
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

IMPLEMENTATION OF AN SDR PLATFORM USING GPU AND ITS

APPLICATION TO 2X2 MIMO WIMAX SYSTEM

Jaehyuk Ju(HY-SDR Research Center, Hanyang Univ., Seoul, Korea:

stop1017@dsplab.hanyang.ac.kr); Chiyoung Ahn(HY-SDR Research Center, Hanyang

Univ., Seoul, Korea; ahncy@dsplab.hanyang.ac.kr); June Kim (HY-SDR Research

Center, Hanyang Univ., Seoul, Korea; nzneer@dsplab.hanyang.ac.kr); Seungheon Hyeon

(HY-SDR Research Center, Hanyang Univ., Seoul, Korea;

hsheon@dsplab.hanyang.ac.kr); and Seungwon Choi*(corresponding author, HY-SDR

Research Center, Hanyang Univ., Seoul, Korea; choi@ieee.org)

ABSTRACT

Conventional communication systems have been

implemented using Digital Signal Processing (DSP) and/or

Field Programmable Gate Array (FPGA) especially for the

Software defined radio (SDR) functionality. We propose a

scheme of using Graphics Processing Unit (GPU) instead of

those two conventional devices for implementing the SDR-

based communication system. GPU, a high-speed parallel

processor and numerous powerful arithmetic logic units, is

adopted for the signal processing of physical layer required

for the parallel processing of SDR system. Noting that

Compute Unified Device Architecture (CUDA) based on C

language provides Software Development Kit (SDK) for the

modem application of GPU, we utilize the CUDA SDK to

perform the modem function which operates on real-time

basis. This paper presents an implementation of 2x2 Multi-

Input Multi-Output (MIMO) WiMAX system using GPU as

its modem. Mounting an RF module on top of our GPU

modem, we demonstrate a real-time transmission of video

data. The system performance of our GPU-based system is

shown in terms of operation time.

1. INTRODUCTION

Software Defined Radio (SDR) system can support various

communication protocols through the software download

without changing its hardware. Conventional SDR system

has been implemented using Digital Signal Processing

(DSP)s and/or Field Programmable Gate Array (FPGA)s for

its modem solution. The major drawbacks of using the DSPs

and/or FPGAs are as follows. First, although DSP provides

a good flexibility of coding given functions and

development environment, the arithmetic operation

capability of DSP is not sufficient for supporting all the

requirements of modern communications in real time. On

the other hand, FPGA suffers from relatively high price and

extremely complicated procedures for development and

debugging although its computational capability is a lot

superior to DSP’s. In order to overcome above-mentioned

problems of using DSP and/or FPGA, researches for using

Graphics Processing Unit (GPU)s, which are particularly

robust for parallel processing, have been very actively

performed in the modem implementation of SDR systems

[1].

The application of GPU has been focused mainly on very

high-speed floating-point parallel arithmetic operations.

Having been provided Compute Unified Device

Architecture (CUDA) which is c-based programming

environment, one can develop high-speed applications

using GPU with far more flexibility than using FPGA.

Parallelization of each of signal processing algorithms is

very important for maximizing the performance of high-

speed parallel arithmetic operations. The parallelization is a

procedure of, first, distributing the operations that involve

mutually independent data, and then, allocating each of the

operation using the independent data to a corresponding

thread. In this paper, we present an implementation example

of a GPU-based WiMAX Multi-Input Multi-Output (MIMO)

system through the parallelization of the signal processing

algorithms. We also provide an analysis of required

operation time of the implemented system.

This paper consists of the following structure. Section 2

explains GPU and CUDA itself. Section 3 shows the system

architecture and GPU implementation of parallelized

modem. Section 4 exhibits the system performance and

evaluation. Finally, Section 5 concludes the paper.

2. OVERVIEW OF GPU/CUDA

As GPU consists of a Single Instruction Multiple Data

(SIMD) architecture, it is inherently a good processor for

parallel processing [2]. As shown in Figure 2.1, the GPU

with SIMD processor architecture processes a single

instruction using various Arithmetic Logic Unit (ALU)s

with each of many data being processed at each of the

corresponding ALU.

SDR'10 Session 5A- 5

341

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 2.1 SIMD processor architecture

As shown in Figure 2.1, GPU includes a lot more ALUs

than CPU or DSP does for 3D graphic operations. CUDA is

a c-based programming environment for efficiently

managing the many number of ALUs in GPU. Figure 2.2

illustrates the structure of CUDA [3].

Figure 2.2 CUDA structure for GPU application

Kernel shown in Figure 2.2 is a function that enables the

GPU to implement various functions generated in the host.

