corresponds to
finding the transmitted sequence X which minimizes the
square norm of the error matrix:

2

s

T

E
min arg HXYX

X
−= . (2)

 Equation (2) can be solved by performing the
exhaustive search of M2T sequences, where M is the
modulation order of a generic M2-QAM constellation. This
results into a prohibitive complexity for growing T.

2.2. THE LORD ALGORITHM

Prior to the detection stage, QR decomposition is applied to
the channel matrix H, generating an orthonormal matrix Qt
and an upper triangular matrix Rt as H t = QtRt.
 The index t refers to symbol sequence permutations
where the t-th layer is taken as reference layer (the terms
layer and transmit antenna will be used interchangeably
throughout this paper); more specifically, each permutation
has to differ from the others by the complex symbol placed
in the t-th position in the complex sequence X,
corresponding to the t-th I and Q couple in the real sequence
xt. Multiplying (1) by (Qt)T:

ttttTtt ~
)(

~
NXRYQY +== . (3)

 The noise vector t~
N has still independent components

and equal variances.

From the above expression, the minimization problem (2)
translates to:

2
tttt ~

min argˆ XRYX
X

−= . (4)

 After the QR decomposition, the ML demodulation (4)
can be evaluated according to the so-called max-log
approximation. The Log-Likelihood Ratio (LLR) of the
bit bT,k can be expressed as [7]:

)]x~,x~(ˆ[Dmin

)]x~,x~(ˆ[Dmin)~b(L

1T21T2
t
ED

)k(S}x~,x~{

1T21T2
t
ED

)k(S}x~,x~{

t
k,T

T1T21T2

T1T21T2

−−
∈

−−
∈

−
−−

−
−−

−

=

x

xy
, (5)

where t
EDD is the Euclidean Distance (ED) metric:

2ttt
ED

~)(D xRyx −= . (6)

 In (5), the following notation is used: Mc-bit transmitted
symbols belong to a M2-QAM complex constellation;

),(212 TT xx ~~x̂ −−−− denotes the sequence obtained by grouping a
candidate value),(212 TT xx ~~

−−−− of the I and Q couple of the
reference layer complex symbol XT and the (2T−2) I and Q
estimates of the T−1 non-reference layer symbols
determined through spatial Decision Feedback Equalization
(DFE) starting from such candidate value; bT,k are the bits
mapped onto XT having bit index k = 1,…,Mc;

++++
TkS)(and

−−−−
TkS)(represent the sets of symbols of the reference layer

having bT,k = 1 and bT,k = 0, respectively [7].
 It should be recalled that the LORD demodulation
method requires to consider all the constellation symbols as
candidate symbols for each reference layer and then
minimizes the ED metrics over the sequences X wherein a
given bit value is 1 or 0.

d-unit

bank

ro
u

ti
n

g
 m

e
sh

d-memory

bank

d-instruction

scheduler

memory

management

fetch

&

decoding

i-memory

b-instruction

execution

system bus interface

data-port

registers space

controller

Fig. 1. The BPE template architecture.

702

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3. THE BLOCK PROCESSING ENGINE

The template architecture of the BPE is shown in Fig. 1
 The controller performs fetch, decoding and scheduling
of the instructions. Two types of instruction exist: basic
scalar instructions (hereafter called b-instruction) mainly
devoted to flow control and data access configuration and
dedicated vector instructions (d-instruction) performing
intensive data processing. While b-instructions are locally
executed, d-instructions are executed on the customizable d-
unit bank. Depending on data dependencies and resources
availability, units can be scheduled to run in parallel.
Vectors are allocated on the d-memory bank, a set of static
memories allowing fast and parallel access to data.
 Interconnection between d-memory bank and d-unit
bank is guaranteed by the routing mesh, which is run-time
configured by the controller on an instruction-by-instruction
basis. To further optimize the data exchange between units,
the routing mesh supports instruction pipelining through
direct connection between units.

3.1. VECTORS MANAGEMENT

D-instructions act on vectors allocated on the d-memory
bank. Each memory can hold several vectors, with the
obvious limitation that vectors allocated on the same
memory cannot be accessed concurrently. Vectors size can
be as large as the size of available memories.
 Once the size and the position of a vector within the
memory have been defined, the addressing scheme can be
specified by the programmer on an instruction basis.
 Vector elements can be accessed performing intra-
vector permutation according to pre-defined or user-defined
schemes, such as decimating or interpolating by an arbitrary
factor, reversing the order of the elements, applying well

known shuffling patterns like matrix transpose, FFT re-
ordering, Gray mapping.

