
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

SPHERE DETECTOR FOR 802.16E BROADBAND WIRELESS SYSTEMS

IMPLEMENTATION ON FPGAS USING HIGH-LEVEL SYNTHESIS TOOLS

Juanjo Noguera (Xilinx, Dublin, Ireland; juanjo.noguera@xilinx.com), Stephen

Neuendorffer (Xilinx, San Jose, CA, USA; stephen.neuendorffer@xilinx.com), Sven Van

Haastregt (Leiden University, Leiden, The Netherlands; svhaastr@liacs.nl), Jesus Barba

(University of Castilla-La Mancha, Ciudad Real, Spain; jesus.barba@uclm.es), Kees

Vissers (Xilinx, San Jose, CA, USA; kees.vissers@xilinx.com), Chris Dick (Xilinx, San

Jose, CA, USA; chris.dick@xilinx.com)

ABSTRACT

In this paper we explain the implementation of a sphere

detector for spatial multiplexing in broadband wireless

systems using High-level Synthesis (HLS) tools. These

modern FPGA design tools accept C/C++ descriptions as

input specifications, and automatically generate a Register

Transfer Level (RTL) description for FPGA implementation

using traditional FPGA implementation tools.

We have used AutoESL’s AutoPilot HLS tool to implement

this demanding algorithm on a Virtex-5 running at a clock

frequency of 225MHz. The obtained results show that these

modern high-level synthesis tools produce Quality of Results

(QoR) competitive to the ones obtained using a traditional

RTL design approach, while significantly abstracting the

designer from the low-level FPGA implementation details.

1. INTRODUCTION

Spatial division multiplexing MIMO processing significantly

increases the spectral efficiency, and hence capacity, of a

wireless communication system: it is a core component of

next generation wireless systems, for example, WiMAX and

other OFDM-based wireless communication standards.

Spatial multiplexing MIMO processing is a computationally

intensive application that implements highly demanding

signal processing algorithms. A specific example of spatial

multiplexing in MIMO systems is Sphere decoding (SD),

which is a complexity-efficient method to solve the MIMO

detection problem, while maintaining a bit-error rate (BER)

performance comparable to the optimal maximum-likelihood

(ML) detection algorithm. However, even this reduced-

complexity algorithm is generally not feasible to implement

on a DSP processor in real-time.

 Field Programmable Gate Arrays (FPGAs) are an

attractive target platform for the implementation of complex

DSP-intensive algorithms, like the Sphere Decoder. Modern

FPGAs are high-performance parallel computing platforms

that provide the high-performance of dedicated hardware

solutions, while keeping the flexibility of programmable

DSP processors. There are several studies showing that

FPGAs could achieve 100X higher performance and 30X

better cost-performance than traditional DSP processors in

several signal processing applications [4].

 Despite this tremendous performance advantage,

FPGAs are not generally used in wireless signal processing

since they are perceived as devices difficult to use for

traditional DSP programmers. The key barrier for the

widespread adoption of FPGAs in wireless applications is

the traditional hardware-centric design-flow and tools.

Currently, the use of FPGAs requires significant hardware

design experience, like for example, being familiar in using

hardware description languages (e.g., VHDL, Verilog).

 Recently, new High-level Synthesis Tools [3] have

become available as design tools for FPGAs. These design

tools take as input a high-level algorithm description and

generate RTL that can be used with standard FPGA

implementation tools (e.g., Xilinx ISE/EDK). These tools

offer an increase in the design productivity and reduction of

the development time, while producing good Quality of

Results [2]. This paper describes the FPGA implementation

of a complex wireless algorithm on a modern FPGA (i.e.,

sphere detector for spatial multiplexing MIMO in 802.16e

systems) using High-level Synthesis Tools. We have used

AutoESL’s AutoPilot HLS tool to target a Xilinx Virtex-5

running at 225MHz. We present a comprehensive study

reporting on our experiences in using HLS tools for this

particular wireless algorithm and compare the results to an

implementation generated using on a traditional FPGA

hardware-centric design approach.

2. SPHERE DECODER

Sphere detection is a prominent method of simplifying the

detection complexity in spatial multiplexing systems while

maintaining BER performance comparable with optimum

maximum-likelihood (ML) detection.

