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ABSTRACT 
 
We present a Cognitive Radio Framework (CRF), an 
extension of the Ontology-Based Radio, which makes use of 
the LiveKB [5] component to interface an inference engine 
with a SDR. LiveKB provides a generic, SDR-independent 
interface for accessing radio's knobs and meters, which 
enables the CRF to support knowledge reusability across 
different SDRs. We explain how the SDR experts can 
benefit from this design; we describe the challenges 
encountered while implementing the prototype, and 
demonstrate how we integrated the CRF with the GNU 
Radio toolkit. 
 

1. INTRODUCTION 
 
Developing the Cognitive Radio (CR) architecture on top of 
a SDR platform requires two features: 1) access to the 
radio's contextual information (meters) that comes from its 
self-awareness and from sensing its environment, and 2) the 
ability to alter the radio's operational behavior by modifying 
its parameters (knobs). Since different SDRs offer different 
knobs and meters, and different ways to access them, it is a 
challenge to design a CR architecture that would work with 
all or at least with most of the radio platforms. 
 A common solution to the problem of interfacing 
multiple software components is to introduce a public 
Application Programming Interface (API). This allows the 
developers to implement just one API and enable their 
software to interface with many components, developed 
independently. To ensure the quality of the API and to 
attract the majority of a community, APIs are standardized 
by organizations, rather than by single companies. Despite 
their obvious benefits, there are at least two drawbacks of 
using the standard APIs: 1) it takes a significant effort to 
change them, and 2) creating a new version that is not 
backwards-compatible results in losing the interface among 
the components that implement different versions of the 
standard. Currently, there is no standard API for the 

interface between a cognitive engine and SDR, though 
different groups in the community have published public 
APIs to serve this purpose. Among them is CR API [1] from 
the VTCROSS framework, the PAAL [2,3] layer from the 
Community-Based CR Architecture and Open Source 
Cognitive Radio (OSCR) Radio Interface (ORI) [4]. 
 We proposed [5] the LiveKB architecture – a platform-
independent extension of the Ontology-Based Radio (OBR) 
architecture, which utilizes ontologies and policies to enable 
the CR paradigm. Although the OBR was never fully 
implemented, it has been shown that it can be used to 
analyze the multipath structure [6], negotiate the length and 
structure of the equalizer training sequences [7], and 
dynamically extend network coverage and reachback [8]. 
Instead of relying on radio-specific APIs to interface the 
reasoner, the proposed architecture requires a thin, generic 
API for connecting with the inference engine that uses the 
software model of the radio platform to identify access paths 
to particular radio parameters (variables). This architecture 
is capable of maintaining the interface with the SDRs that 
change their APIs without the need of recoding the reasoner 
API due to the fact that the interface information is provided 
dynamically via the software model.  
 In this paper we present an improved design of the 
architecture, now called the Cognitive Radio Framework 
(CRF), with the focus on the reusability of expert 
knowledge. We describe the challenges encountered during 
its implementation and demonstrate how it can be used with 
a GNU Radio toolkit [9] and the Universal Software Radio 
Peripheral (USRP). 
 

2. THE COGNITIVE RADIO FRAMEWORK (CRF) 
 
The CRF architecture (Figure 1), although initially designed 
as an extension of the OBR [7], introduces numerous 
improvements to its predecessor. It consists of the following 
components: Monitor Service (MS), Reasoning Component 
(RC), Data In/Out (DIO) and LiveKB. The first two are 
inherited from the OBR: MS is responsible for passing 
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control messages between DIO and RC, and RC is used to 
process the expert knowledge. As a result of reasoning, new 

control messages can be generated and passed to DIO. DIO 
processes incoming messages and dispatches data to the 
application layer and control messages to MS. It also 
combines the outgoing data and control messages and 
broadcasts them using the SDR. All messages within CRF 
are passed asynchronously, using buffers. It is also noted 
that control messages need to be transferred between radios 
in a reliable fashion, thus DIO must implement a reliable 
transfer protocol, at least for the delivery of the control 
messages. Finally, LiveKB reads the SDR’s meters and sets 
its knobs according to the reasoner’s requests. 
 Since both the RC and LiveKB components are 
domain-independent, they are required to be configured 
with the domain-specific information. RC needs to be 
provided with the expert knowledge in the form of CR 
ontology and rules, and LiveKB requires the CR ontology, 
SDR’s software model and a mapping between the two.  
 
2.1. CRF Interfaces 
  
The main objective in designing CRF was to support the 
reusability of knowledge, thus our goal was to rely on SDR-
specific interfaces as little as possible. Three APIs are 
involved in the design of the CRF architecture: Rx/Tx, 
Reasoner and Get/Set. 
 
