
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

ON THE USE OF SCRUBBING FOR SEU MITIGATION

Rainer Storn (ROHDE & SCHWARZ GmbH & Co. KG
Radiocommunications Systems Division

81671 Muenchen, Germany, Email: rainer.storn@rohde-schwarz.com)

ABSTRACT

Today’s Software Defined Radio’s (SDRs) make heavy use
of GPPs, DSP, and FPGAs in order to handle the high
processing load incurred by the reconfigurable part of the
radio. As radios and waveforms become ever more complex
the memory requirement reaches the orders of many
Megabytes.
In airborne environments such memory demands constitute a
problem since, especially at high altitudes like. 60,000 ft
there exists the problem of single event upset (SEU). These
SEUs are caused by energetic neutrons hitting the surface of
silicon devices causing transient errors due to bit flips.
Although there exist processors and FPGAs that are taylored
to harsh environments [1], [2] there is a great tendency to
use COTS devices in order to save device costs. If COTS
devices are used some kind of redundancy must compensate
for their SEU susceptibility. Ideally this redundancy is SW
based so that it can potentially be applied to a large variety
of processor devices. In this paper a technique called fast
scrubbing is introduced to mitigate the SEU problem for
DSPs and GPPs.

1. INTRODUCTION

Due to the advantages of, among others, being
reconfigurable, extensible, correctable, and portable today’s
radios are more and more SW-defined. This implies that
these Software Defined Radios (SDRs) contain a number of
processing devices such as GPPs, DSPs, and FPGAs all of
which are associated with memory. Memory constitutes an
important flexible element in an SDR and nowadays comes
in the orders of tens or even hundreds of Megabytes. Due to
its advantages SDR technology is also envisaged for
airborne applications which, however, poses a unique
challenge to SDRs. There exists the problem of single event
upset (SEU) which becomes particularly severe at high
altitudes of about 60,000 ft. where airplanes and hence
airborne SDRs frequently move about. These SEUs are
caused by energetic neutrons hitting the surface of silicon
devices causing transient errors due to bit flips especially in
DRAMs and SRAMs [3], [4], [5], [6], [7].

Airborne equipment usually has very demanding
requirements in terms of safety. These requirements also
apply to military equipment when used in non-military
situations like search and rescue. For airborne radios the loss
of communication is regarded as a major event by the FAA
standards ARP4754 [10] and ARP4761 [11]. A major
failure condition in turn requires design assurance level C
(DAL C) according to the standards DO178B [8] and
DO254 [9] which are generally applied to airborne
equipment. According to these standards a major event may
only occur once in 100,000 flight hours if DAL C is
applicable. According to [5] and [7] the FIT rate
(FIT = failure in time, where time usually equals 109 hours)
for a 1 Mbit (128kbyte) RAM at ground level is around
2000. This FIT value extrapolates to 800,000 at 60,000ft
altitude as the worst case. Modern DSPs such as the
TMS320C6457 ® have the 16-fold internal capacity, i.e.
2048 kByte of RAM which correspond to 1280 bit errors in
100,000 hours. Even if only 10% of the RAM content were
considered as sensitive with respect to the communication
functionality the resulting error rate of 128 would still be
two orders of magnitude larger than required to meet the
FAA standards. This rough estimation gets even more
disadvantageous if reduced supply voltages and footprint of
today’s memories are taken into account [12], compared to
the technologies investigated in [5] and [7].
In other words, using high end DSPs such as the
TMS320C6457 ® in airborne radios without any further
measures is not possible. The same holds true for GPPs in
case they do not have any error correction capabilities built
in.

2. GENERAL MITIGATION TECHNIQUES FOR SEU

All SEU mitigation techniques use some kind of redundancy
either in space, time or both. The basic idea is to detect and
correct errors which often is abbreviated by the acronym
EDAC (error detection and correction) in the literature.
Correction can be done by [13]:
o RAMs with built-in error correcting codes (ECC) [6]
o Selection between various outcomes (voting), a

technique used in FPGAs [4], [16] and VLIW DSPs

SDR'10 Session 6B- 5

572

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

[17] where the existence of HW and/or time parallelism
is employed.

o Reconfiguration from a secure source [16]
o Scrubbing techniques [6], [14]

In this paper the focus is on scrubbing techniques. The
scrubbing techniques will be regarded only for the
protection of the program memory since the program
memory content is static and hence can be corrected in
principle. Additionally, errors in the data memory are less
likely to result in the inability to communicate if proper
error handling is built into the system and unless the stack
memory is affected. Stack memory, however, is relatively
small compared to the overall memory size and hence has a
reduced probability of getting hit by neutrons.

