
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

REAL-TIME, SOFTWARE-BASED CHARACTERIZATION OF RECEIVER

DYNAMIC CHANNEL PERFORMANCE ON AN SDR DEVELOPMENT

PLATFORM

Brian A. Dalio (Coherent Logix, Inc., Austin, TX, USA, dalio@coherentlogix.com);

Ivan Aguayo (Coherent Logix, Inc., Austin, TX, USA, aguayo@coherentlogix.com)

ABSTRACT

We present the design and implementation on a hardware

development platform of a real-time, software-based analysis

and characterization environment for evaluating the

performance of software defined radio (SDR) receivers in the

presence of dynamic channel conditions as well as additive

white Gaussian noise (AWGN).

 Accumulating the data to accurately determine the BER /

PER performance of a receiver during the design exploration

phase can require a farm of simulation servers and years of

CPU time. This new characterization and analysis environment

supports the characterization of a software model of the

receiver in real-time. It sends test parameters (e.g., SNR,

message size) to the development platform where separate

long-period uniform random number generators (URNGs) are

used to ensure uniqueness of test messages and channel

conditions. In the development system, test messages are

automatically generated, transmitted through a multipath,

dynamic fading channel emulator, and presented to the receiver

for decoding. The decoded results are compared to the original

message and relevant error statistics collected. All operations

are under the control of an interactive host system program.

Since the system runs in real-time, results can be accumulated

as fast as the waveform can operate. The environment has been

implemented on a software-based integrated radio waveform

development system and used to characterize the performance

of multiple receiver configurations. We present details of an

example characterization, system performance, and overall

resource usage.

1. INTRODUCTION

Fast, efficient, and flexible receiver performance

characterization was required to support SDR waveform

development work carried out by our team. To this end, we

developed a 100% software based channel emulator, as

described in [1]. While this channel emulator had the

necessary features and performance to meet our needs, its

configuration and management were more complex than should

be imposed on (non-expert) users. Further, there was no

particular support to carry out automatic characterization. We

therefore undertook the design and implementation of a

characterization environment to encapsulate and automate the

use of the channel emulator.

 Alternative approaches such as simulation in a modeling

environment (e.g., The MathWorks‟ MATLAB / Simulink [2])

or using dedicated hardware (e.g., Spirent‟s SR5500 Wireless

Channel Emulator [3], Elektrobit‟s EB Propsim F8 RF Channel

Emulator [4]) were evaluated. The purely software approach

provided great flexibility and visibility of process and results,

but was orders of magnitude too slow for use beyond the

conceptual level. The dedicated hardware solutions were

capable of real-time use, but at the cost of modeling flexibility.

 Our approach was to develop our own characterization

environment making use of our previous channel emulation

work and building on the success of our Radio Waveform

Development System [5]. This system is built on the hxISDE /

hxHADS development environment and massively parallel

HyperX processor architecture described in [6].

 We first present the overall system design for our

characterization environment, including details of the

components, their functions, and resource use. Details of both

the simplified, initial version of the environment and the

follow-on complete version are given. The environment‟s GUI

is described along with the user‟s control over test scenario

parameters. We then present results from an example use of

the environment. Finally, a summary of the work and a

description of our on-going efforts are given.

2. SYSTEM DESIGN AND IMPLEMENTATION

In the following subsections we present the overall design of

the characterization environment, its design goals and their

rationales, the partitioning of the environment between the host

PC environment and the hxHADS development environment,

the individual components of the environment, and the

structure, processing, and GUI of the host PC software tool.

2.1. Overall System Design

Our design goals (and rationales) for this environment include

the following:

 100% implemented in software: By implementing the

characterization environment completely in software, we

support rapid development, easy reconfigurability, and full

visibility of all operations.

 Usable from early in the development process: The earlier

in the design process that performance can be

characterized, the more time that will be available to

SDR'10 Session 6B- 4

566

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

explore design alternatives. Ideally, performance should

be characterized throughout the design refinement process

from the abstract functional level through to the final

implementation level.

