
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

PORT TESTING IN A DUAL-STAR NETWORK: EMBEDDED LANS FOR RF*

Steven Groves (Harris PS&PC, Lynchburg, Virginia, U. S. A.; sgroves@harris.com).

* Information in this paper is not export controlled.

ABSTRACT

In today’s RF base stations, it is not unusual for a design to
contain several microprocessors and/or DSPs, which need
to talk to each other within a closed chassis, probably via an
embedded LAN. In Harris’s MASTR V public service base
station, for example, the chassis is divided into removable
modules, each with one or more CPUs and DSPs, whether
the module is a receiver, a transmitter, a controller, etc, and
they connect with each other on an embedded LAN. In
critical applications, like public service, a wise approach to
embedded LAN design would be to have two switches in a
chassis, with each switch independently connected to all the
modules in the chassis. That way, either switch can provide
for the LAN in case the other switch is either down or has a
connection failure to any module. This effectively creates
two switches connected in a parallel “dual star”
configuration. This is MASTR V’s design (See Figure 1).
 The dual star network then requires a software task:
have exactly one active switch in operation at a time to
avoid packet redundancies, and to change switches
immediately if the active switch has issues. This would
require all modules and both switches to always test the
connection points, and ensure test information is transferred
to both switches. Hence, a “packet forwarding” technique is
developed for the dual-star embedded LAN as described in
this article.

1. INTRODUCTION

Referring to Figure 1, by topological definitions, Ethernet is
naturally a star network, which means that all PCs or
network-capable components within a “star” send and
receive data between each other with use of common
devices [1], which in today’s basic networks would almost
always be switches. For obvious security reasons,
embedded LANs are usually expected to be very basic like
this, and closed to outside Ethernet traffic, and the network
components would all be Ethernet-capable microprocessors
and/or DSPs typically needing only one embedded switch to
have enough ports to connect to all of them.
 In systems needing reliability and redundancy, a good
solution is to use a dual-star configuration, as also shown in
Figure 1. In the embedded dual star, there are two switches,

and the switches do not connect to each other directly. The
reason is because the purpose of the dual-star is to have
absolute “drop-in” switch redundancy with each switch
independently connected to each component in the LAN,
and therefore, needing each component to have two separate
ports. This precludes having the switches connect to one
another directly, as packet confusion may result. The port
separation can be accomplished via a variety of ways, but in
the MASTR V system, “mini-switches” are installed in the
modules, which are less sophisticated than the backplane
switches, but can be configured to isolate the ports going to
both backplane switches to avoid packet feedbacks.

1.1. MASTR V System

The MASTR V base station consists of a chassis with up to
14 hot-swappable slot modules and four external modules,
and slots for the two highly-manageable embedded switches
with microprocessors. A complete four-channel MASTR V
system consists of a chassis containing four transmitters,
four receivers, four processor-controlled RF and six
controllers (two different types), and the chassis externally
connects four RF power amplifiers. The two switches
provide the dual-star network for all 18 external and internal
modules.
 It should be noted that the reason that there are six
controllers of two different types is because one of the types
of controls can be used for two channels each module. This
controller type, called the baseband controller, controls the
RF modules’ settings and data for the two channels. The
other type, called the traffic controller, routes a single

Star Network Dual Star Network
Figure 1. Single and Dual Star Network Topologies

SDR'10 Session 6B- 2

560

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

channel’s traffic (per controller) between other channels,
and even other chasses via a WAN network, which is
separate from the internal embedded network and has no
route to it. For this design, the external WAN, which could
span several sites, is not in a dual-star formation, as dual-
star is primarily designed for router-less embedded LANs.
 Referencing Figure 2, all modules, external and
internal, connect two Ethernet connections to the backplane
for the internal dual-star backplane switches, with each one
of the two connecting to one of the switches. The backplane
switches themselves are I. C. boards of a different form
factor than the slot-based modules, but are slide-based hot-
swap devices just like the other slot-based modules.
 To have multiple ports on modules which may only
want to dedicate one Ethernet MAC device, each module
has its own internal switch, as described above, albeit a
much less sophisticated embedded switch than the dual-star
switches. This “mini-switch” ties a processor’s MAC to the
ports going to the backplane switches. However, to keep
traffic from routing from either backplane port to the other,
special configuration is needed for these “mini-switches.”
For the purposes of explaining the configuration, these
configured “mini-switches” can be thought of nothing more
than a “splayed” port, in which traffic from either backplane
switch is treated as if it were coming from one single port
and is destined for the module, and traffic coming from the
module goes out both backplane ports as if both backplane
ports were the same port. The “mini” switches are
configured by the module’s processor.
 The microprocessors in the main backplane dual-star
switch boards can configure the dual-star switches to do
advanced traffic filtering as needed. This way one switch
can block all traffic except for traffic to and from the
processor so that it can be placed in standby, while the other
switch stays active, to avoid packet duplication.

