
RAPID PROTOTYPING OF COMMUNICATION WAVEFORMS FROM A
HIGH-LEVEL DESIGN LANGUAGE

Mark Beardslee PhD (Coherent Logix Inc, Milpitas CA, USA;

beards@coherentlogix.com); Matthew Hall (Coherent Logix Inc, Steamboat Springs CO,
USA; hall@coherentlogix.com); Zhong Shang (Coherent Logix Inc, Milpitas CA, USA;

shang@coherentlogix.com)

ABSTRACT

This paper presents a rapid prototyping system for realizing
communication waveforms onto a real-time multi-processor
hardware platform which runs a standard programming
language such as ANSI C. The waveform is described in a
high-level design language, such as The MathWorks
Simulink, and is transformed to an executable multi-
processor program using C-code generation tools from The
MathWorks and a software tool flow called the HyperX
Integrated System Development Environment (hxISDE).
The transformation is done automatically, and is guided by
user constraints on the performance of the resulting real-
time design. The verification tests from the user’s high-level
design environment are employed to verify the resulting C-
code implementation on both software and hardware
platforms. Using this tool flow and transformation
procedure, one can rapidly create a verified C-code design
which runs in real-time on a multi-processor platform. In
this paper we present the details of the transformation
process and demonstrate its operation on a commonly used
communication waveform.

1. INTRODUCTION

With the proliferation of communication waveforms and the
continuing evolution of waveform standards, a rapid
methodology for prototyping and developing waveforms on
a real-time platform has become increasingly important. At
the same time, high-level graphical model-based design
systems [1][2] are now commonly used to define and
optimize electronic systems without writing any low-level
source code. The combination of these two trends promises
to create a rapid prototyping system that is a major
improvement in communications waveform development
methodology.

Previous work includes existing commercial tools that
attempt to accomplish rapid prototyping to hardware [3][4]
[5][6]. These systems primarily target hardware
implementations that incorporate Field Programmable Gate
Arrays (FPGAs) and Application Specific Integrated

Circuits (ASICs). Typically, these systems start with a
high-level design system such as Simulink and create a
design description in a hardware description language
(HDL) such as VHDL[7]. From there, tools exist to
compile the HDL code for operation on existing FPGA
development boards. There are two ways the HDL code gets
created: first, generic HDL code can be generated by tools
such as Simulink. Second, the tool vendors provide libraries
of code to implement Simulink blocks. The reason the
second approach is taken is that the generic HDL code may
not produce efficient structures for implementation on
FPGAs or ASICs. The vendor specific libraries ensure that
the generated hardware is efficient on the particular
platform. The downside of this approach is that often the
block libraries provided by the vendors do not exactly match
the behavior of the high-level blocks so there will be
functional differences between the high-level design and the
design as implemented on the FPGA development board.
And consequently, the user can not simply take an existing
design through the flow without modification. Another
drawback with this flow is that the user does not get an
understanding of the performance of their design until it is
run completely through the implementation flow – this
process could take hours for a reasonable sized design.

Other work in this area is aimed at implementation on
ASIC/FPGA platforms using VHDL and custom compute
structures [8] and implementing Simulink designs using a
combination of hardware (on ASIC/FPGA) and software (on
a processor) [9][10].

In this paper we propose a rapid prototype-to-hardware
model-based design flow (MBDF) that avoids the
aforementioned issues by directly using the C-language
code that is generated by the Simulink tool for each of its
design entities (called blocks) and by employing a hardware
platform that is well suited to implementing Simulink
communication and can natively execute the code for each
block. In this flow, the performance of the overall system
can be calculated from the characterized performances of its
constituent blocks. In addition, the verification environment
used to verify the Simulink design is employed to verify
both the translations of the individual blocks and of the

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

SDR'10 Session 7A- 2

622

overall system. We also propose an associated debug and
performance measurement environment that enables real-
time design visibility and aids in design optimization.