2.1.1. Rx/Tx API 

The only radio domain-specific interface used in CRF is the 
Rx/Tx API – the interface between the radio’s physical layer 

and the DIO component. It is used to transmit and receive 
data to and from the SDR, respectively. Unfortunately, there 
is no standard way to access SDR and thus, similarly as the 
existing architectures, CRF utilizes a custom interface. SDR 
is required to act as a CORBA server providing clients 
means to transmit and receive data using the callback 
mechanism. Rx/Tx API is used only to transmit/receive 
data. Thus, currently, the API includes only the following 
methods (using the IDL syntax): 
 
interface SDRListener { 

 onRx(in string msg, in boolean corrupted); 
}; 
 

interface SDR { 

 tx(in string msg); 

 void addRxListener(in SDRListener l); 

 void removeRxListener(in SDRListener l); 

}; 

   
 Developing a universal CR architecture would require 
that the transceiver API was developed by the wireless 
community as a standard. There is an ongoing effort to 
develop such an API [10], however, it goes well beyond the 
needs of the CRF architecture. Nevertheless, Rx/Tx API 
could be replaced with the standard and still support the 
reusability. It is noted that the dependence on a particular 
transceiver interface does not affect the reusability of expert 

Figure 1. Cognitive Radio Framework (CRF) architecture 
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knowledge, because the ontology and rules are associated 
with the radio’s parameters via LiveKB’s generic API, not 
via the Rx/Tx API. 
 
 
2.1.2. Reasoner API 
The Reasoner API allows MS to pass control messages to 
the reasoning component and initiate inference. There are 
some public APIs that are available to serve this purpose, 
among them is the Description Logics Implementation 
Group (DIG) interface [11], OWL API [12], Storage and 
Inference Layer (SAIL) [13], Jena API [14] and the 
currently being developed API4KB [15]. Existing APIs for 
accessing the reasoner functionality differ significantly: they 
support different query languages and data formats. Each 
API is designed with a different philosophy in mind and it 
requires a fair amount of effort to add support for a new API 
to an existing piece of software. The design of a new API or 
a choice of one of the existing reasoner interfaces was not 
the focus of this research and will be a part of the future 
work. As of now, the interface consists of merely two 
methods, one to configure the reasoner and one to start it. 
 
2.1.3. Get/Set API 
The LiveKB component provides a thin and generic Get/Set 
API, which allows the reasoner to access and adjust radio’s 
parameters. This API, utilized from within the reasoner’s 
procedural attachments, is entirely domain-independent and 
consists of merely two methods: get(propertyName) and 
set(propertyName, newValue). The names of the 
properties passed to these methods correspond to the terms 
from the CR ontology, provided to the reasoner and to the 
LiveKB dynamically, at runtime. 
 LiveKB uses the provided ontology-model mapping to 
translate abstract requests from the reasoner to the SDR-
specific method invocations. Since the model is provided to 
LiveKB dynamically, it has no prior knowledge about it and 
it must use reflection to invoke the SDR methods. 
Reflection is a mechanism that allows programs to see their 
own structure at runtime. The only requirement is that the 
SDR’s knobs and meters are available through CORBA and 
registered with CORBA’s Naming Service. 
 The use of the generic interface provided by the 
LiveKB component yields several benefits: 1) it does not 
require the domain expert who writes the rules to know any 
radio-specific knobs and meters API, 2) the list of available 
parameters is not fixed – new parameters can be accessed in 
the future without the need to recode the interface, and 3) 
the expert knowledge captured in abstract, ontological terms 
can be reused across different SDRs, because it is expressed 
in SDR-independent terms. 
 
2.2. Roles and artifacts 
 

Since both the reasoner and LiveKB are domain-
independent, they need to be configured with radio-specific 
information. This task needs to be carried out by domain 
experts and by the SDR vendors. The CRF architecture 
provides both parties with a reasonable separation of 

concerns. Figure 2 shows both roles and artifacts that they 
are responsible for producing. 
 Domain experts express the knowledge related to the 
CR in two forms: CR Ontology and CR Rules. On the other 
hand, in order to make their products compatible with CRF, 
SDR vendors provide the SDR software model and a 
mapping between the model and the CR ontology.  
 The artifact that binds the efforts from both roles is the 
mapping between the software model and the ontology. To 
maintain the interface between LiveKB and the SDR, it 
needs to be updated upon changes made to the ontology or 
to the model. For this reason, we recommend standardizing 
the CR ontology in order to decrease the amount of 
necessary maintenance of the mapping. Such a standard 
ontology would give the vendors the freedom to develop 
their radios according to their needs, yet still making it 
possible to be compatible with the CRF framework. There is 
an ongoing effort [16, 17] to develop such ontology. It is 
noted, that updating the mapping does not require any 
recoding of the interface because the mapping is provided to 
CRF at runtime. 
 
