
Chung-Ching Shen, William Plishker, Hsiang-Huang Wu, and
Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD

A Lightweight Dataflow Approach
for Design and Implementation of

SDR Systems

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

INTRODUCTION
 In SDR, designers attempt to

 Implement most of the complex
signal handling of radio using
software

 Rapidly target a variety of
platforms (retargetability)

 In modern, complex systems we
would like to
 Create an application description

independent of the targeted
platform

 Interface with a diverse set of tools
 Arrive at an initial prototype

quickly
 Achieve high performance, less

resource usage

Low level, high
performance,

implementation
FPGA

Programmable
DSP

GPU

?

Dataflow-based design is a specific form of
model-based design
 i.e., high level application subsystems are specified

in terms of components that interact through formal
models of computation

Dataflow model of computation
 Used widely in design tools for DSP
 Used widely for expressing the functionality of DSP

applications
 Application is modeled as a directed graph
 Data-driven execution model
 Iterative execution

MODEL-BASED DESIGN BASED ON
DATAFLOW MODEL OF COMPUTATION

EXAMPLE: DATAFLOW-BASED DESIGN
TOOLS FOR DSP

Example from Agilent ADS tool

Example from National Instruments
LabVIEW

Vertices (actors) represent computation
Edges represent FIFO buffers
Edges may have delays, implemented as initial

tokens
Tokens are produced and consumed on edges
Different models have different rules for

production and consumption (SDF=fixed,
CSDF=periodic, BDF=dynamic)

X Y 5Z
p1 c1 p2 c2

e1 e2

DATAFLOW GRAPHS AND SEMANTICS

 Divide actors into a set of modes
 Each mode has a fixed consumption and production behavior,

but actors may dynamically switch between modes.

 Write the enabling conditions for each mode
 Write the computation associated with each mode

 Including next mode to enable and then invoke

 For example, consider a standard Switch:

Production & consumption
behavior of switch modes

Production & consumption
behavior of switch modes

Mode Consumes Produces

Control Data True False

Control 1 0 0 0

True 0 1 1 0

False 0 1 0 1

Switch ActorSwitch Actor

SwitchSwitch

1

1

[1,0]

[0,1]
False

Output

True
Output

Control

Data

Mode transition
diagram

between switch modes

Mode transition
diagram

between switch modes

Control
Mode

True
Mode

False
Mode

EXAMPLE: CORE FUNCTIONAL
DATAFLOW (CFDF) MODEL OF
COMPUTATION

EVOLUTION OF DATAFLOW MODELS OF
COMPUTATION FOR DSP: EXAMPLES

 Computation Graphs and Marked Graphs [Karp 1966,
Reiter 1968]

 Synchronous dataflow, [Lee 1987]
 Static multirate behavior
 SPW (Cadence) , National Instruments LabVIEW,

and others.

 Well behaved stream flow graphs [1992]
 Schemas for bounded dynamics

 Boolean/integer dataflow [Buck 1994]
 Turing complete models

 Multidimensional synchronous dataflow [Lee 1992]
 Image and video processing

 Scalable synchronous dataflow [Ritz 1993]
 Block processing
 COSSAP (Synopsys)

 CAL [Eker 2003]
 Actor-based dataflow language

 Cyclo-static dataflow [Bilsen 1996]
 Phased behavior
 Eonic Virtuoso Synchro, Synopsys El Greco and

Cocentric,
Angeles System Canvas

 Bounded dynamic dataflow
 Bounded dynamic data transfer

[Pankert 1994]

 The processing graph method [Stevens,
1997]
 Reconfigurable dynamic dataflow
 U. S. Naval Research Lab, MCCI

Autocoding Toolset

 Stream-based functions [Kienhuis 2001]

 Parameterized dataflow [Bhattacharya
2001]
 Reconfigurable static dataflow
 Meta-modeling for more general

dataflow graph reconfiguration

 Reactive process networks [Geilen 2004]

 Blocked dataflow [Ko 2005]
 Image and video through

parameterized processing

 Windowed synchronous dataflow
[Keinert 2006]