3. CLASSIC SCRUBBING

The idea of scrubbing is to remove errors from memory
before the functionality of the system under protection is
compromised. This can be done in an unconditional manner
where the memory content is periodically overwritten with
content from an SEU-insensitive source, or it can be done
conditionally where the memory is checked for errors first
and overwritten only in case of errors. Classic Scrubbing
has been employed to avoid two-bit errors in ECC-RAMs
[6] and is done in the background.

Classic scrubbing thrives on the fact that there exists ECC
memory which is able to correct single bit errors. The
scrubbing mechanism analyzes the memory content in the
background and detects corrected errors. After detection the
codeword is replaced by its original counterpart which
resides in an SEU-insensitive memory, e.g. a flash memory.
This way the probability of two-bit errors, which would not
be correctable by the ECC mechanism, is greatly reduced.
The idea of this mechanism is visualized in Figure 1.

ECC-RAM before Scrubbing
ECC-RAM after Scrubbing
and subsequently occurring error

ECC-corrected 1-bit errors
Old 1-bit error locations, totally error free by scrubbing

Scrubbing
(every x
minutes)

would have been 2-bit
error had scrubbing
not been performed
before

Figure 1: Mechanism of classical scrubbing. One-bit
errors are removed before a second SEU-event can cause
a two-bit error.

4 FAST SCRUBBING

In order to keep manufacturing costs at a reasonable level it
is desirable to equip modern SDRs with standard COTS
DSPs and GPPs. However, these components, not being
originally intended to be used in airborne applications, often
utilize external and/or internal memory which is not ECC
protected. Examples for such components are the DSP
TMS320C6457 ® which has no ECC support whatsoever, or
the ARM Cortex-A8 based OMAP ® series. The cache
controller of the latter also does not support ECC RAMs.
Simply putting the program code into external SEU-
insensitive flash memory is not effective since the increased
access time of flash memories would unduly slow down
program execution. If COTS processors, as the ones
mentioned above, shall still be employed in airborne
applications one has to find ways to protect the inherent
non-ECC memories from SEU events.

This paper investigates whether the scrubbing method can
be used in a foreground process to counteract 1-bit-errors in
unprotected memories rather than to solely fulfill its
classical purpose as a background job counteracting 2-bit
errors for ECC-protected memories. This novel idea of using
scrubbing as a foreground job will be referred to as “fast
scrubbing” in the following.

Fast scrubbing utilizes the idea that if scrubbing of a code
area is performed immediately before the code portion is
used, then the opportunity for a neutron to damage this code
portion reduces to the time interval of code usage.

Consider, for example, a simple round robin scheduling
algorithm as depicted in Figure 2.

Tx
Proc.

Rx
Proc.

Message
Handling

Tproc,1

T

Tsc,1 Tproc,2Tsc,2 Tproc,3Tsc,3

T1 T2 T3

Figure 2: Example of a simple round robin scheduling
system.

Let us assume that all code portions for Tx processing, Rx
processing, and message handling are scrubbed before they
are used. In this case the probability for a detrimental SEU
event becomes

573

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

()
() ()

T

TSEUP

T

TSEUP
SEUP

N

i
ii

N

n
n

N

i
ii

scrubtotal

∑

∑

∑
=

=

=

⋅
=

⋅
= 1

1

1
,

(1)

where the times Ti contain both the times Tsc,i for scrubbing
as well as the times Tproc,i for processing. For the sake of
simplicity let us further assume that for all of the time
intervals Ti we have Ti = T/3 and for all probabilities the
identity P(SEUi)=p0 holds. Under these assumptions we
obtain in the case of no scrubbing

() ∑
=

=

⋅==
N

i

N

total ppSEUP
1

0

3

0 3

while in the case of fast scrubbing we get

() 0

3

1
0

,
3 p

T

Tp
SEUP

N

i
scrubtotal =

⋅
=
∑

=

=

i.e. we obtain a probability for a detrimental SEU event
which is three times less than it would have been if no fast
scrubbing had been performed.

It can easily be seen that the probability for a detrimental
SEU event decreases with the number of memory portions
that are scrubbed before usage. In the simple example of
Fig. 2 only three portions Tx processing, Rx processing, and
message handling are used. It is, however, the goal to find
more sections the memory can be divided into and which are
used in succession. A further breakdown of memory may be,
for example: Tx signal processing, Tx bit processing, Rx
signal processing, Rx bit processing, configuration message
handling, and notification message handling. Depending
upon the architecture of the radio SW a much finer
granularity of the code may be possible.

