

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

INTERFACING A REASONER WITH AN SDR USING A THIN, GENERIC API:

A GNU RADIO EXAMPLE*

Jakub Moskal (Northeastern University, Boston, MA, USA; jmoskal@ece.neu.edu);
Mieczyslaw M. Kokar (Northeastern University, Boston, MA, USA;

mkokar@ece.neu.edu); Shujun Li (Northeastern University, Boston, MA, USA;
shli@ece.neu.edu)

* Approved for Public Release, Distribution Unlimited

ABSTRACT

We present a Cognitive Radio Framework (CRF), an
extension of the Ontology-Based Radio, which makes use of
the LiveKB [5] component to interface an inference engine
with a SDR. LiveKB provides a generic, SDR-independent
interface for accessing radio's knobs and meters, which
enables the CRF to support knowledge reusability across
different SDRs. We explain how the SDR experts can
benefit from this design; we describe the challenges
encountered while implementing the prototype, and
demonstrate how we integrated the CRF with the GNU
Radio toolkit.

1. INTRODUCTION

Developing the Cognitive Radio (CR) architecture on top of
a SDR platform requires two features: 1) access to the
radio's contextual information (meters) that comes from its
self-awareness and from sensing its environment, and 2) the
ability to alter the radio's operational behavior by modifying
its parameters (knobs). Since different SDRs offer different
knobs and meters, and different ways to access them, it is a
challenge to design a CR architecture that would work with
all or at least with most of the radio platforms.
 A common solution to the problem of interfacing
multiple software components is to introduce a public
Application Programming Interface (API). This allows the
developers to implement just one API and enable their
software to interface with many components, developed
independently. To ensure the quality of the API and to
attract the majority of a community, APIs are standardized
by organizations, rather than by single companies. Despite
their obvious benefits, there are at least two drawbacks of
using the standard APIs: 1) it takes a significant effort to
change them, and 2) creating a new version that is not
backwards-compatible results in losing the interface among
the components that implement different versions of the
standard. Currently, there is no standard API for the

interface between a cognitive engine and SDR, though
different groups in the community have published public
APIs to serve this purpose. Among them is CR API [1] from
the VTCROSS framework, the PAAL [2,3] layer from the
Community-Based CR Architecture and Open Source
Cognitive Radio (OSCR) Radio Interface (ORI) [4].
 We proposed [5] the LiveKB architecture – a platform-
independent extension of the Ontology-Based Radio (OBR)
architecture, which utilizes ontologies and policies to enable
the CR paradigm. Although the OBR was never fully
implemented, it has been shown that it can be used to
analyze the multipath structure [6], negotiate the length and
structure of the equalizer training sequences [7], and
dynamically extend network coverage and reachback [8].
Instead of relying on radio-specific APIs to interface the
reasoner, the proposed architecture requires a thin, generic
API for connecting with the inference engine that uses the
software model of the radio platform to identify access paths
to particular radio parameters (variables). This architecture
is capable of maintaining the interface with the SDRs that
change their APIs without the need of recoding the reasoner
API due to the fact that the interface information is provided
dynamically via the software model.
 In this paper we present an improved design of the
architecture, now called the Cognitive Radio Framework
(CRF), with the focus on the reusability of expert
knowledge. We describe the challenges encountered during
its implementation and demonstrate how it can be used with
a GNU Radio toolkit [9] and the Universal Software Radio
Peripheral (USRP).

2. THE COGNITIVE RADIO FRAMEWORK (CRF)

The CRF architecture (Figure 1), although initially designed
as an extension of the OBR [7], introduces numerous
improvements to its predecessor. It consists of the following
components: Monitor Service (MS), Reasoning Component
(RC), Data In/Out (DIO) and LiveKB. The first two are
inherited from the OBR: MS is responsible for passing

SDR'10 Session 7A- 3

628

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

control messages between DIO and RC, and RC is used to
process the expert knowledge. As a result of reasoning, new

control messages can be generated and passed to DIO. DIO
processes incoming messages and dispatches data to the
application layer and control messages to MS. It also
combines the outgoing data and control messages and
broadcasts them using the SDR. All messages within CRF
are passed asynchronously, using buffers. It is also noted
that control messages need to be transferred between radios
in a reliable fashion, thus DIO must implement a reliable
transfer protocol, at least for the delivery of the control
messages. Finally, LiveKB reads the SDR’s meters and sets
its knobs according to the reasoner’s requests.
 Since both the RC and LiveKB components are
domain-independent, they are required to be configured
with the domain-specific information. RC needs to be
provided with the expert knowledge in the form of CR
ontology and rules, and LiveKB requires the CR ontology,
SDR’s software model and a mapping between the two.

