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ABSTRACT 

 

In this paper we explain the implementation of a sphere 

detector for spatial multiplexing in broadband wireless 

systems using High-level Synthesis (HLS) tools. These 

modern FPGA design tools accept C/C++ descriptions as 

input specifications, and automatically generate a Register 

Transfer Level (RTL) description for FPGA implementation 

using traditional FPGA implementation tools.  

We have used AutoESL’s AutoPilot HLS tool to implement 

this demanding algorithm on a Virtex-5 running at a clock 

frequency of 225MHz. The obtained results show that these 

modern high-level synthesis tools produce Quality of Results 

(QoR) competitive to the ones obtained using a traditional 

RTL design approach, while significantly abstracting the 

designer from the low-level FPGA implementation details. 

 

 

1. INTRODUCTION 

 

Spatial division multiplexing MIMO processing significantly 

increases the spectral efficiency, and hence capacity, of a 

wireless communication system: it is a core component of 

next generation wireless systems, for example, WiMAX and 

other OFDM-based wireless communication standards. 

Spatial multiplexing MIMO processing is a computationally 

intensive application that implements highly demanding 

signal processing algorithms. A specific example of spatial 

multiplexing in MIMO systems is Sphere decoding (SD), 

which is a complexity-efficient method to solve the MIMO 

detection problem, while maintaining a bit-error rate (BER) 

performance comparable to the optimal maximum-likelihood 

(ML) detection algorithm. However, even this reduced-

complexity algorithm is generally not feasible to implement 

on a DSP processor in real-time. 

 Field Programmable Gate Arrays (FPGAs) are an 

attractive target platform for the implementation of complex 

DSP-intensive algorithms, like the Sphere Decoder. Modern 

FPGAs are high-performance parallel computing platforms 

that provide the high-performance of dedicated hardware 

solutions, while keeping the flexibility of programmable 

DSP processors. There are several studies showing that 

FPGAs could achieve 100X higher performance and 30X 

better cost-performance than traditional DSP processors in 

several signal processing applications [4]. 

 Despite this tremendous performance advantage, 

FPGAs are not generally used in wireless signal processing 

since they are perceived as devices difficult to use for 

traditional DSP programmers. The key barrier for the 

widespread adoption of FPGAs in wireless applications is 

the traditional hardware-centric design-flow and tools. 

Currently, the use of FPGAs requires significant hardware 

design experience, like for example, being familiar in using 

hardware description languages (e.g., VHDL, Verilog).  

 Recently, new High-level Synthesis Tools [3] have 

become available as design tools for FPGAs. These design 

tools take as input a high-level algorithm description and 

generate RTL that can be used with standard FPGA 

implementation tools (e.g., Xilinx ISE/EDK). These tools 

offer an increase in the design productivity and reduction of 

the development time, while producing good Quality of 

Results [2]. This paper describes the FPGA implementation 

of a complex wireless algorithm on a modern FPGA (i.e., 

sphere detector for spatial multiplexing MIMO in 802.16e 

systems) using High-level Synthesis Tools. We have used 

AutoESL’s AutoPilot HLS tool to target a Xilinx Virtex-5 

running at 225MHz. We present a comprehensive study 

reporting on our experiences in using HLS tools for this 

particular wireless algorithm and compare the results to an 

implementation generated using on a traditional FPGA 

hardware-centric design approach. 

 

2. SPHERE DECODER 

 

Sphere detection is a prominent method of simplifying the 

detection complexity in spatial multiplexing systems while 

maintaining BER performance comparable with optimum 

maximum-likelihood (ML) detection.  
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 The block diagram of the MIMO 802.16e wireless 

receiver is shown in the Figure 1. It is assumed that the 

channel matrix is perfectly known to the receiver which can 

be accomplished by classical means of channel estimation. 

After channel reordering and QR decomposition, the sphere 

detector (SD) is applied. In preparation for engaging a soft-

input-soft-output channel decoder (e.g. Turbo decoder), soft 

outputs are produced by computing the log-likelihood ratio 

(LLR) of the detected bits. A detailed explanation of this 

algorithm can be found in [1]. Following we briefly 

introduce the key three building blocks in this algorithm. 