 Fully user visible and programmable interface: By

providing a programmable interface to the control / data

structure of the characterization environment, we give the

user the capability of constructing their own

characterization strategies and protocols.

 Able to run faster than real-time: Statistically significant

characterization requires a significant number of tests

across a wide range of SNR points under multiple

scenarios (channel conditions). Since the entire

environment including the system under test is expressed

in software, we are not limited by a physical time scale.

The characterization environment can process tests as fast

as the software can run. For the systems we have so far

evaluated, this rate is far in excess of the waveforms‟

actual run rate. The ability to perform characterization

faster than real-time shortens the amount of overall time

required to collect a suitable number of test results.

 Integrated in the same development system as the system

being characterized: Having a unified system for both the

characterization environment and the system under test

allows for a smoother synchronization and integration

process and much easier automation of the

characterization.

Given these goals, we developed the architecture shown in

Figure 1 (solid lines indicate data flow while dashed lines

indicate control flow). The GUI accepts characterization

scenario definitions from the user, constructs packets used to

send test requests to the control unit, logs and maintains

statistics on the test results, and presents graphical feedback to

the user. The Control unit accepts test requests from the GUI

and generates the configuration information appropriate to

carry out the test for the other units of the characterization

environment. It also collects the result of the test (from the

Compare unit) and returns status information to the GUI.

 The Message Generator creates random content data

messages of the requested size and appropriate format. These

are passed to the transmit side of the link. The XMIT and

RECV units implement the transmitter / receiver pair being

characterized. In between is the Channel Emulator unit,

performing the required channel impairment. The Compare

unit compares the original message with the received / decoded

message and tabulates discrepancies, which are reported to the

Control unit.

 As part of a multi-stage development strategy, we first

implemented a version of the characterization environment

with a Channel Emulator unit supporting (relatively) limited

channel models. Once the overall data and control flow of the

environment was completed, we followed this initial version

with an enhanced version of the Channel Emulator unit

supporting full multi-path, dynamic fading channel models.

 The initial version of the characterization environment

easily fit within a single hx3100 HyperX device, including not

only the full characterization environment (exclusive of the

GUI, which runs on the host PC) but also an example XMIT-

RECV path. See Figure 2 for details. The GUI runs on the

Host PC and communicates with a two-board hxHADS

development system through an Ethernet connection. In the

hxHADS system, the network connectivity is supported by the

iMX31 processor on the GPP-IO (General Purpose Processor-

I/O) board in slot S1. Only minimal processing occurs at this

Figure 1. System Design

Figure 2. Characterization Environment, 1 Board

567

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

point; the primary purpose of this board is development system

control and to route communications to and from the rest of the

hxHADS system. The processing of all of the units of the

characterization environment (aside from the GUI) is supported

by the hx3100 HyperX device on the 1hx3100 board in slot S2.

 For the follow-on version of the characterization

environment, we used a four-board hxHADS system with three

1hx3100 boards. The resources available in this expanded

system allow for significantly more complex XMIT and RECV

units (each of which are allotted their own hx3100). The third

hx3100 is used to support the full multi-path, dynamic fading

Channel Emulator unit. See Figure 4 for details. As with the

initial version, the GUI runs on the Host PC, network

connectivity servers run on the iMX31 processor on the GPP-

IO board in slot S1, and they communicate via Ethernet. The

1hx3100 board in slot S2 supports the XMIT unit, the one in

slot S3 supports the Channel Emulator unit, and the one in slot

S4 the RECV unit. The Message Generator unit shares slot S2

while the Compare unit shares slot S4. Appropriate parts of the

Control unit are split among slots S2, S3, and S4.

 More details about each of the units are provided in the

following subsections.

2.2. On the hxHADS Development System

The initial version of the characterization environment (as

diagrammed in Figure 2) fits entirely in a single hx3100

HyperX device. An annotated layout view of the hardware

resource allocation of this version is shown in Figure 3.