SDR'10 Session 6A- 5

547

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 The block diagram of the MIMO 802.16e wireless

receiver is shown in the Figure 1. It is assumed that the

channel matrix is perfectly known to the receiver which can

be accomplished by classical means of channel estimation.

After channel reordering and QR decomposition, the sphere

detector (SD) is applied. In preparation for engaging a soft-

input-soft-output channel decoder (e.g. Turbo decoder), soft

outputs are produced by computing the log-likelihood ratio

(LLR) of the detected bits. A detailed explanation of this

algorithm can be found in [1]. Following we briefly

introduce the key three building blocks in this algorithm.

2.1. Channel Matrix Reordering

The order in which the antennas are processed by the sphere

detector has a profound impact on the BER performance. So

prior to sphere detection, channel reordering is applied. By

utilizing a channel matrix pre-processor that realizes a type

of successive interference cancellation similar in concept to

that employed in BLAST (Bell Labs Layered Space Time)

processing, the detector achieves close to ML performance.

The method implemented by the channel reordering

determines the optimum detection order of columns of the

complex channel matrix over several iterations. Depending

on the iteration count, the row with the maximum or

minimum norm is selected. The row with the minimum

Euclidian norm represents the influence of the strongest

antenna while the row with the maximum Euclidian norm

represents the influence of the weakest antenna. The novel

approach first processes the weakest stream. All subsequent

iterations process the streams from highest to lowest power.

 To meet the high data rate requirements, the channel

ordering block is realized using the pipelined architecture

shown in Figure 2, which processes 5 channels in a Time

Division Multiplexing (TDM) approach. This approach

provided more processing time between the matrix elements

of the same channel while sustaining high data throughput.

The calculation of the G matrix is the most demanding

component in Figure 2. The heart of the process is Matrix

Inversion which is realized using QR decomposition (QRD).

A common method for realizing QRD is based on Givens

Rotations. The proposed implementation performs the

complex rotations in the Diagonal and OffDiagonal cells,

which are the fundamental computations units in the systolic

array we are using.

2.2. Modified Real-Valued QR decomposition

After obtaining the optimal ordering of the channel matrix

columns, the QR decomposition (QRD) on the real-valued

matrix coefficients is applied. The functional unit used for

this QRD processing is similar to the QRD engine designed

to compute the inverse matrix, but with some modifications.

The input data in this case are real valued and the systolic

array structure has a correspondingly higher degree. In order

to meet the desired timing constraints the input data

consumption rate had to be 1 input sample per clock cycle.

This introduced challenges around processing latency

problems which couldn’t be addressed with a 5-channel

TDM structure. The number of channels in a TDM group

was increased to 15 to provide more time between the

successive elements of the same channel matrix.

2.3. Sphere Detector (SD)

The iterative sphere detection algorithm can be viewed as a

tree traversal with each level of the tree i corresponding to

processing symbols from the ith antenna. The tree traversal

can be performed using several different methods. In our

implementation we selected a breadth-first search due to the

attractive hardware-friendly nature of the approach. At each

level only the K nodes with the smallest partial Euclidian

distance (Ti) are chosen for expansion. This type of detector

is called a K-best detector.

 The norm computation is done in the PED blocks of the

sphere detector. Depending on the level of the tree, three

different PED blocks are used: the root node PED block

calculates all possible PEDs (tree level index is i =M =8).

The second level PED block computes 8 possible PEDs for

V-BLAST

Channel
Reordering

Channel

Estimation

Modified

Real-Valued
QRD

Sphere

Detector

Soft Output

Generation

H
R

y'

y~

Hsorted

Figure 1: Block Diagram for Sphere Decoder

Figure 2: Iterative channel matrix reordering algorithm

()8,:R

(8)y′

()7,:R (7)y′ ()6,:R (6)y′

8i = 7i = 6i = 1i =

()1,:R (1)y′

()()i

i
T s

Figure 3: Sphere Detector Processing Pipeline

548

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

each of the 8 survivor paths generated in the previous level.