2.1. Channel Matrix Reordering 

The order in which the antennas are processed by the sphere 

detector has a profound impact on the BER performance. So 

prior to sphere detection, channel reordering is applied. By 

utilizing a channel matrix pre-processor that realizes a type 

of successive interference cancellation similar in concept to 

that employed in BLAST (Bell Labs Layered Space Time) 

processing, the detector achieves close to ML performance. 

The method implemented by the channel reordering 

determines the optimum detection order of columns of the 

complex channel matrix over several iterations. Depending 

on the iteration count, the row with the maximum or 

minimum norm is selected. The row with the minimum 

Euclidian norm represents the influence of the strongest 

antenna while the row with the maximum Euclidian norm 

represents the influence of the weakest antenna. The novel 

approach first processes the weakest stream. All subsequent 

iterations process the streams from highest to lowest power. 

 To meet the high data rate requirements, the channel 

ordering block is realized using the pipelined architecture 

shown in Figure 2, which processes 5 channels in a Time 

Division Multiplexing (TDM) approach. This approach 

provided more processing time between the matrix elements 

of the same channel while sustaining high data throughput. 

The calculation of the G matrix is the most demanding 

component in Figure 2. The heart of the process is Matrix 

Inversion which is realized using QR decomposition (QRD). 

A common method for realizing QRD is based on Givens 

Rotations. The proposed implementation performs the 

complex rotations in the Diagonal and OffDiagonal cells, 

which are the fundamental computations units in the systolic 

array we are using. 

2.2. Modified Real-Valued QR decomposition 

After obtaining the optimal ordering of the channel matrix 

columns, the QR decomposition (QRD) on the real-valued 

matrix coefficients is applied. The functional unit used for 

this QRD processing is similar to the QRD engine designed 

to compute the inverse matrix, but with some modifications. 

The input data in this case are real valued and the systolic 

array structure has a correspondingly higher degree. In order 

to meet the desired timing constraints the input data 

consumption rate had to be 1 input sample per clock cycle. 

This introduced challenges around processing latency 

problems which couldn’t be addressed with a 5-channel 

TDM structure. The number of channels in a TDM group 

was increased to 15 to provide more time between the 

successive elements of the same channel matrix. 

2.3. Sphere Detector (SD) 

The iterative sphere detection algorithm can be viewed as a 

tree traversal with each level of the tree i corresponding to 

processing symbols from the ith antenna. The tree traversal 

can be performed using several different methods. In our 

implementation we selected a breadth-first search due to the 

attractive hardware-friendly nature of the approach. At each 

level only the K nodes with the smallest partial Euclidian 

distance (Ti) are chosen for expansion. This type of detector 

is called a K-best detector. 

 The norm computation is done in the PED blocks of the 

sphere detector. Depending on the level of the tree, three 

different PED blocks are used: the root node PED block 

calculates all possible PEDs (tree level index is i =M =8). 

The second level PED block computes 8 possible PEDs for 
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Figure 1: Block Diagram for Sphere Decoder 

 

Figure 2: Iterative channel matrix reordering algorithm 
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Figure 3: Sphere Detector Processing Pipeline 
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each of the 8 survivor paths generated in the previous level. 

This will give us 64 generated PEDs for the tree level index 

i = 7. The third type of PED block is used for all other tree 

levels which compute the closest-node PED for all PEDs 

computed on the previous level. This will fix the number of 

branches on each level to K = 64, thus propagating to the 

last level i =1 and producing 64 final PEDs along with their 

detected symbol sequences. 

 The pipeline architecture of the SD allows data 

processing on every clock cycle, thus the number of PED 

blocks necessary at every tree level is only one. The total 

number of PED units is equal to the number of tree levels, 

which for 4×4 64-QAM, is 8. The block diagram of the SD 

is illustrated in the Figure 3. 