1.2. Software Requirements

Now we get to the software requirements. The primary
requirement is to have exactly one switch providing the

network and one switch configured to block traffic so as to
avoid continuous packet duplications. There needs to be a
way to detect if a port on the active switch has a connection
issue with one of the backplane switches, or if the active
switch has gone down, so that the other switch can take
over. Both switches need to know about this port
connection issue close to the same time so that they can
switch roles quickly. They also need to know the difference
between a bad port on one module, and a vacant module.
Finally, there must be a small overlap when the switches
change roles so that there is absolutely no packet loss, if
avoidable, and to at the same time, minimize packet
duplication.

2. WHY NOT SPANNING TREE

The first idea that probably comes to mind to most network
experts is why not use spanning tree (RSTP)? Spanning
Tree is a Layer 2 protocol used for preventing packet
storming [2], and is used in just about every external off-
the-shelf switch and router. The dual-star format used by the
MASTR V uses mini switches to splay traffic to and from
both switches, so someone might argue that it may be worth
a try to manipulate RSTP protocol among both types of
switches so as to accomplish the goals of the design.
 The answer is the mini switches are controlled in the
MASTR V by various types of processors with different
commercial Ethernet controlling software, some of which
are not readily able to use custom types of Layer 2
protocols. The second reason is that it the MASTR V
system needs to signal the user to replace a bad switch or
module, and RSTP is limited in how it detects and reports
network issues.

3. PORT FORWARDING

A Layer 3 alternative is for the modules and the backplane
switch processors to use a single, custom UDP packet,
which acts as both the test packet and the information
packet to relay to all modules and both switches. That
approach would require that the backplane switch
processors have active Layer 3 connections to the network
and therefore be network components themselves. One
should keep in mind that the backplane switches have
microprocessors, which themselves are connected to their

Figure 3. Definition of Uplink and Downlink

Figure 2. Diagram of One Channel of MASTR V System

561

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

respective switch and are therefore network components.
Therefore, the switches themselves can receive and transmit
data to and from the modules like they were one of them.
Each switch even has a separate IP and MAC address. What
should be clarified is that the switches cannot directly send
packets to each other and need the modules to relay
information to each other.
 The custom UDP packet used in the port forwarding
procedure is a packet containing the connection information
for the LAN, which is a bitmap of passing and failing
connections between each module and switch. It should be
noted that today’s networks use duplex connections and a
connection fault may be direction specific (Figure 3), and
therefore the packet contains one bit for each direction to
and from each switch resulting in four bits per module
(Figure 4). The connection directions from module to
switch are called uplinks, and connection directions from
switches to module are called downlinks.
 Each module has four bits within a field of the UDP
packet to represent the status of the uplink to one switch,
downlink from the one switch, uplink to the other switch,
and downlink from the other switch. A port failure between
a module and a switch may either be an uplink, a downlink,
or both. If the module is showing negative in both directions
on both switches, the network can assume that the module is
vacant or has been removed. If all modules show port
failures in both directions for a switch, then it can be
assumed that the switch is removed or down.
 This UDP packet is constantly being transmitted by all
modules to both switches, and to all modules from both
switches, and is identical in structure for all transmitting
members, but each bit within the packet is either
manipulated by the source to indicate an issue, or forwarded
by the source from information it received from a previous
source, depending on if it is a switch (microprocessor) or a
module. Both switches and all modules transmit this packet
at an identical rate, say for arguments sakes, period P, and
transmit them every period P regardless of when each
switch or module may or may not receive a packet from
another member. Each module independently unicasts a port
forward packet to both switches (each switch individually),
every time period P and, each switch independently unicasts
a packet of this kind at the period to all modules (one-at-a-
time), regardless of whether or not the module is vacant.
 With the timing of the transmitted packets independent
of each other, there will most likely be skews between the
times when one switch receives packets from each module,
when a module receives packets from each switch. With this
design, skewing is irrelevant because all packets which each
switch or module expects to receive will be arriving within
one cycle of its own transmit period P. However, for good
margin, the timeout for overdue packets from any sender is
set to 2P. As each module and switch is transmitting a
packet, it is testing the port connections. Uplinks to

switches are tested by the modules and downlinks to
modules are tested by the switches. Information not known
directly by a switch or module is forwarded from the
packet(s) the switch or module received before it transmits.
Even though there is no timing codependence in packet
transmission between components, packet information
effectively “flows” from module to switch, and then back to
the modules, and back to the other switch. The best way to
describe the process is to follow a pathway of information
for a single module, step-by-step, as other bits of
information are added in each step. The module whose
information we want to follow is module X (See Figure 4).