This will give us 64 generated PEDs for the tree level index

i = 7. The third type of PED block is used for all other tree

levels which compute the closest-node PED for all PEDs

computed on the previous level. This will fix the number of

branches on each level to K = 64, thus propagating to the

last level i =1 and producing 64 final PEDs along with their

detected symbol sequences.

 The pipeline architecture of the SD allows data

processing on every clock cycle, thus the number of PED

blocks necessary at every tree level is only one. The total

number of PED units is equal to the number of tree levels,

which for 4×4 64-QAM, is 8. The block diagram of the SD

is illustrated in the Figure 3.

2.4. FPGA Performance Implementation Targets

The target FPGA device is a Xilinx Virtex-5 FPGA, with a

target clock frequency of 225MHz. The channel matrix is

estimated for every data subcarrier which limits the available

processing time for every channel matrix. For the selected

clock frequency and a communication bandwidth of 5MHz

(corresponding to 360 data sub-carriers in a WiMAX

system), the available number of processing clock cycles per

channel matrix interval is calculated as follows:

 (10)

As mentioned earlier, the most computationally demanding

configuration with 4×4 antennas and 64-QAM modulation

scheme has been designed. The achievable raw data rate in

this case is 83.965Mbps.

3. HIGH-LEVEL SYNTHESIS FOR FPGA

High-level synthesis tools take as their input a high-level

description of the specific algorithm to implement and

generate the RTL description of FPGA implementation.

 Modern high-level synthesis tools accept untimed

C/C++ descriptions as input specifications. These tools give

two interpretations to the same C/C++ code: (1) sequential

semantics for input/output behavior; and (2) architecture

specification based on C/C++ code and compiler directives.

Based on the C/C++ code, compiler directives and target

throughput requirements, these high-level synthesis tools

generate high-performance pipelined architectures. Among

other features, high-level synthesis tools enable automatic

pipeline stages insertion, resource sharing to reduce FPGA

resource utilization. In summary, high-level synthesis tools

raise the level of abstraction for FPGA design, and make

transparent the time-consuming and error-prone RTL design

tasks. We have focused on using C++ descriptions, with the

goal of leveraging C++ template classes to represent

arbitrary precision integer types and template functions to

represent parameterized blocks in the architecture.

 The overall design approach is shown in Figure 4,

where the starting point is a reference C/C++ code that could

have been derived from a MATLAB functional description.

As illustrated in this figure, the first step in implementing an

application on any hardware target is often to restructure the

reference C/C++ code. By “restructuring,” we mean

rewriting the initial C code (which is typically coded for

clarity and ease of conceptual understanding rather than for

optimized performance) into a format more suitable for the

target processing engine. For example, on a DSP processor

it may be required to rearrange an application’s code so that

the algorithm makes an efficient use of the cache memories.

When targeting FPGAs, this code restructuring might

involve, for example, rewriting the code so it represents an

architecture specification that can achieve the desired

throughput, or rewriting the code to make efficient use of the

specific FPGA features like embedded DSP macros.

 The functional verification of this implementation

C/C++ code is achieved using traditional C/C++ compilers

(e.g., gcc) and reusing C/C++ level testbenches developed

for the verification of the reference C/C++ code. The

implementation C/C++ code is the main input to the high-

level synthesis tools. However, there are additional inputs to

the high-level synthesis tools that significantly influence the

generated hardware, its performance and number of FPGA

resources used. Two essential constraints are the target

FPGA family (i.e., technology) and target clock frequency,

which obviously have an effect on the number of pipeline

stages in the generated architecture. Additionally, high-level

Figure 4: High-level Synthesis for FPGAs

()
64

225/1

360/9.102
_ ≅=

MHz

us
cyclesnum

549

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

synthesis tools accept compiler directives (e.g., pragmas

inserted in the C/C++ code). There are different types of

directives, which can be applied to different sections of the

C/C++ code. For example, there are directives that are

applied to loops (e.g., loop unrolling), while other directives

can be applied to arrays (e.g., to specify which FPGA

resource must be used to the implementation of the array).