2.4. FPGA Performance Implementation Targets 

The target FPGA device is a Xilinx Virtex-5 FPGA, with a 

target clock frequency of 225MHz.  The channel matrix is 

estimated for every data subcarrier which limits the available 

processing time for every channel matrix. For the selected 

clock frequency and a communication bandwidth of 5MHz 

(corresponding to 360 data sub-carriers in a WiMAX 

system), the available number of processing clock cycles per 

channel matrix interval is calculated as follows: 

 

 (10) 

 

As mentioned earlier, the most computationally demanding 

configuration with 4×4 antennas and 64-QAM modulation 

scheme has been designed. The achievable raw data rate in 

this case is 83.965Mbps. 

 

3. HIGH-LEVEL SYNTHESIS FOR FPGA 

 

High-level synthesis tools take as their input a high-level 

description of the specific algorithm to implement and 

generate the RTL description of FPGA implementation.  

 Modern high-level synthesis tools accept untimed 

C/C++ descriptions as input specifications. These tools give 

two interpretations to the same C/C++ code: (1) sequential 

semantics for input/output behavior; and (2) architecture 

specification based on C/C++ code and compiler directives.  

Based on the C/C++ code, compiler directives and target 

throughput requirements, these high-level synthesis tools 

generate high-performance pipelined architectures. Among 

other features, high-level synthesis tools enable automatic 

pipeline stages insertion, resource sharing to reduce FPGA 

resource utilization. In summary, high-level synthesis tools 

raise the level of abstraction for FPGA design, and make 

transparent the time-consuming and error-prone RTL design 

tasks. We have focused on using C++ descriptions, with the 

goal of leveraging C++ template classes to represent 

arbitrary precision integer types and template functions to 

represent parameterized blocks in the architecture. 

 The overall design approach is shown in Figure 4, 

where the starting point is a reference C/C++ code that could 

have been derived from a MATLAB functional description. 

As illustrated in this figure, the first step in implementing an 

application on any hardware target is often to restructure the 

reference C/C++ code. By “restructuring,” we mean 

rewriting the initial C code (which is typically coded for 

clarity and ease of conceptual understanding rather than for 

optimized performance) into a format more suitable for the 

target processing engine. For example, on a DSP processor 

it may be required to rearrange an application’s code so that 

the algorithm makes an efficient use of the cache memories. 

When targeting FPGAs, this code restructuring might 

involve, for example, rewriting the code so it represents an 

architecture specification that can achieve the desired 

throughput, or rewriting the code to make efficient use of the 

specific FPGA features like embedded DSP macros. 

 The functional verification of this implementation 

C/C++ code is achieved using traditional C/C++ compilers 

(e.g., gcc) and reusing C/C++ level testbenches developed 

for the verification of the reference C/C++ code. The 

implementation C/C++ code is the main input to the high-

level synthesis tools. However, there are additional inputs to 

the high-level synthesis tools that significantly influence the 

generated hardware, its performance and number of FPGA 

resources used. Two essential constraints are the target 

FPGA family (i.e., technology) and target clock frequency, 

which obviously have an effect on the number of pipeline 

stages in the generated architecture. Additionally, high-level 

 

Figure 4: High-level Synthesis for FPGAs 
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synthesis tools accept compiler directives (e.g., pragmas 

inserted in the C/C++ code). There are different types of 

directives, which can be applied to different sections of the 

C/C++ code. For example, there are directives that are 

applied to loops (e.g., loop unrolling), while other directives 

can be applied to arrays (e.g., to specify which FPGA 

resource must be used to the implementation of the array). 

 Based on all these inputs, the high-level synthesis tools 

generate an output architecture (RTL) and report the 

throughput of the generated architecture. Depending on this 

throughput, then the designer can modify the directives 

and/or the implementation C/C++ code. If the generated 

architecture meets the required throughput, then the output 

RTL is used as the input to the FPGA implementation tools 

(ISE/EDK). The final achievable clock frequency and 

number of FPGA resources used is reported only after 

running logic synthesis and place&route. If the design does 

not meet timing or the FPGA resources are not the expected 

ones, the designer should modify the implementation C/C++ 

code or the compiler directives.  