In order to be able to use a scrubbing scheme which
preserves the integrity of the program memory before it is
used two prerequisites must be fulfilled:

o It must be possible to detect memory errors
o It must be possible to correct memory errors

Several schemes which provide this are conceivable, two of
which are schown below.

4.1 SOFTWARE-BASED ECC

The notion of software-based ECC is depicted in Fig. 3 in a
simplified manner. The basic idea is to use systematic codes
to represent the program memory content, i.e. the executable
code is placed in a cleartext section of the memory and the
redundant information is placed in the parity section. Prior
to execution of, say, the Tx part the pertinent code memory

partition is checked whether errors have occurred. If errors
have occurred they will be repaired due to the capability of
the error correcting code. Two assumptions are made here:

o The checking of the code is done often enough so that,

with sufficient probability, occuring errors are just one-
bit errors.

o The time for code checking and repairing is small
compared to the time for code execution. Since it is also
assumed that errors are a rare event the number of code
words that can be corrected in the allocated time Tsc,i is
much smaller than the number n of codewords.

Tx Processing

Memory Map

Parity Info Tx Proc.

Rx Processing

Message Handling

cleartext portion of k-byte codeword n

Parity Info Rx Proc.

Parity Info Msg. Hndl.

1 2 3 4

n

1 2 3 n

parity portion of k-byte codeword n

Figure 3: For SW-based ECC the memory is partitioned
in a cleartext section and a parity section.

As will be discussed later this SW-based scheme is
impractical in most cases due to the large amount of
processing power needed for the error correction.

4.2 CODE RECOVERY FROM A SECURE SOURCE

The second scheme for fast scrubbing also divides the
program memory into a cleartext section and a parity
section. In contrast to the previous scheme the parity section
only serves as a means to detect errors rather than correct
them which allows for simpler codes. If errors are detected
the codeword under test is replaced by its original
counterpart which is taken from an SEU protected memory
like a flash memory. In contrast to the previous scheme the
error correction is not performed by using error syndrome
analysis but simply by copying the corresponding memory
partition from a secure source, i.e. memory expense is traded
against processing power.

574

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

active RAM (fast)

Rx

Tx

Ctrl
OE

Rx

Tx

Ctrl
OE

SEU-safe RAM (Flash)

Parity-InformationParity-Information

Figure 4: Fast Scrubbing by restoring data content from
an SEU-safe RAM.

4.3 OPTIMUM CODEWORD SIZE

Assuming that a fast scrubbing method shall be used for
SEU protection improvement the most efficient codeword
size for the memory portion to be checked needs to be
determined. To this end the following quantities are defined:
o A memory partition M to be checked consists of N

codewords having a size of k bytes, i.e.
kNM ⋅= (2)

o The time tdetect needed to detect an error in a codeword is
assumed to be proportional to k according to

kctt constect ⋅+= 1det_det (3)

The time tdet_const is a processor dependent quantity which
accounts for the initialization of the error detection
mechanism.

o The time tcorrect needed to correct an error is modeled by
kctt constcorrcorrect ⋅+= 2_ (4)

All times shall be measured in processor cycles.

The total time T for fast scrubbing, assuming that there is
only one error in the code memory portion since SEUs are
rare events, may be computed according to:

kctkcNtN

ttNT

constcorrconst

correctect

⋅++⋅⋅+⋅=

+⋅=

2_1det_

det

By substituting N with M/k we get

() kctkct
k
MT constcorrconst ⋅++⋅+= 2_1det_

 (5)

It can be seen that the smaller the codeword size k the
smaller the time to correct an error will be. On the other
hand the overhead to restart the error detection increases
with decreasing k, so in order to find the minimum
scrubbing time T one has to compute

() 02det_2 =+−= ct
k
M

k
T

constδ
δ

Employing standard calculus it can be computed that the
optimum codeword size is

()constopt t
c
Mk det_

2

= (6)

so the optimum codeword size k is proportional to the
square root of the memory partition size M. Since N=M/k
also the optimum number of codewords Nopt is proportional
to the square root of M.

4.3.1 EXAMPLE OF 3 PARTITIONS OF SIZE 100KB

In a simplified example we assume a total program memory
size PM of 300kByte which is partitioned into p = 3
independent partitions of size M = 100kbyte. The 3
partitions may resemble Tx processing, Rx processing, and
message handling as described in chapter 4.