 Parameterized stream-based functions
[Nikolov 2008]

 Enable-invoke dataflow [Plishker 2008]

 Variable rate dataflow [Wiggers 2008]

MODELING DESIGN SPACE OF
DATAFLOW

X
PSDF

X
PCSDF

E
x

p
r

e
s

s
iv

e
p

o
w

e
r

Verification / synthesis power

X
C, BDF, DDF

X
SDF

X
CSDF

X
CSDF, SSDFMDSDF,

WBDF

X

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

DESIGN FLOW

Actor library

Communication
library

Dataflow graph application

Graph transformation and
analysis

Scheduling and buffer
mapping

Graph-level
function/implementation

validation

Unit testing

Unit testing

X Y 5Zp1 c

1

p2 c2

e1 e2

X Y Z

e1

e2

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

LIGHTWEIGHT DATAFLOW
PROGRAMMING APPROACH

 LWDF
A dataflow programming approach for model-based

design and implementation of DSP systems.
 By ``lightweight‘’: minimally intrusive on existing design

processes, and require minimal dependence on
specialized tools or libraries.

 Features
 Improve the productivity of the design process and the

quality of derived implementations.
 Retargetability across different platforms.
 Allow designers to integrate and experiment with

dataflow modeling approaches relatively quickly and
flexibly into existing design methodologies and processes.

LWDF DESIGN PRINCIPLES I

Each actor has an operational context (OC),
which encapsulates
 parameters
 mode/status variables
 local variables
 references to the FIFOs

 corresponding to the input and output ports of the actor as a
component of the enclosing dataflow graph.

 reference to the execution functions of the actor.

OPERATIONAL CONTEXT – EXAMPLE OF
LWDF-C

inner
product

In1
(vector)

In2
(vector)

out inner
product

In2
(vector)

In3
(vector)

out

In1
(length)

(one mode) (two modes)

LWDF DESIGN PRINCIPLES II

Methods that are involved for the
implementation of an actor
 Construct: connects an actor to its input and output

edges (FIFO channels), and performs any other pre-
execution initialization associated with the actor.

 Execute: implements the operational semantics of a
dataflow model associated with an actor firing.
 e.g, enable and invoke functions of CFDF

 Terminate. performs any operations that are required
for ``closing out'' the actor after the enclosing graph
has finished executing

METHODS – EXAMPLE OF LWDF-C

inner
product

in1
in2

out

length STORE
LENGTH

PROCESS ERROR

ACTOR APIS IN LWDF-C
Type Definitions:
/* An actor’s operational context (OC). */
typedef struct {

/* parameters */
/* local and mode variables */
/* references to FIFO pointers */
/* reference to a pointer of actor’s execution functions */

} [actor_name]_context_struct;

/* A pointer to actor enable/invoke functions, which are functions that
executes an actor with a given context. */

typedef void (*actor_[enable/invoke]_function_type) (struct
actor_context_struct *context);

Key Methods:
[actor_name]_context_type *[actor_name]_new(…);
void [actor_name] enable([actor_name]_context_type *context);
void [actor_name] invoke([actor_name]_context_type *context);
void [actor_name] terminate([actor_name]_context_type *context);

ORTHOGONALIZING DATAFLOW
COMMUNICATION: FIFO

Each data item in the FIFO is referred to as a
"token“, and tokens can have arbitrary types
associated with them.

For a given FIFO instance, there is a fixed
token size (number of bytes per token).

Tokens have arbitrary types
 e.g., integers, floating point values (float or double),

characters, or pointers (to any kind of data).