 Based on all these inputs, the high-level synthesis tools

generate an output architecture (RTL) and report the

throughput of the generated architecture. Depending on this

throughput, then the designer can modify the directives

and/or the implementation C/C++ code. If the generated

architecture meets the required throughput, then the output

RTL is used as the input to the FPGA implementation tools

(ISE/EDK). The final achievable clock frequency and

number of FPGA resources used is reported only after

running logic synthesis and place&route. If the design does

not meet timing or the FPGA resources are not the expected

ones, the designer should modify the implementation C/C++

code or the compiler directives.

4. HIGH-LEVEL SYNTHESIS IMPLEMENTATION

OF SPHERE DECODER

We have implemented the key three building blocks of the

WiMAX sphere decoder shown in Figure 1 using AutoPilot

2010.07.ft from AutoESL. It is important to emphasize that

the algorithm is exactly the algorithm described in [1], and

hence has exactly the same BER. In this section we give

specific examples of code re-writing and compiler directives

that we have used for this particular implementation.

4.1. Design approach: Iterative C/C++ refinement

The original reference C code, derived from a MATLAB

functional description, included 2000 lines of code (aprox.),

including synthesizable and verification C code. It contains

only fixed-point arithmetic using C built-in data types. All

the required floating point operations (e.g., sqrt) have been

approximated by a FPGA-friendly implementation.

 In addition to the reference C code describing the

functions to synthesize in the FPGA, there is a complete C-

level verification testbench. The input test vectors, as well as

the golden output reference files, were generated from the

MATLAB description. The original C reference code is bit-

accurate with the MATLAB specification, and passes the

entire regression suite consisting of multiple data sets.

 This reference C code has gone through different types

of code restructuring. As examples, Figure 5 shows three

instances of code restructuring that we have used, which are

explained in the following subsections. A key concept to

keep in mind is that the C-level verification infrastructure

has been re-used to verify any change to the implementation

C/C++ code. All verification has been carried out at the C-

level, not at the RTL level, avoiding time-consuming RTL

simulations and hence, contributing to the reduction in the

overall development time.

4.2. Macro-architecture specification

Probably the most important code refactoring example is to

rewrite the C/C++ code to describe the macro-architecture

that efficiently would implement a specific functionality. In

other words, the designer is accountable for the macro-

architecture specification, while the high-level synthesis

tools are in charge of the micro-architecture generation.

This type of code restructuring has a major impact on the

obtained throughput and quality of results.

 In the case of the sphere decoder, there are several

instances of this type of code restructuring. For example, to

meet the high throughput of the channel ordering block, the

designer should describe in C/C++ the macro-architecture

shown in Figure 2. Such C/C++ code would consist of

several function calls communicating using arrays. The high-

level synthesis tools might automatically translate these

arrays in ping-pong buffers to allow parallel execution of the

several matrix calculation blocks in the pipeline. Another

example of code restructuring at this level would be to

decide how many number of channels should be employed

in the TDM structure of a specific block (e.g., 5 channels in

the Channel Matrix Reordering block, or 15 channels in the

Modified Real-Valued QR decomposition block.

 Figure 6 is a specific example of macro-architecture

specification. This snipped of C++ code describes the sphere

detector block diagram shown in Figure 3. We can observe a

pipeline of nine function calls, each one representing a block

as shown in Figure 3. The communication between functions

is achieved through arrays, which are mapped to streaming

interfaces (not embedded BRAM memories in the FPGA) by

using the appropriate directives (pragmas) in lines 5 and 7.

Figure 5: Iterative C/C++ refinement design approach

550

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

4.3. Parameterization

Parameterization is another key example of code re-writing.

We have extensively leveraged C++ template functions to

represent parameterized modules in the architecture.

 In the implementation of the sphere decoder, there are

several examples of this type of code rewriting. A specific

example would be the different matrix operations used in the

channel reordering block. The Matrix Calculations blocks

(4x4, 3x3 and 2x2) showed in Figure 2 use different types of

matrix operations like Matrix Inverse or Matrix Multiply.

These blocks are coded as C++ template functions with the

dimensions of the matrix as template parameters.

 Figure 7 shows the C++ template function for Matrix

Multiply. In addition to the matrix dimension, this template

function has a third parameter MM_II (Initiation Interval for

Matrix Multiply), which is used to specify the number of

clock cycles between two consecutive loop iterations. See

directive (pragma) in line 9, which is used to parameterize

the required throughput for a specific instance. This is a

really important feature, since it has a major impact on the

generated micro-architecture. That is, the ability of the high-

level synthesis tools to exploit resource sharing, and hence,

reducing the FPGA resources used in the implementation.