3.2. RESOURCES ALLOCATION

Dealing with very long vectors, d-instructions are typically
asked to process large amount of data, thus consuming
several clock cycles to complete. While this has the benefit
of considerably shortening the program size, it requires a
complex semaphore mechanism between the controller and
the d-unit bank to manage resources allocation and to
prevent stalling.
 The controller fetches and schedules instructions one
after another until one of them requires resources that have
been already allocated, as can be the case for a d-memory or

v7

v8

v9

v0

v1

v2

v3

v4 v5 v6

(a)

arith0.mul(v0,v1);
arith1.mul(v0,v2)
v7 = comm0.ed(arith0,v3)
v8 = arith2.sub(v4, arith1)
comm1.qt(arith2,v5)
v9 = arith3.mul(comm1,v6)

(b)

Fig. 2. Macros implementation: block diagram (a) and assembly code (b).

arith0.mul

arith1.mul arith2.sub comm1.qt arith3.mul

comm0.ed

(a)

arith0.mul

comm0.ed

arith1.mul

arith2.sub

comm1.qt

arith3.mul

(b)
Fig. 3. Macro timing diagram when using d-instruction parallelism only
(a) and both parallelism and pipelining (b).

macro
p1

macro
p2

v4 v5 v6v0

v1 v2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

macro
p0

(a)

macro
p1

macro
p2

r4 r5 v6

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

v0

v1 v2

macro
p0

(b)

Fig. 4. Pipeline builder (a) and pipeline optimization through the use of
memory aliasing (b).

703

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

another d-unit. It then waits until the execution of the
instructions using those resources has been completed. This
mechanism has the major benefit of being agnostic with
respect to the latency of each d-unit, requiring the controller
to be notified only when a resource has been released. A
side benefit of such policy is that b-instructions executed
right after the scheduling of d-instructions do not cause
additional delay. The latter consideration inherently suggests
that maximum efficiency can be reached only using vectors
large enough to absorb b-instruction execution.

3.3. UNITS PIPELINING

As previously stated, routing mesh can be instructed to
directly connect units. Pipelined processing is the key
enabler for high computational efficiency, since it allows
propagating data from unit to unit without needing to store
intermediate results for subsequent processing.

3.4. MACROS

Macros can be seen as a set of d-instruction combining
parallel and pipelined processing. Macros directly translate
into block diagrams, as the one represented in Fig. 2.
 The corresponding assembly code (b) clearly shows the
data dependencies, and both parallelism and pipelining level
among units. Timing diagrams of Fig. 3 show the consistent
advantage when using units pipelining.

3.5. PIPELINE BUILDER AND MEMORY ALIAS

Optimized coarse-grain operations implemented through
macros can be in turn pipelined by using the pipeline
builder. It consists of a set of b-instructions specifically
designed to further optimize the execution. Using those
instructions the programmer marks each macro as part of a
pipeline and sets the rules for data exchange between the
pipeline stages.
 Fig. 4(a) shows a 3-stage pipeline implemented using
the pipeline builder. Since pipeline stages are typically
decoupled by memories, additional instructions are provided
to implement ping-pong mechanism among those memories.
These instructions allow defining a register as a memory
alias, i.e. a placeholder for any memory of the d-memory
bank. Once the memory alias register has been defined, its
content can be toggled so as to implement ping-pong
mechanism according to the stage of the processing. Fig. 4
(b) shows how memory aliasing can be used to overcome
conflicts on shared memories.

4. MAPPING THE ALGORITHM ON THE BPE

Mapping consists of breaking the algorithm into computing
elements and then re-grouping them in a set of macros so as
to build a pipeline.
 From the system perspective, LORD algorithm basically
performs two operations: constellation sweeping and soft-
output generation.
 Constellation sweeping consists of computing M2 EDs
per antenna to demodulate M2-QAM symbols [7]. This can
be graphically seen as the tree traversal of Fig. 5(a), showing
the computation of the EDs for a 2×R transmission scheme
(T = 2). Each ED is the result of the summation of T Partial
Euclidean Distances (PEDs), where the PED is defined as
the sum of two independent squares related to the I and Q
components of a given complex symbol.
 For each candidate complex symbol of the reference
layer, constellation sweeping involves the operations
hereafter summarized:

1. compute the PED metrics of the reference layer;
2. compute the PED metrics of each subsequent layer

based on spatial DFE;
3. compute the ED metrics as sum of all the PEDs.