 

4. HIGH-LEVEL SYNTHESIS IMPLEMENTATION 

OF SPHERE DECODER 

 

We have implemented the key three building blocks of the 

WiMAX sphere decoder shown in Figure 1 using AutoPilot 

2010.07.ft from AutoESL. It is important to emphasize that 

the algorithm is exactly the algorithm described in [1], and 

hence has exactly the same BER. In this section we give 

specific examples of code re-writing and compiler directives 

that we have used for this particular implementation.  

4.1. Design approach: Iterative C/C++ refinement 

The original reference C code, derived from a MATLAB 

functional description, included 2000 lines of code (aprox.), 

including synthesizable and verification C code. It contains 

only fixed-point arithmetic using C built-in data types. All 

the required floating point operations (e.g., sqrt) have been 

approximated by a FPGA-friendly implementation. 

 In addition to the reference C code describing the 

functions to synthesize in the FPGA, there is a complete C-

level verification testbench. The input test vectors, as well as 

the golden output reference files, were generated from the 

MATLAB description. The original C reference code is bit-

accurate with the MATLAB specification, and passes the 

entire regression suite consisting of multiple data sets. 

 This reference C code has gone through different types 

of code restructuring. As examples, Figure 5 shows three 

instances of code restructuring that we have used, which are 

explained in the following subsections. A key concept to 

keep in mind is that the C-level verification infrastructure 

has been re-used to verify any change to the implementation 

C/C++ code.  All verification has been carried out at the C-

level, not at the RTL level, avoiding time-consuming RTL 

simulations and hence, contributing to the reduction in the 

overall development time.  

4.2. Macro-architecture specification 

Probably the most important code refactoring example is to 

rewrite the C/C++ code to describe the macro-architecture 

that efficiently would implement a specific functionality. In 

other words, the designer is accountable for the macro-

architecture specification, while the high-level synthesis 

tools are in charge of the micro-architecture generation. 

This type of code restructuring has a major impact on the 

obtained throughput and quality of results.  

 In the case of the sphere decoder, there are several 

instances of this type of code restructuring. For example, to 

meet the high throughput of the channel ordering block, the 

designer should describe in C/C++ the macro-architecture 

shown in Figure 2. Such C/C++ code would consist of 

several function calls communicating using arrays. The high-

level synthesis tools might automatically translate these 

arrays in ping-pong buffers to allow parallel execution of the 

several matrix calculation blocks in the pipeline. Another 

example of code restructuring at this level would be to 

decide how many number of channels should be employed 

in the TDM structure of a specific block (e.g., 5 channels in 

the Channel Matrix Reordering block, or 15 channels in the 

Modified Real-Valued QR decomposition block. 

 Figure 6 is a specific example of macro-architecture 

specification. This snipped of C++ code describes the sphere 

detector block diagram shown in Figure 3. We can observe a 

pipeline of nine function calls, each one representing a block 

as shown in Figure 3. The communication between functions 

is achieved through arrays, which are mapped to streaming 

interfaces (not embedded BRAM memories in the FPGA) by 

using the appropriate directives (pragmas) in lines 5 and 7. 

 

Figure 5: Iterative C/C++ refinement design approach  
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4.3. Parameterization 

Parameterization is another key example of code re-writing. 

We have extensively leveraged C++ template functions to 

represent parameterized modules in the architecture. 

 In the implementation of the sphere decoder, there are 

several examples of this type of code rewriting. A specific 

example would be the different matrix operations used in the 

channel reordering block. The Matrix Calculations blocks 

(4x4, 3x3 and 2x2) showed in Figure 2 use different types of 

matrix operations like Matrix Inverse or Matrix Multiply. 

These blocks are coded as C++ template functions with the 

dimensions of the matrix as template parameters. 