2.1. CRF Interfaces

The main objective in designing CRF was to support the
reusability of knowledge, thus our goal was to rely on SDR-
specific interfaces as little as possible. Three APIs are
involved in the design of the CRF architecture: Rx/Tx,
Reasoner and Get/Set.

2.1.1. Rx/Tx API

The only radio domain-specific interface used in CRF is the
Rx/Tx API – the interface between the radio’s physical layer

and the DIO component. It is used to transmit and receive
data to and from the SDR, respectively. Unfortunately, there
is no standard way to access SDR and thus, similarly as the
existing architectures, CRF utilizes a custom interface. SDR
is required to act as a CORBA server providing clients
means to transmit and receive data using the callback
mechanism. Rx/Tx API is used only to transmit/receive
data. Thus, currently, the API includes only the following
methods (using the IDL syntax):

interface SDRListener {

 onRx(in string msg, in boolean corrupted);
};

interface SDR {

 tx(in string msg);

 void addRxListener(in SDRListener l);

 void removeRxListener(in SDRListener l);

};

 Developing a universal CR architecture would require
that the transceiver API was developed by the wireless
community as a standard. There is an ongoing effort to
develop such an API [10], however, it goes well beyond the
needs of the CRF architecture. Nevertheless, Rx/Tx API
could be replaced with the standard and still support the
reusability. It is noted that the dependence on a particular
transceiver interface does not affect the reusability of expert

Figure 1. Cognitive Radio Framework (CRF) architecture

629

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

knowledge, because the ontology and rules are associated
with the radio’s parameters via LiveKB’s generic API, not
via the Rx/Tx API.

2.1.2. Reasoner API
The Reasoner API allows MS to pass control messages to
the reasoning component and initiate inference. There are
some public APIs that are available to serve this purpose,
among them is the Description Logics Implementation
Group (DIG) interface [11], OWL API [12], Storage and
Inference Layer (SAIL) [13], Jena API [14] and the
currently being developed API4KB [15]. Existing APIs for
accessing the reasoner functionality differ significantly: they
support different query languages and data formats. Each
API is designed with a different philosophy in mind and it
requires a fair amount of effort to add support for a new API
to an existing piece of software. The design of a new API or
a choice of one of the existing reasoner interfaces was not
the focus of this research and will be a part of the future
work. As of now, the interface consists of merely two
methods, one to configure the reasoner and one to start it.

2.1.3. Get/Set API
The LiveKB component provides a thin and generic Get/Set
API, which allows the reasoner to access and adjust radio’s
parameters. This API, utilized from within the reasoner’s
procedural attachments, is entirely domain-independent and
consists of merely two methods: get(propertyName) and
set(propertyName, newValue). The names of the
properties passed to these methods correspond to the terms
from the CR ontology, provided to the reasoner and to the
LiveKB dynamically, at runtime.
 LiveKB uses the provided ontology-model mapping to
translate abstract requests from the reasoner to the SDR-
specific method invocations. Since the model is provided to
LiveKB dynamically, it has no prior knowledge about it and
it must use reflection to invoke the SDR methods.
Reflection is a mechanism that allows programs to see their
own structure at runtime. The only requirement is that the
SDR’s knobs and meters are available through CORBA and
registered with CORBA’s Naming Service.
 The use of the generic interface provided by the
LiveKB component yields several benefits: 1) it does not
require the domain expert who writes the rules to know any
radio-specific knobs and meters API, 2) the list of available
parameters is not fixed – new parameters can be accessed in
the future without the need to recode the interface, and 3)
the expert knowledge captured in abstract, ontological terms
can be reused across different SDRs, because it is expressed
in SDR-independent terms.