3.1 Step 1: Switch S to Modules

If a switch has received a packet from a specific module, it
marks the time stamp of its reception and flags that the
“uplink from module X is passing.” The approach used for
this design is for the switch’s processor to also carry an
internal copy of the uplink/downlink fields in global
memory of the packet to be transmitted and change this
bitmap as necessary for the next time period P expires and it
is time to transmit this data to all of the modules. That
makes the fields to be transmitted most readily available at
the time to transmit.
 After period P expires, a switch checks the time stamps
of the last time each module has expired, including module
X. If a switch has counted two transmit periods and has not
received a packet from a specific module within that 2P
period, the switch marks the packet as overdue and sets the

Figure 4. Diagram of Module Uplinks and Downlinks

562

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

correct bit within its internal bitmap to say “uplink from
module X is overdue or is failing” implying that the port
connection may have failed. For reference purposes, this
uplink information bit is “Uxs.” The switch is responsible
for changing its packet for transmit to reflect the passing or
failing uplink from each module. It is responsible also for
forwarding other modules’ information as will be explained
later in the process, but to simplify for the next step, only
module X’s Uxs is referenced in this step. The summary of
the step is: this switch is switch S and is sending
information to all modules, including module Y, that S’s
uplink from X is condition Uxs. Module Y’s role will be
explained later.

Summary of Step 1
• Switch S provides uplink condition of X

(Uxs) to module Y.

3.2 Step 2: Modules to Switch T

The modules receive packets from a switch S with uplink
information on all modules. Each module is responsible for
forwarding to the other switch T, uplink status between
switch S and every module in the chassis except for itself.
The information on a module’s own uplink status to the
switch S is moot because the process does not rely on a
switch using a bad port to tell a module its port is bad, as a
port failure may either be directional or bidirectional.
Therefore, module X’s information needs module Y, which
represents a confirmed good module, to forward the
information to the other switch. It should be noted that there
needs to be at least two confirmed good modules in the
system for this design to work, but a MASTR V chassis has
a functional minimum of 5 modules, so there is sufficient
single-failure redundancy. Module Y (and other modules) in
the system receive Dsx from switch S. If module X received
a packet from S, then Module X marks “downlink from S to
X is good,” or Dsx is good.
 After transmit time period P has expired within each
module, the module checks the time stamp of each switch’s
last packet and if it is greater than 2P outstanding, the
switch’s downlink to itself is marked as bad, in that
“downlink to module X from switch S is bad,” or Dsx is
bad. If X’s downlink from S is bad, the last uplink
information it has from all other modules to S is moot
because it is outdated. However, module Y is assumed
good, and uplink condition Uxs is forwarding to switch T.

Summary of Step 2
• Module X provides downlink condition of S

(Dsx) to switch T.
• Module Y forwards uplink condition Uxs to

switch T.

3.3 Step 3: Switch T to Modules

The other switch, switch T, now receives packet
information from every module with good uplink
connections to it. It then marks its internal memory with
each good uplink. Module Y provides Uxs (along with the
other good modules, of course), and module X provides
Dsx. Uplink condition of module X to switch T (Uxt) is
known directly by this switch, depending of whether or not
it received a packet from X within the last 2P. Keep in mind
that both switches have identical software and for the
purposes of the test protocol, behave identically. The only
difference is which fields they manipulate in the packet, and
they are compliments of one another.

Summary of Step 3
• Switch T provides Uxt to module Y.
• Switch T forwards Dsx to module Y from

module X.

3.4 Step 4: Modules to Switch S

Modules Y and X are to now monitor switch T for packets.
Module X knows first hand if it received a downlink packet
from T within 2P and gives that information, Dtx, to switch
S upon its time to transmit. Module Y forwards uplink
information from X to T (Uxt) and downlink information
from S to X (Dsx) upon its time to transmit.

Summary of Step 4
• Module X provides downlink info Dtx to

Switch S.
• Module Y forwards uplink info Uxt and

downlink information Dsx to Switch S.

3.5 Step 5: Switch S to Modules (Second Loop)

At this point, S has the full network picture, but there needs
to be two more steps to make switch T know the picture.
The final situation is that it needs to pass Dtx back to Y, so
that it can flow it forward to T. This process is in addition to
the processes it performed before, and since we are
assuming steady state, there is no change in the data from
Step 1.