 Figure 7 shows the C++ template function for Matrix 

Multiply. In addition to the matrix dimension, this template 

function has a third parameter MM_II (Initiation Interval for 

Matrix Multiply), which is used to specify the number of 

clock cycles between two consecutive loop iterations. See 

directive (pragma) in line 9, which is used to parameterize 

the required throughput for a specific instance. This is a 

really important feature, since it has a major impact on the 

generated micro-architecture. That is, the ability of the high-

level synthesis tools to exploit resource sharing, and hence, 

reducing the FPGA resources used in the implementation. 

For example, just by modifying this Initiation Interval 

parameter and using exactly the same C++ code, the high-

level synthesis tools automatically achieve different levels of 

resource sharing in the implementation of the different 

Matrix Inverse (4x4, 3x3, 2x2) blocks. 

4.4. FPGA Optimizations 

FPGA optimization is the last example of code rewriting. 

The designer can rewrite the C/C++ code to more efficiently 

utilize specific FPGA resources, and hence, improve timing 

and reduce area. There are two very specific examples of 

this type of optimizations: (1) bit-widths optimizations; and 

(2) efficient use of embedded DSP blocks (i.e., DSP48s). 

The reference C/C++ code was written using built-in C/C++ 

data types (e.g., short, int), while the design uses 18-bit fixed 

point data types to represent the matrix elements.  We have 

leveraged C++ template classes to represent arbitrary 

precision fixed-point data types, hence reducing FPGA 

resources and minimizing impact on timing.  

 Figure 8 is a C++ template function that implements a 

multiplication followed by a subtraction, where the width of 

the input operands is parameterized. These two arithmetic 

operations can be mapped into a single embedded DSP 

block (i.e., DSP48 block). By efficiently using DSP48s, 

timing is improved and FPGA resource utilization is 

minimized. In Figure 8, we can also observe two directives 

that instruct the high-level synthesis tool to use a maximum 

of two cycles to schedule these operations and use a register 

for the output return value.  

 

5.  PRODUCTIVITY METRICS 

5.1. Development Time 

In Figure 9 we plot how the size of the design (i.e., FPGA 

resources) generated using AutoESL’s AutoPilot evolves 

over time and compare it to a traditional SystemGenerator 

(i.e., RTL) implementation. It is important to observe in this 

figure that by using high-level synthesis tools we are able to 

implement many valid solutions, which differ in size over 

time. On the other hand, there is only one RTL solution, 

1: void sphere_detector_top (…) { 

2:  #pragma AP DATAFLOW

3:  // PED streams between pipeline blocks

4:  ap_int<18>    PED_7[RVD_MODULATION];

5:  #pragma AP ARRAY_STREAM variable=PED_7 depth=1 stream

6:  ap_int<4>     symb_7[RVD_MODULATION];

7: #pragma AP ARRAY_STREAM variable=symb_7 depth=1 stream

8:  main_label:{

9:    RootPED(r_7, y_7, ..., symb_7);

10:   PED(r_6, y_6, ..., symb_7, symb_6);

11:   SortFreePED<5,2>(r_5, y_5, ..., symb_6, symb_5);

12:   SortFreePED<4,3>(r_4, y_4, ..., symb_5, symb_4);

13:   SortFreePED<3,4>(r_3, y_3, ..., symb_4, symb_3);

14:   SortFreePED<2,5>(r_2, y_2, ..., symb_3, symb_2);

15:   SortFreePED<1,6>(r_1, y_1, ..., symb_2, symb_1);

16:   SortFreePED<0,7>(r_0, y_0, ..., symb_1, symb_0);

17:   // find minimum PED

18:   min_finder(PED_0, symb_0, min_PED, min_symb_list);