2.2. Roles and artifacts

Since both the reasoner and LiveKB are domain-
independent, they need to be configured with radio-specific
information. This task needs to be carried out by domain
experts and by the SDR vendors. The CRF architecture
provides both parties with a reasonable separation of

concerns. Figure 2 shows both roles and artifacts that they
are responsible for producing.
 Domain experts express the knowledge related to the
CR in two forms: CR Ontology and CR Rules. On the other
hand, in order to make their products compatible with CRF,
SDR vendors provide the SDR software model and a
mapping between the model and the CR ontology.
 The artifact that binds the efforts from both roles is the
mapping between the software model and the ontology. To
maintain the interface between LiveKB and the SDR, it
needs to be updated upon changes made to the ontology or
to the model. For this reason, we recommend standardizing
the CR ontology in order to decrease the amount of
necessary maintenance of the mapping. Such a standard
ontology would give the vendors the freedom to develop
their radios according to their needs, yet still making it
possible to be compatible with the CRF framework. There is
an ongoing effort [16, 17] to develop such ontology. It is
noted, that updating the mapping does not require any
recoding of the interface because the mapping is provided to
CRF at runtime.

2.3. Behavioral description

The operation of CRF can be broken down into two stages:
initialization and runtime. To better understand what
happens at each stage, we give a brief behavioral description
for each of them.

2.3.1. Initialization stage
During the first stage, LiveKB is provided with the CR
ontology, the SDR’s software model, and a mapping from
the model to the ontology. Next, the reasoning component is
supplied with the CR ontology and rules.
 The initialization of both components can be done
offline – using an external configuration file, located in the
local file system. Alternatively, it could be performed online

Figure 2. CRF roles and artifacts

630

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

– by executing specific methods. However, the online
configuration would require implementing a dedicated API,
which prevents legacy software from being used without

modification. It is likely, that the CRF implementation will
permit both styles of initialization.
2.3.2. Runtime stage
Once LiveKB and the reasoner are initialized, Data In/Out
can start exchanging messages with other radios. When a
control message is received, it is passed to MS, which then
runs the reasoner. Depending on the current state of the
radio’s parameters, some rules might fire one of the
procedural attachments provided by LiveKB – get or set.
When this happens, LiveKB uses the provided mapping and
translates the name of the parameter to the access path,
specific to the underlying SDR. Using reflection, LiveKB
executes methods on the access path and updates or
retrieves a value of the desired parameter. Finally, LiveKB
must also update the ontology to reflect the changes made to
the radio’s parameters.
 We illustrate the CRF runtime stage using a UML
sequence diagram (Figure 3). This diagram corresponds to
the use case when the radio receives a control message and
passes it to the MS component. MS runs the reasoner, which
in turn triggers a rule, which utilizes LiveKB’s get
procedural attachment. As a result of reasoning, new control
messages are generated and passed to the MS for broadcast.

3. CURRENT STATE OF THE IMPLEMENTATION

At the present time a limited functional prototype of CRF
has been implemented. We were able to use the same
ontology and rules to interface a mockup software radio
component implemented in two different languages – Java
and Python. In addition, we successfully integrated CRF
with a GNU-Radio based SDR (described below) and were

able to read and change values of some parameters while the
radio was in operation.
 CRF requires that the SDR objects are available via the

CORBA middleware, thus CRF itself could be implemented
in any language that supports this technology. In our
prototype all CRF components are implemented in Java and
we chose BaseVISor [18] for the implementation of the
reasoning component. Since BaseVISor is written in Java,
delegating procedural attachments to the LiveKB
component was straightforward. The asynchronous message
passing between MS, DIO and the application layer was
implemented using the Java Message Service (JMS). JMS is
a message-oriented middleware, which implements the
publish/subscribe paradigm, suitable for our needs.
 We have not yet implemented the mechanism for the
mapping between the model and the ontology. Because of
that limitation we still assumed a tree structure of the model
and the names of CORBA attributes were required to be
unique in the global scope and correspond directly to the
names of properties in the OWL ontology.
 Before the implementation can be completed, some
decisions still need to be made at the design level. Most
importantly we need to settle on the choice of APIs for
controlling the reasoner and for the SDR platform. It would
be best if the latter were a standard developed by the
wireless community, e.g., the Wireless Innovation Forum.