In order to obtain realistic constants of the detection and
correction times a DSP running at 400MHz clock and a 4-
Byte read time of 70ns from a secure flash memory (needed
for the method described in chapter 4.2) are assumed. In this
case we get

Byte
cyclesccyclest const

5.0,14 1det_ ==

as well as

Byte
cyclesct constcorr

7,0 2_ ==

so finally there is

4532210
7

142100 5
10

≈⋅⋅=
⋅⋅

=
Bytes
kopt

In this case N amounts to

226
453

100
≈==

Byte
kByte

k
MN
opt

For the current example the total scrubbing time would be

() 5753645374535.014226min =⋅+⋅+⋅=
cycles
T

which, for a DSP running at 400MHz clock speed, amounts
to roughly 145µs.

If it is further assumed that the other portions for Rx
processing and control contribute the same scrubbing delay
there would be a total scrubbing time of 435 µs. If it is
further assumed that the total processing delay of a
waveform must be smaller or equal to 3ms then the fast
scrubbing would consume about 14% of this maximum
delay which appears to be tolerable.
Note that in this example the number of cycles for codeword
correction is 6328, a value which is orders of magnitude
lower than what would be required by a SW-based RS
decoding solution [18]. Hence the scrubbing method of
chapter 4.1 doesn’t appear to be promising in this scenario.

575

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

4.3.2. SCRUBBING DELAY EXPENSE

The example above for p=3 reduces the SEU probability by
a factor of three which may not be enough depending on the
total program memory size PM and the design assurance
level (DAL) of the software. So it is crucial to investigate
the scrubbing delay expense as a function of PM and the
number p of independently scrubbable memory partitions M.
This is because the larger PM the more code can be stored,
and the larger p the lower the probability will be that an
SEU event affects the system performance. Fig 5 displays
the aforementioned analysis which is based on eqs. (5) and
(6).

2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40

45

50

p=number of scrubbed memory partitions

S
cr

ub
bi

ng
D

el
ay

in
pe

rc
en

to
f3

m
s

(m
ax

im
um

sy
st

em
de

la
y)

Scrubbing Delay vs. Program Memory Size PM

PM=300kB
PM=500kB
PM=700kB
PM=900kB

Figure 5: Scrubbing delay expense over PM and p.

It can be seen that the total scrubbing delay expense is only
weakly dependent on the number p of partitions. So the
increase of p comes at a comparatively low cost with
respect to delay.

In chapter 1 the example for the TMS320C6457 ® revealed
the need for a two orders of magnitude improvement in error
rate to meet the FAA requirements provided that the entire
internal memory of 2048kByte is used. If this improvement
must be achieved by fast scrubbing alone eq. 1 suggests that
roughly p=100 memory partitions need to be identified.
Besides being a special challenge to find this many
functionally separate partitions the partitioning itself has a
major impact on SW architecture the consequences of which
have yet to be investigated.

The total program memory size PM has a large impact on
the scrubbing delay. The scrubbing scheme may become
disadvantageous for a value of PM greater than 500kByte,
since above this memory size roughly 25% of the system
delay are attributed to scrubbing. On the one hand this
reduces the number p, on the other hand much of the internal

memory in the above example would need to remain unused.
This calls for alternatives to relieve the scrubbing delay
penalty.

5. PARALLELIZED SCRUBBING

Many modern DSPs use several parallel processing units,
e.g. the TMS320C64x+™series, employing the third-
generation high-performance, advanced VelociTI™ very-
long-instruction-word (VLIW) architecture developed by
Texas Instruments (TI). The C64x+ DSP core employs eight
functional units, two register files, and two data paths, A and
B.
A potential way to reduce the scrubbing delay is to dedicate
one of the data paths, say data path B, for scrubbing while
the other path A is used for regular processing. Of course
data path B can also be used for regular processing
whenever scrubbing allows to do so. The scheme is
indicated in Fig. 6 showing the simple example from
chapter 4.

Tx
Proc.

Rx
Proc.

Message
Handling

Tproc,1

T

Tsc,1

Tproc,2

Tsc,2

Tproc,3

Tsc,3

Figure 6: Scrubbing example from chapter 4 where
scrubbing is done in parallel with regular processing.

As all SEU mitigation methods this parallelization of
scrubbing comes at a price. In this case the price is a
reduction of available computing power for SDR
functionality. On the other hand, this scrubbing scheme can
be put into effect using cost-efficient COTS processors.