FIFO APIS IN LWDF-C

Type Definitions:
/* A FIFO. */
typedef struct _fifo_struct fifo_type;
/* A pointer to a fifo. */
typedef fifo_type *fifo_pointer;

Key Methods:
fifo_pointer fifo_new(int capacity, int token_size);
int fifo_population(fifo_pointer fifo);
int fifo_capacity(fifo_pointer fifo);
void fifo_write(fifo_pointer fifo, void *data);
void fifo_write_block(fifo_pointer fifo, void *data, int size);
void fifo_read(fifo_pointer fifo, void *data);
void fifo_read_block(fifo_pointer fifo, void *data, int size);

IMPLEMENTATION IN VERILOG

LWDF-V
Dataflow actor ->Verilog module

 This module can contain arbitrary sub-modules for
complex actors

 This module can be behavioral or structural
 Actor port -> module port
 Actor constructor -> module instantiation

Step/Mode transition graph -> FSM within actor
 Controls actor execute function
 One or more concurrent processes that make up the

steady-state behavior of the actor

EXAMPLE: IMPLEMENTATION
TEMPLATE IN LWDF-V

`include "actor_modules.v"
`include "libs.v"

/* Common actor steps */
`define FS 4'b0001

/* Number of steps */
`define STEP_COUNT 4

`define S2 4'b0010
`define S3 4'b0100
`define FD 4'b1000

module actor_name(port_list);
//parameters
parameter …
//output and input ports
output …
input …

//internal registers and wires

//Verilog structural modeling
//Instantiation of the step transition controller
actor_controller fsm(post_list);

//Verilog behavior modeling
always@(posedge clock) begin

//sequential logics based on step transition
case (state)

`FS:
`S2:
`S3:
`FD:

endcase
end

always@(*) begin
//combinational logics based on step transitions
case (state)

`FS:
`S2:
`S3:
`FD:

endcase
endmodule

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

 M=1 for BPSK, M=2 for QPSK, and M=3 for 8PSK

0°180°

01

BPSK
45°135

°

225
°

315
°

11

10

01

00

QPSK

22.5°

112.5°

292.5°

337.5°

247.5°

202.5°

67.5°

157.5° 111

011

001

101100

110

010

000

8PSK

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

LWDF-C implementation for the table-lookup actor in RPSK

actors[ACTOR_BINARY_SIGNAL_SOURCE] = (actor_context_type *)(file_source_new(in_file, fifo2));
actors[ACTOR_PSK_PACK] = (actor_context_type *)(psk_pack_new(fifo1, fifo2, fifo3));
actors[ACTOR_TABLE_LOOKUP] = (actor_context_type*)(table_lookup_new(table_file, table_size,
fifo3, fifo4));
actors[ACTOR_FORK] = (actor_context_type *)(fork_new(fifo4, fifo5, fifo6));
actors[ACTOR_CARRIER_FREQ_MUL1] =
(actor_context_type*)(carrier_freq_mul_new(CARRIER_FREQ_MUL_TYPE_FORWARD,
CARRIER_FREQ_TYPE_COS, INIT_AMPLITUDE, CARRIER_FREQ, COS_SIGN,
DEMODULATE_PTS, fifo5, fifo7));
actors[ACTOR_CARRIER_FREQ_MUL2] = (actor_context_type*
(carrier_freq_mul_new(CARRIER_FREQ_MUL_TYPE_FORWARD, CARRIER_FREQ_TYPE_SIN,
INIT_AMPLITUDE, CARRIER_FREQ, SIN_SIGN, DEMODULATE_PTS, fifo6, fifo8));
actors[ACTOR_PSK_ADD] = (actor_context_type*)(psk_add_new(500e-6, fifo7, fifo8, fifo9));
actors[ACTOR_FILE_SINK] = (actor_context_type *)(file_sink_float_new(out_file, fifo9));

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

Graph topology designed in LWDF-C (i.e., example of RPSK modulator)

T1

T1A T1B

 Simulation based on LWDF-C
 3GHz Intel Pentium PC with 2GB of RAM
 Input bit stream: 10,000 bits
 Simulation time: 1.5 seconds