 The functionality of the Control, Message Generator, and

Compare units (as shown in Figure 1) are folded into a pair of

HyperX processing elements (PEs) in the lower left of the

layout. Also included in this section is the Input Processing

function which mediates the incoming communications from

off-chip. Each incoming test series request to the Control unit

from the GUI describes a set of tests to run. The request

parameters include the size of data message to run (expressed

as a number of 16-bit words), the SNR value and average

signal power for the AWGN unit, and the number of messages

to send. For a given test series, the same SNR and average

signal power values are used for all messages. Also included

in the test series request are some initialization and control

information (e.g., whether to reset the statistics gathering,

generator state vector) that aid in chaining together a set of

individual test series.

 The data content of each message in a test series is

independently created by the Message Generator unit. This

unit uses a long period (2
115

 8-bit bytes in the current

implementation) Tausworthe URNG [7] to generate the

message contents to ensure non-correlation of message

contents across runs.

Figure 4. Characterization Environment, 3 Board

Figure 3. Initial Version Layout View

568

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 The message is then passed to the XMIT unit for

generation of baseband I/Q values. (A copy of the message is

passed to the Compare unit to match against the results

obtained from the RECV unit, described below.) In the initial

version of the characterization environment, a simple

transmitter is used, consisting of an FEC encoder followed by

modulation. This encoder is rate 1/2, K=7. The encoded bits

are then punctured to result in a rate 3/4 code. BPSK

modulation is then used to produce the final baseband I/Q

signal. The entire XMIT unit is implemented in a single

HyperX processing element.

 The baseband I/Q signal is then passed through the

Channel Emulator unit. In the initial version of the

characterization environment, the emulator performs only

additive white Gaussian noise (AWGN) impairment. The

desired SNR and average signal power values (fixed for all

tests of a given series) are passed to the AWGN unit from the

Control unit at the beginning of the test series. The AWGN

unit itself is described in more detail in [1]. In brief, a set of

long-period Tausworthe generators are used to produce

uniform random numbers which are converted to Gaussian

distribution (using the Box-Muller transformation [8]). The

final Gaussian values are scaled (according to the specified

SNR and average signal power) and then used to impair the I/Q

signal.

 The AWGN unit in the initial characterization

environment was designed and implemented to support high

speed operation. Using a six HyperX processing element

layout, it is capable of generating in excess of 30 M complex

samples/second at the system typical clock frequency of 500

MHz.

 After impairment, the I/Q signal is then passed to the

RECV unit. This unit must match the encoding / modulation

scheme implement by the XMIT unit described above. After

BPSK demodulation, the quantized, 3-bit soft values are

depunctured and then processed by a Viterbi decoder

(constraint length 7) to retrieve the message‟s data contents.

The entire RECV unit is implemented in a single HyperX

processing element.

 The received message is matched against the originally

generated message by the Compare unit. The Compare unit

counts all non-matching bits and passes these statistics to the

Control unit for tabulation. From this information, the Control

unit maintains statistics for the messages of the current test

series. When the requested number of messages has been run,

the Control unit transmits this information to the GUI running

on the Host PC via the Output Processing function. The

Control unit (with the included Message Generator and

Compare units folded in) is implemented in a single HyperX

processing element. The Input Processing function and the

Output Processing function are each implemented in their own

HyperX processing elements.

 As shown in Figure 3, in total only 11 of the 100 HyperX

processing elements available in an hx3100 are required to

implement the hxHADS portion of the initial version of the

characterization environment. This table shows the

approximate size (measured in lines of executable ANSI-C

code) of each unit:

Control 60

Message Generator 40

XMIT 44

Channel Emulator (AWGN) 125

RECV 146

Compare 10

Total 425

Once the initial version of the characterization environment

was completed, we moved to implement the enhanced version

using the full multipath, dynamic fading Channel Emulator

unit. An annotated layout view of the hardware resource

allocation of the enhanced Channel Emulator unit is shown in

Figure 5. All other units of the characterization environment

remained the same.