2.3. Behavioral description 
 
The operation of CRF can be broken down into two stages: 
initialization and runtime. To better understand what 
happens at each stage, we give a brief behavioral description 
for each of them. 
 
2.3.1. Initialization stage 
During the first stage, LiveKB is provided with the CR 
ontology, the SDR’s software model, and a mapping from 
the model to the ontology. Next, the reasoning component is 
supplied with the CR ontology and rules. 
 The initialization of both components can be done 
offline – using an external configuration file, located in the 
local file system. Alternatively, it could be performed online 

Figure 2. CRF roles and artifacts 
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– by executing specific methods. However, the online 
configuration would require implementing a dedicated API, 
which prevents legacy software from being used without 

modification. It is likely, that the CRF implementation will 
permit both styles of initialization. 
2.3.2. Runtime stage 
Once LiveKB and the reasoner are initialized, Data In/Out 
can start exchanging messages with other radios. When a 
control message is received, it is passed to MS, which then 
runs the reasoner. Depending on the current state of the 
radio’s parameters, some rules might fire one of the 
procedural attachments provided by LiveKB – get or set. 
When this happens, LiveKB uses the provided mapping and 
translates the name of the parameter to the access path, 
specific to the underlying SDR. Using reflection, LiveKB 
executes methods on the access path and updates or 
retrieves a value of the desired parameter. Finally, LiveKB 
must also update the ontology to reflect the changes made to 
the radio’s parameters. 
 We illustrate the CRF runtime stage using a UML 
sequence diagram (Figure 3). This diagram corresponds to 
the use case when the radio receives a control message and 
passes it to the MS component. MS runs the reasoner, which 
in turn triggers a rule, which utilizes LiveKB’s get 
procedural attachment. As a result of reasoning, new control 
messages are generated and passed to the MS for broadcast. 
 

3. CURRENT STATE OF THE IMPLEMENTATION 
  
At the present time a limited functional prototype of CRF 
has been implemented. We were able to use the same 
ontology and rules to interface a mockup software radio 
component implemented in two different languages – Java 
and Python. In addition, we successfully integrated CRF 
with a GNU-Radio based SDR (described below) and were 

able to read and change values of some parameters while the 
radio was in operation. 
 CRF requires that the SDR objects are available via the 

CORBA middleware, thus CRF itself could be implemented 
in any language that supports this technology. In our 
prototype all CRF components are implemented in Java and 
we chose BaseVISor [18] for the implementation of the 
reasoning component. Since BaseVISor is written in Java, 
delegating procedural attachments to the LiveKB 
component was straightforward. The asynchronous message 
passing between MS, DIO and the application layer was 
implemented using the Java Message Service (JMS). JMS is 
a message-oriented middleware, which implements the 
publish/subscribe paradigm, suitable for our needs. 
 We have not yet implemented the mechanism for the 
mapping between the model and the ontology. Because of 
that limitation we still assumed a tree structure of the model 
and the names of CORBA attributes were required to be 
unique in the global scope and correspond directly to the 
names of properties in the OWL ontology. 
 Before the implementation can be completed, some 
decisions still need to be made at the design level. Most 
importantly we need to settle on the choice of APIs for 
controlling the reasoner and for the SDR platform. It would 
be best if the latter were a standard developed by the 
wireless community, e.g., the Wireless Innovation Forum. 
 
3.1. Prototype example 
  
We illustrate how a prototype mapping between a model 
and an ontology was implemented using a trivial example. 
Figure 4 shows a sample CR ontology, which includes two 
OWL classes: SimpleSDR and Channel, one OWL 
object property hasChannel, two OWL datatype 
properties hasId and hasMaxThroughput, and one 

Figure 3. CRF during the runtime stage 
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annotation rdfs:label, which denotes the root object of 
the SDR. More classes could be easily added, as long as 
there is only one that is annotated with the “LIVEKB-
ROOT” label and the classes form a tree structure without 
cycles. 
 Because the mapping between the ontology and the 
model is assumed to be in 1-1 relation, the corresponding 
IDL model must look as follows: 
 
interface SimpleSDR { 
 attribute Channel hasChannel; 
}; 
 
interface Channel { 
 attribute string hasId; 
 attribute float hasMaxThroughput; 
}; 
 
 In a 1-1 mapping, all OWL classes must have 
corresponding interfaces in the IDL, and all OWL properties 
must correspond to IDL attributes. Using the prototype, any 
software that implements the IDL definitions could be 
monitored and controlled from within the rules that make 
use of the ontological terms and pass them to the get and 
set procedural attachments implemented by LiveKB. 
 