Reference
Layer

Subsequent
Layer

ED

PED1

PED2

(a)

b0
b1

b2

b3
b4

b5
(b)

Fig. 5. MIMO tree traversing according to LORD (a) and 64-QAM
constellation partitioning for LLR computation (b).

704

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 Soft-output generation consists of finding the minimum
ED among the EDs obtained from constellation sweeping
and then computing the LLRs according to (5). The
constellation partition depends on the modulation order and
the evaluated bit, as shown in Fig. 5(b) for a 64-QAM
modulation (darker areas identify EDs with XT having bT,1 =
1).
 Once parallelism and dependencies among data have
been identified, the algorithm has been translated into the 3-
stage pipeline described in Fig. 6. Macros from (a) to (c)
implement the different stages (from p0 to p2) of the
pipeline.
 More specifically, the stage p0 implements the
computation of the PED for the reference layer (PED1) and
part of the PED for subsequent layer (PED2), including the
DFE processing. At this stage, the two layers are
independent and thus the calculation of both PED can be
performed in parallel, with evident advantage in terms of
throughput.
 Stage p1 mainly compute the ED from the PEDs coming
from stage p0. It must be noted that calculation of PED2 has
been split among the two stages p0 and p1 to reduce the
latency of stage p0.

 Stage p2 collects all the EDs generated by the stage p0
and p1 and evaluate the LLR according to (5).
 Assembly template implementing the 3-stage pipeline is
shown in Fig. 6(d). Pipeline is defined through the pipeline
builder instructions. Each stage is delimited by the
corresponding label and the pipe() instruction. Pipeline
stages make use of memory aliasing, implemented through
malias() and mtoggle() instructions. This allows completely
filling the pipeline, as shown in Fig. 6(e).
 To fully support data parallelism, the BPE has been
equipped with a d-unit bank consisting of 18 units chosen
among arith , vect and comm types. Both arith and vect
units offer general purpose fine-grain instructions devoted to
complex arithmetic and vector manipulation respectively,
while comm units provide the programmer with a set of
dedicated, but still general purpose instructions within the
telecommunications domain. Instructions belonging to the
comm unit allows, among the others, to calculate the ED
between complex numbers, to implement a step function
(here used for slicing operation within the DFE) and to
compute Gray mapping.
 The scheme of Fig. 6 implements LORD algorithm for a
generic layer, starting from the processed received signal (3)
up to the LLR generation (5). It allows computing one ED

v0

v1

v2

v3

v4 v5 v6

r0

r1

PED1

DFE

PED2

r2

pipe.def(test)
pipe.set(p0)
pipe.set(p1)
pipe.set(p2)

r0 = malias()
r1 = malias()
r2 = malias()
r3 = malias()

// Gray mapping
v0 = comm0.gray(mod_order)

p0: // macro p0 implementation
carrier_cnt = add(carrier_cnt,1)
test = cmp.eq(carrier_cnt,`NB_CARRIER)
pipe(test)

p1: // macro p1 implementation
r0 = mtoggle(v10,v11)
r1 = mtoggle(v12,v13)
r2 = mtoggle(v14,v15)
pipe(test)

p2: // macro p2 implementation
add(llr_cnt,1)
r3 = mtoggle(v16,v17)
pipe(test)

(a)

r1

r2 r0

r3

ED
PED2

(b)

r3 v7

v8

v9

LLR

(d)

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

(c) (e)

Fig. 6. LORD 3-stage pipeline: macros block diagrams (a, b and c respectively), assembly code template (d) and pipeline timing diagram (e).

705

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

for each clock cycle, i.e. the same throughput achieved by
dedicated hardware architectures, as the one implemented
in [10].
 The scheme of Fig. 6 is able to process vectors of
different lengths. The programmer can choose to process
data on an OFDM subcarrier-by-subcarrier basis, or to take
advantage of longer vectors by evaluating groups of
subcarriers. It must be noted that, especially for low
modulation orders, the vector length of one subcarrier (M2)
can result too short to absorb the execution time of the b-
instructions controlling the data flow. This ultimately
slightly degrades the throughput.