6. RESULTS AND FUTURE WORK

It has been shown that scrubbing has more to offer than to
just serve as a slowly-running background job which
minimizes the probability of two-bit errors in ECC
memories. The novel approach of “fast scrubbing” has been
analyzed where scrubbing is executed in the foreground and
removes SEU-based bit-flips in unprotected memory by
repairing memory content right before its use. Fast
scrubbing is especially interesting if modern COTS

576

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

processors shall be employed since these often have large
internal memories which are not ECC protected.

Two versions of fast scrubbing have been discussed, a SW-
based scrubbing scheme based on error correction codes,
and a flash-based code recovery scheme which checks the
memory for errors and replaces erroneous memory partitions
with the original ones from a flash memory.

An analysis revealed that the SW-based scheme appears
infeasible due to the large computational requirements for
executing error correcting codes like Reed-Solomon,
especially if the codewords need to be large. The code
recovery scheme has been shown to be attractive if the
memory size to be protected is moderate and the minimum
system delay of the SDR is in the millisecond range. The
computational delay of the scrubbing schemes may be
reduced further by doing the scrubbing in parallel to the
regular processing. Parallelization can be achieved by
utilizing the availability of multiple computational units and
data paths in modern processors.

The odds are that fast scrubbing alone cannot fully
compensate for the lack of ECC memory, either because the
required number of memory partitions becomes prohibitive
rendering too many restrictions concerning the SW
architecture, or because the scrubbing delay becomes too
high. Hence fast scrubbing probably but must be supported
by other means such as code sensitivity analysis or SW-
based voting mechanisms. These findings advise a more
detailed analysis of various processor types and the impact
of fast scrubbing on SW architecture.

7. REFERENCES

[1] http://focus.ti.com/hirel/docs/prodcateglanding.tsp?

sectionId=603. Texas Instruments SPACE Orderables, Texas
Instruments, aug. 20009,

[2] http://www.actel.com/documents/, System-Critical FPGA
Products Catalog, ACTEL, nov. 2009.

[3] Muhammad Imran, Using COTS components in space
applications, Masters Thesis, Univ. Delft, 2006

[4] Fernanda Gusmão de Lima, Single Event Upset Mitigation
Techniques for Programmable Devices, Masters Thesis, Univ.
Rio Grande, 2000

[5] E. Normand, “Single event upset at ground level,” IEEE
Trans. Nucl. Sci., vol. 43, pp. 2742–2750, Dec. 1996

[6] Riccardo Mariani, Gabriele Boschi, Scrubbing and
Partitioning for Protection of Memory Systems, Proceedings
of the 11th IEEE International On-Line Testing Symposium
(IOLTS’05), pp. 1530-1591

[7] R. Joshi and R. Daniels, Radiation Hardness Evaluation of a
Class V 32-Bit Floating-Point Digital Signal Processor, IEEE
NSREC, 2005.

[8] Software Considerations in Airborne Systems and Equipment
Specification, RTCA/DO178B, dec. 1, 1992.

[9] Design Assurance Guidance for Airborne Electronic
Hardware, RTCA/DO254, april 19, 2000.

[10] Certification Considerations for Highly-Integrated Or
Complex Aircraft Systems,
http://www.sae.org/technical/standards/ARP4754

[11] Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and
Equipment, http://www.sae.org/technical/standards/ARP4761

[12] Akira Eto et alii, Impact of Neutron flux on Soft Errors in
MOS Memories, IEDM '98 Technical Digest, 1998, pp. 367 -
370.

[13] Anthony Lai, Mitigation techniques for electronics in Single
Event Upset environments, Military Embedded Systems,
2006.

[14] Shubhendu Mukherjee et alii, Cache Scrubbing in
Microprocessors: Myth or Necessity ?, Intl. Symp.PRDC,
2004.

[15] Tezzaron Semiconductor, Soft Errors in Electronic Memory -
A White Paper," Version 1.1, white paper (2004); see
http://tezzaron.com/about/papers/soft_errors_1_1_secure. pdf.

[16] Altera Corp., Robust SEU Mitigation With Stratix III FPGAs,
white paper, january 2007.

[17] David Czajkowski (Space Micro Inc.), Rad Hard High
Performance Computing, Spaceborne Computing Workshop
2008.

[18] Dahnoun Naim and Tarazona Luis, Development and
performance comparison of a Reed-Solomon Decoder for
TMS320C6201 and TMS320C6400 DSPs, 2000 European
DSP Education & Research Conference - Poster Presentation
Proceedings, ,

577