4. CRF WITH GNU RADIO AND USRP 
 
CRF has been successfully tested with the GNU Radio 
toolkit and the USRP hardware. GNU Radio is a popular 
open source software development toolkit that provides 
signal processing runtime and processing blocks to 
implement software radios using low-cost RF hardware and 
commodity processors [10]. The toolkit offers a Python 
interface to implement waveform applications, although the 
performance-critical signal processing part is implemented 
in C++. It is a suitable platform for testing the CRF 
framework for two reasons: 1) it allows for rapid application 

development due to the use of a dynamic language, and 2) it 
is available on a range of operating systems. 
 USRP belongs to a family of products that allows for 
creating a high bandwidth SDR with a use of a general-
purpose computer. GNU Radio is its natural companion 
because the toolkit was originally designed for that 
hardware, although USRP can be utilized without it. 
 Since numerous CR use cases [6,7,8] require a reliable 
exchange of control messages and since the GNU platform 
we used does not support this feature, our DIO component 
implemented the Selective Repeat (SR) protocol [19], used 
for the reliable data transfer. The DIO component sends and 
receives packets from the physical layer of the GNU radio 
using the CORBA middleware; it performs retransmission 
when the PHY packets are not acknowledged and buffers 
packets that are acknowledged out of order. Once 
acknowledged in order, packets are delivered to the 
appropriate JMS buffers. Currently, SR is implemented to 
work only between two nodes; in the future we will extend 
this protocol to allow for message exchanges between 
numerous radios. 
 In our experiments we modified the tunnel.py 
transceiver flow graph provided with the GNU Radio 
toolkit, to act as a CORBA server. Clients, written in any 
language that supports CORBA, can receive and transmit 
packets directly from the PHY layer. A second CORBA 
object, representing the model of the SDR, is registered with 
the CORBA’s Naming Service and allows the LiveKB 
component to get and set values of some parameters while 
the flow graph is running. At the configuration stage, both 
the CR ontology and the SDR’s IDL model are passed to 
LiveKB. 
 This setup allows the application layer to transmit data 
between radios, but also enables the modification of their 
operational parameters from within the rules. For instance, 
the following rule, written using the BaseVISor syntax, was 
successfully fired and resulted in modifying the value of the 
radio’s carrier sense threshold in runtime: 
 
<rule name="AdjustCST"> 
  <body> 
    <Individual rdf:type="rad:SDRModel"> 
      <rad:hasCST variable="currentCST"/> 
    </Individual> 
  <equals> 
  <currentCST/> 
  <param>30</param> 
 </equals> 
</body> 
  <head> 
    <set> 
      <param>rad:hasCST</param> 
      <param>35</param> 
    </set> 

Figure 4. Sample CR ontology used in the prototype 
implementation 
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  </head> 
</rule> 
 
 Although the rule merely increments the value of the 
threshold by an arbitrary value, it could be easily extended 
to include a condition, e.g. decrease the threshold given that 
the average time to send one packet has reached some value. 
This rule, however, demonstrates that there is no SDR-
specific knowledge necessary to write the rule; all terms 
come from the ontology. Thus, domain experts may develop 
rules focusing on the abstract terms, regardless of the 
underlying SDR platform. 
 

5. DISCUSSION AND FUTURE WORK 
 
The CRF architecture supports the reuse of ontologies and 
rules written by domain experts. It enables the use of rules 
written by domain experts, rather than programmers and 
allows the rules to capture the generic domain knowledge, 
rather than the knowledge of a given radio implementation. 
We advocate the standardization of the CR ontology, rather 
than developing standard APIs. This has several advantages: 
1) ontology is not a part of the hard-coded design; it is 
provided dynamically, thus changes to it do not require 
recoding of the architecture; 2) ontology is an abstract 
representation of the knowledge about the entire domain, 
not about a particular technology or a platform, thus once 
standardized, changes to it should occur less frequently; 3) 
ontologies can be created by domain experts without the 
knowledge of a particular software or hardware, thus it 
provides a better separation of concerns. 
 As part of the future work we will extend the 
implementation to allow arbitrary mapping between the 
model and the ontology. Moreover, we will settle on the 
choice of the API for the SDR platform and the reasoning 
component. The next important step will be to integrate 
CRF with the SCA-based SDRs and execute CR scenarios 
on heterogeneous radios using the same set of ontologies 
and rules. 
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