3.1. Prototype example

We illustrate how a prototype mapping between a model
and an ontology was implemented using a trivial example.
Figure 4 shows a sample CR ontology, which includes two
OWL classes: SimpleSDR and Channel, one OWL
object property hasChannel, two OWL datatype
properties hasId and hasMaxThroughput, and one

Figure 3. CRF during the runtime stage

631

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

annotation rdfs:label, which denotes the root object of
the SDR. More classes could be easily added, as long as
there is only one that is annotated with the “LIVEKB-
ROOT” label and the classes form a tree structure without
cycles.
 Because the mapping between the ontology and the
model is assumed to be in 1-1 relation, the corresponding
IDL model must look as follows:

interface SimpleSDR {
 attribute Channel hasChannel;
};

interface Channel {
 attribute string hasId;
 attribute float hasMaxThroughput;
};

 In a 1-1 mapping, all OWL classes must have
corresponding interfaces in the IDL, and all OWL properties
must correspond to IDL attributes. Using the prototype, any
software that implements the IDL definitions could be
monitored and controlled from within the rules that make
use of the ontological terms and pass them to the get and
set procedural attachments implemented by LiveKB.

4. CRF WITH GNU RADIO AND USRP

CRF has been successfully tested with the GNU Radio
toolkit and the USRP hardware. GNU Radio is a popular
open source software development toolkit that provides
signal processing runtime and processing blocks to
implement software radios using low-cost RF hardware and
commodity processors [10]. The toolkit offers a Python
interface to implement waveform applications, although the
performance-critical signal processing part is implemented
in C++. It is a suitable platform for testing the CRF
framework for two reasons: 1) it allows for rapid application

development due to the use of a dynamic language, and 2) it
is available on a range of operating systems.
 USRP belongs to a family of products that allows for
creating a high bandwidth SDR with a use of a general-
purpose computer. GNU Radio is its natural companion
because the toolkit was originally designed for that
hardware, although USRP can be utilized without it.
 Since numerous CR use cases [6,7,8] require a reliable
exchange of control messages and since the GNU platform
we used does not support this feature, our DIO component
implemented the Selective Repeat (SR) protocol [19], used
for the reliable data transfer. The DIO component sends and
receives packets from the physical layer of the GNU radio
using the CORBA middleware; it performs retransmission
when the PHY packets are not acknowledged and buffers
packets that are acknowledged out of order. Once
acknowledged in order, packets are delivered to the
appropriate JMS buffers. Currently, SR is implemented to
work only between two nodes; in the future we will extend
this protocol to allow for message exchanges between
numerous radios.
 In our experiments we modified the tunnel.py
transceiver flow graph provided with the GNU Radio
toolkit, to act as a CORBA server. Clients, written in any
language that supports CORBA, can receive and transmit
packets directly from the PHY layer. A second CORBA
object, representing the model of the SDR, is registered with
the CORBA’s Naming Service and allows the LiveKB
component to get and set values of some parameters while
the flow graph is running. At the configuration stage, both
the CR ontology and the SDR’s IDL model are passed to
LiveKB.
 This setup allows the application layer to transmit data
between radios, but also enables the modification of their
operational parameters from within the rules. For instance,
the following rule, written using the BaseVISor syntax, was
successfully fired and resulted in modifying the value of the
radio’s carrier sense threshold in runtime:

<rule name="AdjustCST">
 <body>
 <Individual rdf:type="rad:SDRModel">
 <rad:hasCST variable="currentCST"/>
 </Individual>
 <equals>
 <currentCST/>
 <param>30</param>
 </equals>
</body>
 <head>
 <set>
 <param>rad:hasCST</param>
 <param>35</param>
 </set>

Figure 4. Sample CR ontology used in the prototype
implementation

632

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 </head>
</rule>

 Although the rule merely increments the value of the
threshold by an arbitrary value, it could be easily extended
to include a condition, e.g. decrease the threshold given that
the average time to send one packet has reached some value.
This rule, however, demonstrates that there is no SDR-
specific knowledge necessary to write the rule; all terms
come from the ontology. Thus, domain experts may develop
rules focusing on the abstract terms, regardless of the
underlying SDR platform.

5. DISCUSSION AND FUTURE WORK

The CRF architecture supports the reuse of ontologies and
rules written by domain experts. It enables the use of rules
written by domain experts, rather than programmers and
allows the rules to capture the generic domain knowledge,
rather than the knowledge of a given radio implementation.
We advocate the standardization of the CR ontology, rather
than developing standard APIs. This has several advantages:
1) ontology is not a part of the hard-coded design; it is
provided dynamically, thus changes to it do not require
recoding of the architecture; 2) ontology is an abstract
representation of the knowledge about the entire domain,
not about a particular technology or a platform, thus once
standardized, changes to it should occur less frequently; 3)
ontologies can be created by domain experts without the
knowledge of a particular software or hardware, thus it
provides a better separation of concerns.
 As part of the future work we will extend the
implementation to allow arbitrary mapping between the
model and the ontology. Moreover, we will settle on the
choice of the API for the SDR platform and the reasoning
component. The next important step will be to integrate
CRF with the SCA-based SDRs and execute CR scenarios
on heterogeneous radios using the same set of ontologies
and rules.