 As shown in Figure 5, in total only 46 of the 100 HyperX

processing elements available in an hx3100 are required to

implement the 12-path dynamic fading Channel Emulator unit.

This table shows the approximate size (measured in lines of

executable ANSI-C code) of each unique unit (i.e., not

including the per-path units):

Multipath Channel Cell 42

Control, I/O Management 28

Doppler Generator 93

URNG 76

Sequence Collector 30

Total 269

Each path unit includes the following sub-units:

Fading Generator 71

Polyphase Interpolator 39

Impulse Response 112

Total 222

Figure 5. Full Channel Emulator Layout View

569

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Each of the paths is implemented by simply instantiating

another copy of the identical code. The overall size of the

Channel Emulator unit is therefore on the order of only about

500 lines of ANSI-C code. When added to the size of the rest

of the characterization environment, we arrive at a total size of

fewer than 1,000 lines of ANSI-C code.

2.3. On the Host PC

The user interface to the characterization environment runs on

a Host PC attached to the hxHADS system through an Ethernet

connection. This GUI carries out a number of functions,

including:

 Collection of test scenario parameters from the user.

 Transmission of test series requests to and collection of

test results from the hxHADS system.

 Maintenance and presentation of test results to the user.

The test scenario parameters include the range and resolution

of SNR values across which to characterize performance, the

size (in 16-bit words) of the messages to transmit, and the

average signal power of the waveform. Along with these basic

test scenario parameters, the GUI also allows the user to adjust

the two parameters that drive the operation of the adaptive test

scheduling, namely the number of individual messages

processed by each test series and the starting number of

„required failures‟.

 A key part of the characterization environment operation is

its adaptation in the face of observed performance. In order to

collect meaningful BER and PER statistics as rapidly as

possible across the entire SNR range and resolution of interest,

it is useful to schedule test series adaptively. In particular,

those regions with high BER do not need as many individual

tests run as those regions with low BER. In the current

implementation, we schedule test series to achieve equal

numbers of packet errors as opposed to equal numbers of tests

run. The current number of packet errors to achieve is called

the „required fails‟. When all SNR points of interest have at

least that number of packet errors, the number of required fails

is adjusted upwards (doubled in the current implementation).

 For example, at the beginning of a characterization run, the

number of required fails could be set to 1. Test series requests

would be generated from the lowest to the highest SNR value

in order until each SNR point had suffered at least one packet

error. When that occurs, the number of required fails would be

doubled to 2. Any SNR point that already had at least two

packet errors would be skipped over in favor of those SNR

points that were still at one packet error. When all SNR points

have suffered at least two packet errors, the number of required

fails would be doubled to 4, and the process continued. In

practice, the result of this adaptation is that the characterization

environment automatically apportions relatively more

computational capacity to those SNR points with the lowest

PER.

 As mentioned above, the GUI also manages a data base of

test results and displays the appropriate statistics to the user.

See Figure 6 for an example run (discussed below). In this

figure, the BER curve (red „+‟ marks) and the PER curve (blue

„*‟ marks) are displayed. The overlaid green bars show the

total number of tests conducted for each SNR point on a log

scale. In the figure, the adaptive apportioning of computational

effort towards those SNR points with relatively lower PER can

be clearly seen. As expected, the number of tests required to

achieve a given number of packet errors rises exponentially to

the right (indicated by the linear rise on the log scale chart).

Figure 6. Characterization Environment GUI

570

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3. EXAMPLE RESULTS

An example run of the characterization environment is shown

in Figure 6. This run was made using the XMIT and RECV

unit described above across an SNR range of 0 dB to 10 dB in

0.2 dB increments. The system clock rate was 500 MHz. After

about one hour of wall-clock time, approximately 2.7 M test

messages (about 870 M bits) had been run, for a rate of about

800 tests per second. As shown in the figure, for the 10 dB

SNR point, 782,100 individual tests had been run (about 250 M

bits) with 224 packet errors (318 bit errors) detected. All other

SNR points had suffered at least 256 packet errors by this

point. During this run, the time required to achieve at least the

given number of packet errors was as follows:

Number of Packet Errors HH:MM:SS

1 00:00:32

2 00:00:44

4 00:01:12

8 00:02:07

16 00:04:04

32 00:07:32

64 00:15:57

128 00:31:17

256 01:00:25

As expected, the amount of time to achieve each successive

level of required fails is about twice that of the previous level.