5. RESULTS

Fig. 7 shows the processing time as a function of the vector
length (expressed in number of OFDM subcarriers): the
values below the gray area satisfy the real-time processing
requirements of a MIMO WLAN transmission (i.e, 4 µs) [1].
The plot shows 16-QAM and 64-QAM modulations, for
both a single BPE and a cluster of 4 BPEs running at a clock
frequency of 350 MHz. The 16-QAM modulation can be
real-time processed by a single BPE using a minimum vector
length of 13 subcarriers, while for the most demanding 64-
QAM modulation a cluster of 4 BPEs is needed.
 Lastly, TABLE I summarizes the specification and the
implementation results of the above configuration.

6. ACKNOWLEDGEMENTS

The authors would like to thank their colleague M. Siti for
his valuable contributions on the LORD algorithm
understanding.

7. REFERENCES

[1] A. Stephens et. al., “Draft amendment to […]-part 11:

Wireless lan medium access control (MAC) and physical
layer (PHY) specifications: Enhancements for higher
throughput,” IEEE P802.11nTM/D2.0, 2008.

[2] C. Studer, A. Burg, and H. Bölcskei, “Soft-output sphere
decoding: algorithms and VLSI implementation,” IEEE
Journal on Selected Areas in Communications, vol. 26, no. 2,
pp. 290–300, February 2008.

[3] T. Cupaiuolo, M. Siti, and A. Tomasoni, “Low-complexity
high throughput VLSI architecture of soft-output ML MIMO
detector,” in DATE. IEEE, 2010, pp. 1396-1401.

[4] O. Paker, S. Eckert and A. Bury, “A Low Cost Multi-Standard
Near-Optimal Soft-Output Sphere Decoder: Algorithm and
Architecture,” in DATE, 2010, pp. 1402–1407.

[5] B. Bougard, B. De Sutter, S. Rabou, D. Novo, O. Allam,
S. Dupont, L. Van der Perre, “A Coarse-Grained Array based
Baseband Processor for 100Mbps+ Software Defined Radio”,
DATE. IEEE, 2008.

[6] S. Eberli, A. Burg, and W. Fichtner, “Implementation of a
2×2 MIMO-OFDM receiver on an application specific
processor,” Microelectron. J., vol. 40, no. 11, pp. 1642–1649,
2009.

[7] M. Siti and M. Fitz, “A novel soft-output layered orthogonal
lattice detector for multiple antenna communications,” in
IEEE International Conference on Communications, ICC’06,
vol. 4, 2006.

[8] M. Li, R. Fasthuber, D. Novo, B. Bougard, L. V. der Perre,
and F. Catthoor, “Algorithm-architecture co-design of soft-
output ML MIMO detector for parallel application specific
instruction set processors.” in DATE. IEEE, 2009, pp. 1608–
1613.

[9] D. Lo Iacono, J. Zory, E. Messina, N. Piazzese, G. Saia, and
A. Bettinelli, “ASIP architecture for multi-standard wireless
terminals,” in DATE. IEEE, 2006, pp. 118–123.

[10] P. Bhagawat, R. Dash, and G. Choi, “Dynamically
reconfigurable soft output MIMO detector,” in ICCD, 2008,
pp. 68–73.

TABLE I
BPE SPECIFICATIONS AND IMPLEMENTATION RESULTS
(STMICROELECTRONICS 65NM CMOS TECHNOLOGY)

ARCHITECTURE SPECIFICATION

instructions type fine-grain
D-unit bank size 18
D-unit bank customization arith (8) – vect (6) – comm (4)
Register file 32×16 bit
D-memory bank size 18×256×32 bit
I-memory 512×32 bit

IMPLEMENTATION RESULTS

1 BPE

cluster of
4 BPEs

Clock 350 MHz
Area 0.9 mm2 3.9 mm2
Max Gops (16-bit real ops) 12 Gops 48 Gops
Near-ML detector Gops 9.6 Gops 38.4 Gops
Utilization (%) 80 %
Throughput (16/64-QAM) 50/40 Mbps 185/150 Mbps

0

5

10

15

20

25

1 4 13 52

pr
oc

es
si

ng
 ti

m
e

(µs
)

vector length (number of carriers)

16-QAM

64-QAM

64-QAM

16-QAM

1xBPE
4xBPE

Fig. 7. Processing time with 1 BPE and a cluster of 4 BPEs (dotted) as a
function of the vector length (number of carriers).

706