In the following sections, we first describe the hardware
platform and how it executes Simulink generated code.
Then we detail the complete MBDF high-level language to
hardware flow. Finally we show and example of a
waveform implemented using this system.

2. THE REAL-TIME HARDWARE PLATFORM

The center of the hardware platform is the HyperX™
processor from Coherent Logix Inc.™ [11]. This chip has
100 core processors arrayed in a 10 by 10 grid. Each core
processor has a locally stored program and can execute
integer and floating point operations. Interspersed with the
core processors are a 11 by 11 grid of Data, Memory, and
Router (DMR) blocks which can store and move data across
the chip and form a memory embedded in a network
architecture. DMRs work in concert to efficiently move
blocks of data from one DMR to another, which may be on
the other side of the chip – once a connection is established
between two DMRs, one word of data is transferred every
clock cycle. The DMR-to-DMR connections can be created
and destroyed dynamically.

The HyperX processor is employed in the HyperX
Hardware Application Development System hxHADS™
which is a configurable hardware environment which can
host numerous HyperX processors, General Purpose
Processor (GPP) chips, and I/O interface cards. The
smallest configuration of an hxHADS includes a HyperX
processor, an ARM-based general purpose processor and a
PCIe communication card. The development system also
includes the software tool suite called the HyperX
Integrated System Development Environment (hxISDE™)
which is a complete development environment for
compilation, simulation, real-time debugging, and
optimization of C-language based designs on the HyperX
processor.

High-level systems, such as Simulink, that model designs as
networks of communicating computation blocks are
implemented on the HyperX processor by compiling each
block to run on one or more core processors. The data
communication is implemented using the DMR-to-DMR
mechanism for moving data. This style is similar to a
Message Passing model of computation [12]. Thus, at a
simplified level, the translation of a Simulink design to
HyperX consists of compiling the Simulink Generated C-
code for each block and implementing the block-to-block
communication using DMR-to-DMR transfers.

3. MBDF - HIGH-LEVEL LANGUAGE TO

HARDWARE FLOW

The objective of the MBDF is to provide a well defined
starting point for the initial system design from which a
designer can rapidly get an accurate understanding of
system performance and resource requirements without
writing any low-level implementation code. The MBDF
enables rapid characterization of architectural tradeoffs so
that the designer can explore the impact of different uses of
parallelism, communication schemes, and resource
allocations on the system performance.

The MBDF has the capability to measure and optimize the
performance and resource usage of the design by
partitioning the design. Often the number of blocks in the
high-level design is larger than the number of core
processors it will be run on. In this case, the partitioning
algorithm decides which blocks to place on the same core
processor (i.e. it serializes those blocks on one core
processor) while meeting the given performance and
resource constraints.

High-level
Design

Partitioning
and

Estimation Estimated
Performance
and Resource

Usage

Actual Performance and
Resource Usage

C-code
Database

Translation

Realization

Characterization

Editing

Figure 1 – MBDF: high-level design to hardware flow.

The user can control this partitioning by setting performance
and resource constraints on the partitioning optimization

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

623

algorithm. The user may also control the partition by
manually directing that some set of blocks should all reside
on the same core processor.

Additionally, the code generated by Simulink is serial C-
code that can only be run on a single core processor. The
MBDF does not automatically parallelize serial C-code. So,
for some performance critical blocks, the user may elect to
replace the Simulink generated code with a custom
implementation that has better resource or performance
properties. For example, an FFT generated by Simulink will
run on a single core processor but may be replaced by a
multiple core processor implementation to create better
overall system performance. Another option is to break the
Simulink block into multiple parallel executing blocks in the
Simulink editor. This may not be easy to do for many
compute intensive blocks.

The major steps in MBDF (see Figure 1) are described here:

• The Editing step is done in the high-level design

environment. Here the user can modify the design as
needed and add system-level performance constraints
such as system latency, throughput, and resource limits,
direct a block to be replaced with a custom
implementation, or manually select parts of the design
to reside entirely on a single core processor (manual
partitioning).