For example, just by modifying this Initiation Interval

parameter and using exactly the same C++ code, the high-

level synthesis tools automatically achieve different levels of

resource sharing in the implementation of the different

Matrix Inverse (4x4, 3x3, 2x2) blocks.

4.4. FPGA Optimizations

FPGA optimization is the last example of code rewriting.

The designer can rewrite the C/C++ code to more efficiently

utilize specific FPGA resources, and hence, improve timing

and reduce area. There are two very specific examples of

this type of optimizations: (1) bit-widths optimizations; and

(2) efficient use of embedded DSP blocks (i.e., DSP48s).

The reference C/C++ code was written using built-in C/C++

data types (e.g., short, int), while the design uses 18-bit fixed

point data types to represent the matrix elements. We have

leveraged C++ template classes to represent arbitrary

precision fixed-point data types, hence reducing FPGA

resources and minimizing impact on timing.

 Figure 8 is a C++ template function that implements a

multiplication followed by a subtraction, where the width of

the input operands is parameterized. These two arithmetic

operations can be mapped into a single embedded DSP

block (i.e., DSP48 block). By efficiently using DSP48s,

timing is improved and FPGA resource utilization is

minimized. In Figure 8, we can also observe two directives

that instruct the high-level synthesis tool to use a maximum

of two cycles to schedule these operations and use a register

for the output return value.

5. PRODUCTIVITY METRICS

5.1. Development Time

In Figure 9 we plot how the size of the design (i.e., FPGA

resources) generated using AutoESL’s AutoPilot evolves

over time and compare it to a traditional SystemGenerator

(i.e., RTL) implementation. It is important to observe in this

figure that by using high-level synthesis tools we are able to

implement many valid solutions, which differ in size over

time. On the other hand, there is only one RTL solution,

1: void sphere_detector_top (…) {

2: #pragma AP DATAFLOW

3: // PED streams between pipeline blocks

4: ap_int<18> PED_7[RVD_MODULATION];

5: #pragma AP ARRAY_STREAM variable=PED_7 depth=1 stream

6: ap_int<4> symb_7[RVD_MODULATION];

7: #pragma AP ARRAY_STREAM variable=symb_7 depth=1 stream

8: main_label:{

9: RootPED(r_7, y_7, ..., symb_7);

10: PED(r_6, y_6, ..., symb_7, symb_6);

11: SortFreePED<5,2>(r_5, y_5, ..., symb_6, symb_5);

12: SortFreePED<4,3>(r_4, y_4, ..., symb_5, symb_4);

13: SortFreePED<3,4>(r_3, y_3, ..., symb_4, symb_3);

14: SortFreePED<2,5>(r_2, y_2, ..., symb_3, symb_2);

15: SortFreePED<1,6>(r_1, y_1, ..., symb_2, symb_1);

16: SortFreePED<0,7>(r_0, y_0, ..., symb_1, symb_0);

17: // find minimum PED

18: min_finder(PED_0, symb_0, min_PED, min_symb_list);

19: }

20:}

Figure 6: Sphere Detector macro-architecture description

1: template<int X_DIMENSION, int Y_DIMENSION, int MM_II>

2: void matrix_multiply_(...) {

3: #pragma AP ARRAY_PARTITION variable=chunk_in_re dim=1

4: #pragma AP ARRAY_PARTITION variable=chunk_in_im dim=1

5: // matrix multiplication of a A'*A matrix

6: for (index_a = 0; index_a < TDM_CHUNKS; index_a++) {

7: for (index_b = 0; index_b < X_DIMENSION; index_b++) {

8: for (index_c = 0; index_c < Y_DIMENSION; index_c++) {

9: #pragma AP PIPELINE II = MM_II

10: <loop body>

11: } } }

12: }

Figure 7: Example of code parameterization

1: template <int Wa, int Wb, int Wc>

2: ap_int<36> SUBMUL(ap_int<Wa> a, ap_int<Wb> b, ap_int<Wc> c) {

3: #pragma AP LATENCY max=2

4: #pragma AP INTERFACE ap_none port=return register

5:

6: ap_int<36> c_36 = c; // sign extension

7: return c_36-a*b;

8: }

Figure 8: FPGA optimization for DSP48 utilization

551

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

which requires of a long development time. Many solutions

can be obtained using high-level synthesis tools. Depending

on the amount of code restructuring, the designer can trade-

off how fast to get a solution versus the size of that solution.