19:  }

20:}  

Figure 6: Sphere Detector macro-architecture description 

1: template<int X_DIMENSION, int Y_DIMENSION, int MM_II>

2:  void matrix_multiply_(...) {

3:  #pragma AP ARRAY_PARTITION variable=chunk_in_re dim=1

4:  #pragma AP ARRAY_PARTITION variable=chunk_in_im dim=1

5:   // matrix multiplication of a A'*A matrix

6:   for (index_a = 0; index_a < TDM_CHUNKS; index_a++) {

7:     for (index_b = 0; index_b < X_DIMENSION; index_b++) {

8:       for (index_c = 0; index_c < Y_DIMENSION; index_c++) {

9:  #pragma AP PIPELINE II = MM_II

10:  <loop body>

11:   } } }

12: }
 

Figure 7: Example of code parameterization 

1:  template <int Wa, int Wb, int Wc>

2:  ap_int<36> SUBMUL(ap_int<Wa> a, ap_int<Wb> b, ap_int<Wc> c) {

3: #pragma AP LATENCY max=2

4: #pragma AP INTERFACE ap_none port=return register

5:

6:    ap_int<36> c_36 = c; // sign extension

7:    return c_36-a*b;

8:  }  

Figure 8: FPGA optimization for DSP48 utilization 
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which requires of a long development time. Many solutions 

can be obtained using high-level synthesis tools. Depending 

on the amount of code restructuring, the designer can trade-

off how fast to get a solution versus the size of that solution. 

 We have observed that it is relatively quick to obtain 

several Fast solutions, which use significant more FPGA 

resources (i.e., area) than the traditional RTL solution. On 

the other hand, the designer might decide to generate many 

more Expert solutions by implementing more advanced 

C/C++ code restructuring techniques (e.g., FPGA-specific 

optimizations) to reduce FPGA resource utilization. 

 Finally, and since all verification has been carried out at 

the C/C++ level, not at the RTL-level, we avoided the time-

consuming RTL simulations. We found that doing the design 

verification at the C/C++ level significantly contributed to 

the reduction in the overall development time. 

5.2. Quality of Results 

In Figure 10, we compare final FPGA resource utilization 

and overall development time for the complete sphere 

decoder implemented using high-level synthesis tools and 

the reference System Generator implementation, which is 

basically a structural RTL design, explicitly instantiating 

FPGA primitives, like for example, DSP48 blocks. Please, 

note that the development time for AutoESL includes 

learning the tool, producing results, design space exploration 

and detailed verification. 

 To have accurate comparisons, we have re-implemented 

the reference RTL design using the latest Xilinx ISE 12.1 

tools targeting a Virtex-5 FPGA. The RTL generated by 

AutoESL’s AutoPilot has also been implemented using ISE 

12.1 targeting the same FPGA. From table in Figure 10, we 

can observe that AutoESL’s AutoPilot achieve significant 

savings in FPGA resources, which is mainly achieved 

through resource sharing in the implementation of the matrix 

inverse blocks. We can also observe a significant reduction 

in the number of registers and a slightly higher utilization of 

Look-up Tables (LUTs). This result is partially due to the 

fact that delay lines are mapped onto SRL16s (i.e., LUTs) in 

the AutoESL implementation, while the delay lines are 

implemented using registers in the SystemGenerator 

implementation. There are other modules where we traded-

off BRAMs for LUTRAM, resulting in lower BRAM usage 

in the channel preprocessor. 

 

6. CONCLUSIONS 

 

In this paper we have presented the implementation of a 

complex and demanding wireless MIMO receiver using a 

high-level synthesis tool targeting a Xilinx FPGA.  

 This evaluation has demonstrated that AutoESL’s 

AutoPilot achieves significant abstractions from low-level 

FPGA implementation details (e.g., timing and pipeline 

design), while producing Quality of Results (QoR) highly 

competitive to the ones obtained using a traditional RTL 

design approach. C/C++ level verification contributes to the 

reduction in the overall development time by avoiding time-

consuming RTL simulations However, obtaining excellent 

results for complex and challenging designs requires good 

macro-architecture definition and FPGA tools knowledge 

(e.g., understand and interpret FPGA tool reports). 
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Figure 9: Development time 

Metric SysGen

Expert

AutoESL

Expert

% Diff

Development

Time  (weeks)

16.5 15 -9%

LUTs 27,870 29,060 +4%

Registers 42,035 31, 000 -26%

DSP48s 237 201 -15%

18K BRAM 138 99 -28%
 

Figure 10: Quality of results 
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