• The translation step utilizes the built-in code generation
capability of the high-level design environment (in this
case the Real-Time Workshop Embedded Coder™
from The MathWorks) to create code for each block.
The translator wraps each block with a communication
layer which creates the block-to-block communication
and creates block-level and system-level testbenches.

• The Characterization step determines the expected
performance and resource requirements of each block
on the HyperX by compiling the block with its block-
level test bench. The stimulus for the test bench is
derived from the simulation done in the high-level
design environment, in this case from the Simulink
simulation of the Simulink design. From this step we
can, at a minimum, get the block latency and the
required data and instruction storage for this block.

• The partitioning algorithm starts with a representation
of the topology of the system, the block-level
performance and resource requirements, a hardware
performance model for computation and
communication, and user given constraints. Then the
partitioning algorithm employs an accurate estimation
algorithm to determine the system level performance,
system-level resources, and constraint satisfaction as it
optimizes the partitioning of the design. At this point a
detailed performance report is emitted, and the user has

the option to further modify the design and constraints
in the editor and re-run the flow.

• Finally, once the user is satisfied with the estimated
performance, a complete realization of the design can
be created. The difference in this implementation of the
design is that any partitions which contain multiple
blocks are implemented by combining the code for the
blocks into a single executable entity. Additionally, the
C-code for custom blocks that the user selected is
incorporated into this version of the design.

One of the more time consuming parts of the MBDF is the
individual block characterization. A good sized design may
have hundreds or thousands of blocks. Importantly, the
flow has been designed so that the characterization of a
block does not depend on its context. So to reduce runtime,
any identical blocks need only be characterized once, and
any commonly used blocks can be pre-characterized and the
characterization data utilized by the tool flow.

igure 2 - The MBDF control panel.

.1 Graphical User Interface

he Simulink design environment is a graphical user

F

3

T
interface (GUI) for editing and simulating model-based
designs. The MBDF flow adds a window to the Simulink
GUI to control and configure the flow (see Figure 2). In the
“Current Design” entry field the user can declare what part
of the design to translate. The “Throughput target” entry
field sets the performance constraint on the partitioning
algorithm. The 4 buttons on the left side are activated one at
a time in descending order. The first (“Prepare Design”)
configures the user’s design for translation. The next three

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

624

buttons correspond to the flow steps as described in the
previous section and in Figure 1. Using these controls, the
flow may be run many times to explore different
performance targets, design structures, and manual
partitions.

The hxISDE is also a graphical design environment (see

igure 3 - The hxISDE graphical user interface

sis

time,
esign signals, events, and clocks as well as modify key

ded to support real-
me performance monitoring capabilities such as power

4. RESULTS

The MBDF was applie model of a Scalable
FDM (SC-OFDM) PHY layer. The goal of this example

ved from the multiple access scheme used
 the 3GPP LTE downlink. Scalability is supported by

sign example is built from the SC-
FDM Simulink model which includes both the

ed in the description of SC-OFDM above, the
esign can be scaled to various available channel

ecification, both the
ransmitter and Receiver algorithm must meet a throughput

 the model-based translation process, the
ortion of the design to be implemented was isolated in the

eiver and Transmitter
bsystems were created using the MBDF. During the

translation, the blocks which make-up each design were

Figure 3) and is integrated with Simulink GUI so that the
flow between the tools is consistent and cooperative and the
user experience is that of a single unified tool.

F

3.2 Real-time debugging and performance analy

This MBDF also allows the user to monitor, in real
d
system parameters on-the-fly. This capability gives the user
a powerful debug and optimization capability for designs
running on live hardware. In addition, Logic analyzer-like
triggering and sampling capabilities can be provided so that
the user can get specific data from their design and so that
the volume of data being transmitted from the design is
minimized. This capability is controlled through the
graphical user interface in Simulink. The translator will
automatically create the design structures and add them to
the final implementation of the design in a way that does not
affect the performance of the design.