The slight irregularities are due to the quantization of the

number of individual messages sent in each test series.

4. SUMMARY AND ONGOING WORK

In this paper we have presented the design and implementation

of software implemented, real-time, adaptive characterization

environment that is capable of automatically collecting Bit

Error Rate and Packet Error Rate statistics. While the overall

performance of the system has met its original goals, additional

feature and performance enhancement opportunities have been

identified. In particular, given the computational capacity of

the HyperX device, we will explore the migration of the

adaptive nature of the characterization environment from the

Host PC GUI to inside the hxHADS system. This migration

will permit a tighter feedback loop between the running of the

test series and the adaptive sweeping of channel model

parameters. An additional performance enhancement could be

achieved by coordinating the use of multiple hxHADS systems

in parallel. Since the test series are all independent, it is

possible to use multiple hxHADS systems in parallel and

combine their results. A linear speedup in results collection

would result.

 Aside from the initial Bit Error Rate and Packet Error Rate

statistics that are currently collected, we have been asked by

users to collect Burst Error Rate statistics. The code necessary

to collect these statistics has been added to the Compare unit

(at a cost of an additional 45 lines of ANSI-C code but no

additional cost in HyperX processing elements). The

characterization environment also has the capability of

monitoring the cycle count cost of any of the units under test.

Though at present we do not make use of this information,

input from our users has indicated that this additional statistical

information is of value. We are exploring the most useful way

to make this information available to aid in performance

bottleneck analysis, clock reduction analysis for power savings,

etc.

 Regarding the included Channel Emulator unit, we are at

present extending its capabilities in a number of directions.

While the current 12 path capacity is suitable for most

applications, certain advanced channel models require

significantly more (e.g., up to 24 paths). Our internal

waveform development team has also expressed a need for

MIMO (in particular 2x2 and 4x4) connections beyond the

current SISO capability. A further need of that group is more

complex impairment models themselves, beyond the current

Rayleigh / Ricean capability. We are also exploring the

addition of mobility modeling to support the analysis of sets of

MANET nodes.

5. REFERENCES

[1] B.A. Dalio, I. Aguayo, K.A. Shelby, “The Design and

Implementation of a Real-Time, Software-Based, Multi-Path
Fading Channel Emulator for an SDR Development
Platform”, Proceedings of the 2010 European Reconfigurable
Radio Technologies Workshop and Product Exposition, Jun.
2010

[2] The MathWorks, http://www.mathworks.com/
[3] Spirent Communications, http://www.spirent.com/
[4] Elektrobit, http://www.elektrobit.com/
[5] N. Patel, K.A. Shelby, and B.A. Dalio, “Radio Waveform

Development System Providing an Integrated Approach to
SDR Waveform Design and Implementation”, Proceedings of
the SDR „10 Technical Conference and Product Exposition,
Dec. 2010.

[6] B.A. Dalio and K.A. Shelby, “The Implementation of OFDM
Waveforms on an SDR Development Platform supporting a
Massively Parallel Processor”, Proceedings of the SDR ‟09
Technical Conference and Product Exposition, Dec. 2009.

[7] P. L‟Ecuyer, “Maximally Equidistributed Combined
Tausworthe Generators”, Mathematics of Computation, v65
n213, Jan. 1996, p. 203-213.

[8] G.E.P. Box and Mervin E. Muller, “A Note on the Generation
of Random Normal Deviates”, The Annals of Mathematical
Statistics, v29 n2 p. 610–611.

571