Summary of Step 5
• Switch S provides uplink condition of X

(Uxs) to Module Y. This is same data as
Step 1, assuming steady state.

• Switch S forwards downlink Dtx to Module
Y.

563

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3.6 Step 6: Modules to Switch T (second loop)

Now Y must forward all it knows back to T, including Uxs,
along with all its other requirements mentioned in Step 2.
Module X continues what it’s doing.

Summary of Step 6
• Module X provides downlink info Dsx to

Switch T. This is the same data as step 2,
assuming steady state.

• Module Y forwards uplink info Uxs to
Switch T, identical to step 2 assuming
steady state.

• Module Y forwards Dtx to Switch T.

3.7 Questions

Now both switches know the network status. This begs the
question: what about the other modules besides Y and X?
The answer is that all good modules will act as module Y,
and, in steady state, will forward identical uplink
information on X to both switches. Provisionally, a
“majority-rules” for this design takes place in the switches,
even though the data will be identical in steady state. The
switches also wait for steady state before performing any
changes. If there is a second bad module, the switches can
detect “another bad X” the same way as before and can
nullify its uplink data on other modules. The second bad
module would be a compromise in the redundant switch
design of the dual-star as it is expected that a user would
replace a defective switch or module when there is a first
failure. The goal is to simply nullify the first fault, and also
recognize the second fault, should it occur, and make sure
that the switches still provide for the modules that have no
connection faults.
 If someone concentrates on the process a little bit, they
may ask if there is still another flaw in the design: A module
X with a bad uplink cannot report that its downlink to the
other switch is good or bad. The answer is that the switches
assume a downlink from the opposite switch is good if it is
unknown. A second fault on the same module is a
compromise in redundancy and the pick up on this special
“tunnel-through,” fault where a module has only one good
uplink to one switch and only one good downlink on the
second switch, so as to simply make sure the network stays
up for the sake of the uncompromised modules.
 One more question is what to do with the fault
information which the switches have. The switch processors
which participate in the port forwarding procedure above
also configure the switch hardware. The hardware uses
advanced Layer 3 filtering and the switch deemed active,
configures the hardware to allow normal traffic between all
the modules. The switch deemed the standby switch only

allows traffic between itself (its processor) and the other
modules so that it does not duplicate packets while on
standby. If the switch process discovers that the active
switch has a bad connection, then the switches hand off
their active/standby status to each other. The active switch
becomes standby and the standby switch becomes active,
while the network host gets notified of this fault so that the
user can replace the switch or module which is defective.
There is a small amount of overlap in active switches to
absolutely prevent LAN downtime and at the same time
minimize packet duplication.
 Finally, what about software overhead, particularly in
embedded software? It is definitely a drawback for software
to need extra code to handle application-level network
traffic. Having said that, the only concern is on the switch
processor since it has to provide the filters, set up the
switch, process test packets, and make complex decisions
on what packet to send to all modules. The module simply
needs to apply the latest information from switch A and
switch B to the packet it will transmit, and update the
connection status fields for which it is responsible.

4. TEST CASES

To verify the design, included are some test cases. They
refer to the procedure in Section 3.

4.1 Module Removed

Create a scenario where, all of a sudden, device X is
removed, as this is a hot-swap environment. Switch S will
discover that the uplink Uxs is gone and will send this
information to module Y (and all other modules), along
with the assumption that Dtx is good (info from dependent
module assumed good if module unable to send). Module Y
forwards this information to T, but X is unable to uplink to
T. T flags the bad Uxt uplink, and forwards assumed good
Dsx downlink to Y. Y sends bad Uxt and assumed good
Dsx back to S, and that info goes back to Y, though at this
stage, this path is redundant because S now knows that there
is at least an uplink fault in the module for both switches
and can assume the module is removed or out of service.
Though assumed-good Dtx is forwarded to T, T knows the
same thing as S and therefore assumes module is removed
or out of service. There is no fault or changing of the active
switch.

• Uxs, Dsx, Utx, Dtx are bad (=0)
• S: Uxs=0; Assume Dtx=1; -> Y
• Y: Uxs=0; Dtx=1 -> T
• T: Uxt=Uxs=0; Dtx=1; Assume Dsx=1 -> Y.

T’s path complete.
• Y: Uxt=0; Dsx=1 -> S

564

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

• S: Uxt=Uxs=0; Dsx=1; Assume Dtx=1 -> Y.
Info complete.

• Switches assume X is removed.