6. ACKNOWLEDGMENTS
This work has been partially supported by an ONR contract
No. N00014-05-C-0367 through VIStology, Inc. and a
DARPA contract through System Planning Corporation
(Agreement No. SRA-0775). The views, opinions, and
findings contained in this article are those of the author and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of
Defense.

7. REFERENCES

[1] B. Hilburn, W. Rodgers, T. R. Newman, and T. Bose,
“CROSS - a distributed and modular Cognitive Radio
framework”, SDR Technical Conference, Dec 2009

[2] A. Ginsberg, J.D. Poston and W.D. Horne, “Experiments in
Cognitive Radio and Dynamic Spectrum Access using An
Ontology-Rule Hybrid Architecture”, Second International
RuleML-2006 Conference, 2006

[3] A. Ginsberg, W.D. Horne and J.D. Poston, “Community-
Based Cognitive Radio Architecture: Policy-Compliant
Innovation via the Semantic Web”, New Frontiers in
Dynamic Spectrum Access Networks, DySPAN 2007,
pp.191—201, 17—20, Apr 2007

[4] E. Stuntebeck, T. OShea, J. Hecker, and T.C. Clancy,
“Architecture for an open-source cognitive radio”, SDR
Technical Conference, Nov 2006

[5] J. Moskal, and M.M. Kokar, “Interfacing a reasoner with an
SDR: A platform and domain API independent approach”,
SDR Technical Conference, Dec 2009

[6] J. Wang, D. Brady, K. Baclawski, M. Kokar, and L.
Lechowicz, “The use of ontologies for the self-awareness of
the communication nodes”, SDR Technical Conference, Nov
2003

[7] J. Wang, M.M. Kokar, K. Baclawski, and D. Brady,
“Achieving self-awareness of SDR nodes through ontology-
based reasoning and reflection”, SDR Technical Conference,
Nov 2004

[8] S. Li, M.M. Kokar, and J. Moskal, “Policy-driven Ontology-
Based Radio: A Public Safety Use Case”, SDR Forum
Technical Conference, Dec 2008

[9] E. Blossom, “GNU Radio: Tools for exploring the radio
frequency spectrum”, Linux Journal, no. 122, June 1, 2004

[10] E. Nicollet, and L. Pucker, “Standardizing Transceiver APIs
for Software Defined and Cognitive Radio”, RF Design
Magazine, pp.16-20, Feb 2008

[11] S. Bechhofer, R. Moller, and P. Crowther, “The DIG
description logic interface”, International Workshop on
Description Logics, 2003

[12] S.Bechhofer, R.Volz, and P.Lord, “Cooking the semantic web
with the OWL API”, pp.659–675, 2003

[13] J. Broekstra, A. Kampman, and F. van Harmelen, "Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema", International Semantic Web Conference, Jun 2002

[14] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A.
Seaborne, and K. Wilkinson, “Jena: implementing the
semantic web recommendations”, Proceedings of the 13th
international World Wide Web conference, May 2004

[15] Object Management Group, “API4KB Request for Proposal”,
http://www.omg.org/cgi-bin/doc?ontology/10-03-01.pdf

[16] S. Li, M.M. Kokar, and D.Brady, “Developing an ontology
for the cognitive radio: Issues and decisions”, SDR Technical
Conference, Dec 2009

[17] WIF Forum MLM Working Group, “Description of Cognitive
Radio Ontology v.1.0”, 2010

[18] C. Matheus, K. Baclawski, and M.M. Kokar, "BaseVISor: A
Triples-Based Inference Engine Outfitted to Process RuleML
and R-Entailment Rules", In Proceedings of the 2nd
International Conference on Rules and Rule Languages for
the Semantic Web, Athens, GA, Nov 2006

[19] J.E. Kurose, and K.W. Ross, Computer Networking – A Top
Down Approach, Addison Wesley, Boston, 2008

633