In addition, this capability can be exten
ti
performance, constellation diagrams, and BER/PER
characterizations. These diagrams would be displaying live
data streamed from the design running live in hardware.

d to a Simulink

O
was to validate the capability to automatically implement a
real-world DSP design, and additionally, to assess the
ability to meet real-world timing requirements.

4.1. The Design

SC-OFDM is deri
in
adjusting the FFT size while fixing the sub-carrier
frequency spacing to 15 kHz. It supports channel
bandwidths ranging from 1.44 to 20 MHz. With bandwidth
scalability, LTE can comply with various frequency
regulations worldwide.

The scalable OFDM de
O
transmission and reception algorithms and is complete with
error analysis and signal display blocks (see Figure 7). The
model can be simulated within the Simulink environment
using automatic stimulus generation and post-decode stage
packet comparison. The model used for this example was
created using “single” floating-point datatype within
Simulink but has also been implemented using fixed point
datatypes.

As mention
d
bandwidths. For this example the signal bandwidth was set
to 1.44MHz bandwidth corresponding to a 128-pt I/FFT
signal dimension.

As required by the 3GPP LTE PHY sp
T
requirement of 83.33 µs for the useful symbol period. This
constraint was used by the optimization algorithm to
produce a design with the lowest resource usage while
meeting this throughput constraint.

4.2. The Process

In order to initiate
p
Simulink model. In this case, both the Transmitter portion
and Receiver portion of the design are isolated into their
own Simulink subsystems. These subsystems represent two
independent designs to be translated.

A C implementation for both the Rec
su

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

625

characterized for performance, memory usage and
instruction usage. Using these values, the partitioning
algorithm produced an optimized partition of the design.

During characterization, the C-code implementation of each
block was functionally verified using vectors generated

om Simulink simulations. After partitioning, the C-code

.3.1. The Transmitter

itial leaf characterization: 54 Simulink intrinsic blocks
r sage: 12 core processors

ost partitioning throughput achieved: 60.7 µs

r

Block Name Latency

fr
generated for each partition was verified using Simulink
simulation vectors. Finally, both the complete transmitter
and the complete receiver were verified using Simulink
simulation vectors.

4.3. Summary of Results

4

In
Post pa titioning resource u
P

Figure 4 - The final performance of the transmitte
blocks

Encoder 7.8 µs
Puncture 2.0 µs
Matrix Interleaver 4.3 µs
Block Interleaver 4.3 µs
QAM 9.6 µs
Mod 2.2 µs
Group 12.5 µs
Pilots 0.3 µs
Assemble 15.0 µs
Pad 3.3 µs
Transform 60.7 µs
Cyclic_Multiplex 6.2 µs

Based o nd instruction space r for each
intrinsic ioning algorithm was able to

plement the design using 12 core processors.

of the FFT block (labeled
ransform in Figure 2). The throughput could be further

itial leaf characterization: 55 Simulink intrinsic blocks
ar e usage: 12 core processors

ost partitioning throughput achieved: 1224.3 µs
cell

Latency

n the data a equired
 block, the partit

im
Additionally, all 12 partition implementations meet the
timing constraint of 83.3 µs.

The throughput of this implementation is limited by the
generated implementation
T
improved by replacing the FFT with a custom high-
performance multi-core-processor implementation.

4.3.2 The Receiver

In
Post p titioning resourc

P
Post partitioning throughput achieved (after library
replacement): 56.8 µs

Figure 5 - The initial performance of the receiver blocks

Block Name
Remove_Demulti 3.4 µs
Transform 56.8 µs
Select 5.1 µs
Equalizer_Sub1 6.7 µs
Equalizer_Sub2 31.5 µs
Dissassemble_Sub1 29.7 µs
Dissassemble_Sub2 9.4 µs
QAM_demod 19.8 µs
blockDeinterleaver 4.3 µs
matrixDeinterleaver 8.2 µs
Viterbi 1224.3 µs
Demod_1 27.1 µs

Based o ta and instruction space for each
intrinsic partitioning algorithm was able to

plement the design using 12 core processors. However,

t
any varieties of decoders. Consequently, a custom hand-

-

rbi block.