4.2 Port Down in Both Directions

What happens if X can no longer talk to S in either
direction? Switch S reports uplink failure Uxs to module Y,
along with assumed good Dtx, and module Y forwards all
this to T. Module X reports to T that it has a downlink issue
Dsx with S. T receives that issue and knows that it is
genuine because it receives from X. Uxt is marked good by
T and is sent to Y, along with the forwarded bad downlink
condition Dsx. Y forwards good uplink Uxt and bad
downlink Dsx to S. X cannot report to S about its good
downlink Dtx from T, but S assumes good anyway, and
forwards this back to Y. Both switches now know that X
has a bad connection with S, and if S active and T is in
standby, the roles need to reverse.

• Uxs, Dsx, are bad.
• S: Uxs=0; Assume Dtx=1 -> Y
• Y: Uxs=0; Dtx=1 -> T. X: Dsx=0 -> T
• T: Uxs=0; Uxt=1; Dtx=1; Dsx=0 -> Y. T’s

path complete.
• Y: Uxt=1; Dsx=1 -> S.
• S: Uxt=1; Uxs=0; Dsx=1; Assume Dtx=1 ->

Y. Info complete.
• Network switches to switch T.

4.3 Port Down in One Direction

What happens if X can no longer talk to S in the uplink
direction? Switch S reports uplink failure Uxs, and assumed
good downlink Dtx to module Y, and module Y forwards
this to T. Module X reports to T that it has good downlink
Dsx with S. T receives that issue and knows that it is
genuine because it receives from X. Uxt is marked good by
T and is sent to Y, along with the forwarded good condition
Dsx. Y forwards good uplink Uxt and Dsx to S. X cannot
report to S about its good downlink Dtx from T, but S
assumes good anyway, and forwards this back to Y. Both
switches now know that X has a bad connection with S, and
if S active, and T is in standby, the roles need to reverse.

• Uxs is bad.
• S: Uxs=0; Assume Dtx=1; -> Y
• Y: Uxs=0; Dtx=1 -> T. X: Dsx=1 -> T
• T: Uxs=0; Uxt=1; Dtx=1; Dsx=1 -> Y. T’s

path complete.
• Y: Uxt=1; Dsx=1 -> S.

• S: Uxt=1; Uxs=0; Dsx=1; Assume Dtx=1 ->

Y. Info complete.
• Network switches to switch T.

4.4 Port Down in the Other Direction

What happens if X can no longer talk to S in the downlink
direction? X is able to communicate to S that it has good
downlink Dtx to S. Switch S reports good uplink Uxs to
module Y, and of course, now-known status Dtx. Module Y
forwards this to T. Module X reports to T that it has a
downlink issue Dsx with S. T receives that issue and knows
that it is genuine because it receives from X. Uxt is marked
good by T and is sent to Y, along with the forwarded bad
downlink condition Dsx. Y forwards good uplink Uxt and
bad downlink Dsx to S. X reports good T downlink Dtx to
S, and S forwards this back to Y. Both switches now know
that X has a bad connection with S, and if S is active, and T
is in standby, the roles need to reverse.

• Dsx is bad
• X: Dtx=1 -> S.
• S: Uxs=1; Dtx=1; -> Y.
• Y: Uxs=1; Dtx=1 -> T. X: Dsx=0 -> T
• T: Uxs=1; Uxt=1; Dtx=1; Dsx=0 -> Y. T’s

path complete.
• Y: Uxt=1; Dsx=0 -> S. X: Dtx=1 ->
• S: Uxt=Uxs=1; Dsx=0; Dtx=1 -> Y. Info

complete.
• Network switches to switch T.

5. CONCLUSION

In today’s multi-CPU designs for RF base stations in critical
applications, which require closed embedded LANs, two
redundant switches creating a dual-star network can be a
desired approach. However, the software now requires
every component and switch to be involved in determining
which switch is non-functional on which port. While Layer
2 protocols like Spanning Tree may be incompatible with
embedded development environments, a port-forwarding
mechanism using UDP packets would be a possibility, if the
port forwarding follows a set of procedures to ensure both
switches know what to do under what circumstances.

[1] M. L. Young, D. Muder, D. Kay, K. Warfel, and A. Barrows,

Internet: The Complete Reference, Millennium Edition, The
McGraw-Hill Companies, Berkeley, CA 1999.

[2] M. Valentine, A. Whitaker, CCNA Exam Cram Third Edition,
Que Publishing, Indianapolis, IN, 2008.

565

	PORT TESTING IN A DUAL-STAR NETWORK: EMBEDDED LANS FOR RF0F
	Abstract
	1. Introduction
	2. Why Not Spanning Tree
	3. Port Forwarding
	4. Test Cases
	5. Conclusion