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

void util_simple_scheduler(actor_context_type *actors[], int actor_count,
char *descriptors[]) {
boolean progress = FALSE;
int i = 0;

do {
progress = 0;
for (i = 0; i < actor_count; i++) {

progress |= util_guarded_execution(actors[i], descriptors[i]);
}

} while (progress);
}

Application simulation driven by a simple scheduler

guarded execution for
CFDF model

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

file_source #(.DATA_WIDTH(DATA_WIDTH), .IN_FILE(IN_FILE)) fs_module1(.out(fifo1_in), .write(fifo1_write),
.out_full(fifo1_full), .clock(clock), .reset(reset), .enable_firing_reset(1'b1));
psk_table_lookup #(.BLOCK_SIZE(BLOCK_SIZE), .INPUT_DATA_WIDTH(DATA_WIDTH),
.OUTPUT_DATA_WIDTH(DATA_WIDTH), .COUNTER_WIDTH(COUNTER_WIDTH)) psk_table_lookup_module (.out(fifo2_in),
.read(fifo2_read), .write(fifo2_write), .in(fifo1_out), .in_empty(fifo1_empty), .out_full(fifo2_full), .clock(clock), .reset(reset),
.enable_firing_reset(1'b1));

actor_fork #(.DATA_WIDTH(DATA_WIDTH)) fork_module (.out1(fifo3_in), .out2(fifo4_in), .read(fifo2_read),
.write(fifo3_4_write), .in(fifo2_out), .in_empty(fifo2_empty), .out1_full(fifo3_full), .out2_full(fifo4_full), .clock(clock), .reset(reset),
.enable_firing_reset(1'b1));

multiplier #(.INPUT_DATA_WIDTH(DATA_WIDTH), .OUTPUT_DATA_WIDTH(DATA_WIDTH)) mul_module1 (.out(fifo5_in),
.read(fifo3_read), .write(fifo5_write), .in1(fifo3_out), .in2(1), .in1_empty(fifo3_empty), .in2_empty(0), .out_full(fifo5_full),
.clock(clock), .reset(reset), .enable_firing_reset(1'b1));

multiplier #(.INPUT_DATA_WIDTH(DATA_WIDTH), .OUTPUT_DATA_WIDTH(DATA_WIDTH)) mul_module2 (.out(fifo6_in),
.read(fifo4_read), .write(fifo6_write), .in1(fifo4_out), .in2(1), .in1_empty(fifo4_empty), .in2_empty(0), .out_full(fifo6_full),
.clock(clock), .reset(reset), .enable_firing_reset(1'b1));

add #(.DATA_WIDTH(DATA_WIDTH)) add_module (.out(fifo7_in), .read(fifo5_6_read), .write(fifo7_write), .in1(fifo5_out),
.in2(fifo6_out), .out_full(fifo7_full), .clock(clock), .reset(reset), .enable_firing_reset(1));

file_sink #(.DATA_WIDTH(DATA_WIDTH), .OUT_FILE(OUT_FILE)) fk_module(.read(fifo7_read), .in(fifo7_out),
.in_empty(fifo7_empty), .clock(clock), .reset(reset), .enable_firing_reset(1'b1));

fifo #(.DATA_WIDTH(DATA_WIDTH), .CAPACITY(CAPACITY), .PTR_WIDTH(PTR_WIDTH)) fifo_module1 (fifo1_out,
fifo1_full, fifo1_empty, fifo1_in, fifo1_read, fifo1_write, clock, clock, reset);

Graph topology designed in LWDF-V (i.e., example of RPSK modulator)

Application execution driven by self-timed
scheduling strategy
 That is, an actor module fires whenever it has

sufficient tokens available on its input FIFOs

FPGA implementation based on LWDF-V
 Target FPGA device: Xilinx Virtex-4
 Resource utilizations after synthesis: 1,484 LUTs

(5% util. rate) and 1,464 CLBs (10% util. rate)

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

CONCLUSION AND FUTURE WORK

A lightweight dataflow programming approach
for SDR systems
 Simplified flow for design and testing
 Well-structured design templates

Retargetability: design and implementation in
C and Verilog
 Fast simulation, embedded software realization, and

FPGA mapping

Apply and experiment with various dataflow
MoCs for more SDR applications

Thank You!