Block Name Latency

n the da required
block, the

im
in the case of the Receiver block, the generated Viterbi
implementation does not meet the throughput performance
constraint. Since this block is a Simulink intrinsic block, it
cannot be further optimized by the partitioning algorithm.

The Simulink generated Viterbi decoder block is inefficient
because it is generic parameterized code that can implemen
m
coded Viterbi implementation was substituted to meet the
required design performance. The custom version of the
Viterbi decoder uses one core processor and has been hand
optimized specifically for the HyperX architecture. The
performance of the final implementation with the library
cell replacement is shown in Figure 6.

Figure 6 - The final performance of the receiver blocks
with a custom implementation of the Vite

Remove_Demulti 3.4 µs
Transform 56.8 µs
Select 5.1 µs
Equalizer_Sub1 6.7 µs
Equalizer_Sub2 31.5 µs
Dissasseble_Sub1 29.7 µs
Dissassemble_Sub2 9.4 µs
QAM_demod 19.8 µs
blockDeinterleaver 4.3 µs
matrixDeinterleaver 8.2 µs
Viterbi 45.0 µs
Demod_1 27.1 µs

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

626

The thro plementation is now
limited b nerated implementation of T block
(labeled .

ironment for rapidly transforming
igh-level designs cient execution of
e design, we emp ssor which is well

SA.
] “LabVIEW”, National Instruments Inc, USA.
] “Synphony Model Compiler”, Synopsys Inc, USA.

[4] “System Genera .
] “DSP Builder”, Altera

hm, “Case-Study of
or Rapid Development of

agno, A

lara

, Cambridge,

Figure 7 - the Simulink design of the scalable OFDM physical layer

 [6] D. Haessig, J. Hwang, S. Gallagher, M. U
a Xilinx System Generator Design Flow fughput of this final Receiver im

y the ge the IFF
 Transform)

SDR Waveforms”, Proceedings of the SDR 05 Technical
Conference and Product Exposition, 2005
[7] “IEEE Standard VHDL Language Reference Manual”.
ANSI/IEEE Std 1076-1993

5. CONCLUSIONS

In this paper, we have presented a complete development
nd optimization env

[8] I. Grout, Configuration and debug of field programmable gate
arrays using MATLAB®/SIMULINK®, Journal of Physics:
Conference Series 15 (2005) 244–249, Sensors & their
Applications XIII
[9] L. M. Reyneri , F. Cucinotta , A. Serra , L. Lav
hardware/softwar

a
h to hardware. For effi

loy the HyperX proceth e co-design flow and IP library based on
simulink, Proceedings of the 38th conference on Design
automation, p.593-598, June 2001
[10] Huang, Yan, Han, Chae, Jerraya, Popovici, Guerin, Briso
and Carro, “Gradual refinement for a

suited to executing such designs. This environment has been
used to automatically implement, optimize, and verify a
current communication algorithm which meets the
throughput requirements in the specification.

6. REFERENCES

[1] “Simulink”, Version 7, The MathWorks Inc, U

pplication-specific MPSoC
design from Simulink model to RTL implementation”, Journal of
Zhejiang University - Science A Volume 10, Number 2, 151-164.
[11] D. Dalio, K. Shelby. “The Implementation of OFDM
Waveforms on an SRD Development Platform Supporting a
Massively Parallel Processor”. Proceedings of the SDR 09
Technical Conference and Product Exposition, 2009
[12] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference, MIT Press

[2
[3

tor”, Xilinx Inc, USA
 Inc, USA. MA, Sept. 1998. [5

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

627

http://www.springerlink.com/content/?Author=Kai+Huang
http://www.springerlink.com/content/?Author=Kai+Huang
http://www.springerlink.com/content/?Author=Xiao-lang+Yan