 We have observed that it is relatively quick to obtain

several Fast solutions, which use significant more FPGA

resources (i.e., area) than the traditional RTL solution. On

the other hand, the designer might decide to generate many

more Expert solutions by implementing more advanced

C/C++ code restructuring techniques (e.g., FPGA-specific

optimizations) to reduce FPGA resource utilization.

 Finally, and since all verification has been carried out at

the C/C++ level, not at the RTL-level, we avoided the time-

consuming RTL simulations. We found that doing the design

verification at the C/C++ level significantly contributed to

the reduction in the overall development time.

5.2. Quality of Results

In Figure 10, we compare final FPGA resource utilization

and overall development time for the complete sphere

decoder implemented using high-level synthesis tools and

the reference System Generator implementation, which is

basically a structural RTL design, explicitly instantiating

FPGA primitives, like for example, DSP48 blocks. Please,

note that the development time for AutoESL includes

learning the tool, producing results, design space exploration

and detailed verification.

 To have accurate comparisons, we have re-implemented

the reference RTL design using the latest Xilinx ISE 12.1

tools targeting a Virtex-5 FPGA. The RTL generated by

AutoESL’s AutoPilot has also been implemented using ISE

12.1 targeting the same FPGA. From table in Figure 10, we

can observe that AutoESL’s AutoPilot achieve significant

savings in FPGA resources, which is mainly achieved

through resource sharing in the implementation of the matrix

inverse blocks. We can also observe a significant reduction

in the number of registers and a slightly higher utilization of

Look-up Tables (LUTs). This result is partially due to the

fact that delay lines are mapped onto SRL16s (i.e., LUTs) in

the AutoESL implementation, while the delay lines are

implemented using registers in the SystemGenerator

implementation. There are other modules where we traded-

off BRAMs for LUTRAM, resulting in lower BRAM usage

in the channel preprocessor.

6. CONCLUSIONS

In this paper we have presented the implementation of a

complex and demanding wireless MIMO receiver using a

high-level synthesis tool targeting a Xilinx FPGA.

 This evaluation has demonstrated that AutoESL’s

AutoPilot achieves significant abstractions from low-level

FPGA implementation details (e.g., timing and pipeline

design), while producing Quality of Results (QoR) highly

competitive to the ones obtained using a traditional RTL

design approach. C/C++ level verification contributes to the

reduction in the overall development time by avoiding time-

consuming RTL simulations However, obtaining excellent

results for complex and challenging designs requires good

macro-architecture definition and FPGA tools knowledge

(e.g., understand and interpret FPGA tool reports).

7. REFERENCES

[1] Chris Dick et al., “FPGA Implementation of a Near-ML

Sphere Detector for 802.16E Broadband Wireless Systems”
SDR-Conference’09, Dec. 2009.

[2] Berkeley Design Technology, Inc., “High-Level Synthesis
Tools for Xilinx FPGAs”, White paper 2010. [Online]:
http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf

[3] Grant Martin, Gary Smith. “High-Level Synthesis: Past,
Present, and Future,” IEEE Design and Test of Computers,
July/August 2009.

[4] Berkeley Design Technology, Inc., “FPGAs for DSP”, White
paper 2007.

[5] K. Denolf, S. Neuendorffer, K. Vissers, “Using C-to-gates to
program streaming image processing kernels efficiently on
FPGAs”; FPL conference, Sep. 2009.

Figure 9: Development time

Metric SysGen

Expert

AutoESL

Expert

% Diff

Development

Time (weeks)

16.5 15 -9%

LUTs 27,870 29,060 +4%

Registers 42,035 31, 000 -26%

DSP48s 237 201 -15%

18K BRAM 138 99 -28%

Figure 10: Quality of results

552