As shown in Figure 2.2, a kernel consists of blocks each of

which is composed of a number of threads. Note that all the

threads in a block perform a single instruction. In order to

maximize parallel processing capability of GPU, we have to

allocate as many as possible threads to each instruction

involving independent set of data. For that, GPU provides

an IDentifier (ID) for distinguishing each thread.

Programmer should control the input/output signal of each

thread using the ID, which enables the parallel processing of

independent set of data [4], [5].

3. IMPLEMENTATION OF WIMAX SYSTEM USING

GPU

Figure 3.1 illustrates the entire system block-diagram of the

2x2 spatial multiplexing(SM) MIMO WiMAX system

implemented in our lab.

(a)transmitter

(b)receiver

Figure 3.1 Block diagram of 2x2 SM MIMO WiMAX system

The core part of GPU implementation is the parallelization

of signal processing algorithms appropriately for the SIMD

architecture. Keeping that in our mind, we have designed

the modem in such a way that as many threads as possible

can be activated by dividing the data to be processed at each

block into as small pieces as possible. For example, when

the sum of 10 data is to be obtained, we would need 9

clocks if we perform serial additions. That would be

reduced to 4 if 5 pairs are added in parallel. The WiMAX

system implemented in this paper fully exploited the SIMD

architecture as described in the following sub-sections.

3.1. Encoder Implementation

Encoder consists of Channel coding, Permutation, and IFFT

component. IFFT has been implemented using the function

given in CUDA [3].

In our paper, we take permutation component as an example

of parallel technique. Permutation is a procedure of re-

ordering the clusters consisting of 14 neighboring sub-

carriers using the predetermined permutation table. For

implementing that, we need threads as many as the number

of clusters and destination memory for re-ordering the

clusters as given in the permutation table as shown in Figure

342

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3.2. Note that each thread provides the address of

destination memory for storing the cluster that has been

permutated using the ID of the thread. Permutation is

performed by copying the cluster, which is matched to the

ID of the thread, to the destination address. Therefore, the

operation time for performing the permutation implemented

in this paper is determined solely by the operation time for

memory copying of the 14 data regardless of the number of

clusters.

Figure 3.2 Block diagram for permutation

3.2. Decoder Implementation

Decoder consists of FFT, Channel Estimation, De-

permutation, Compensation, and Viterbi Decoder

component. In this paper, for simplicity, we explain the

parallelization technique for the channel estimation only.

Figure 3.3 illustrates cluster structure of WiMAX system in

which 4 pilot bits at each cluster are used for channel

estimation associated with the surrounding data subcarriers.

Figure 3.3 Structure of WiMAX cluster

In this paper, we have adopted 2D linear interpolation

consisting of 2 steps for the channel estimation, which

means a linear interpolation along the time-axis and

frequency-axis has been processed at each of the

corresponding 2 kernels. At the first step, using the pilots

allocated at 1
st
, 5

th
, 9

th
, and 13

th
 subcarriers, a linear channel

estimation is performed along the time axis. We need 2

pilots for interpolation, which means we used 2 clusters for

the channel estimation along the time axis. Each line

including the pilots has been assigned to each thread, which

means our parallelization involves 4-line channel estimation

along the time axis as shown in Figure 3.3. At the second

step, using the channel estimation obtained along the time

axis, we perform the channel estimation along the frequency

axis for the linear interpolation of data subcarriers. In order

to parallelizing the channel estimation along the frequency

axis, we have assigned a single cluster at a single block.

Then, we divide the cluster into 3 regions consisting of 1-5,

5-9, and 9-14 as shown in Figure 3.3. At each region, we

perform the channel estimation at each corresponding thread.

As there are 4 columns of subcarriers at each cluster, there

are 12 threads performing channel estimation at each cluster.

It can be observed from the above parallelization

architecture that the entire computation time required for the

channel estimation of each frame of WiMAX is equivalent

to the time required for processing just 2 kernels only. It

particularly means that the entire computation time for the

channel estimation of an entire frame is equivalent to the

time for performing the interpolation in between the pilot

signals. More specifically, as shown in Figure 3.3, since

there are 4 symbols and 3 symbols in between the pilot

symbols along the time axis and frequency axis, respectively,

the entire time for the channel estimation required in our

implementation is equivalent to the time needed for

estimating for just 7 symbols only, regardless of the number

of clusters!

4. PERFORMANCE EVALUATION

Figure 4.1 illustrates the GPU-based WiMAX MIMO

system implemented through the parallelization of signal

processing algorithms proposed in this paper.

343

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 4.1. 2x2 SM MIMO WiMAX system

The test procedure for evaluating the performance of the

implemented system is as follows. At the GPU which

realizes the modem of the base station shown at the right-

hand side of Figure 4.1, the parallelized signal processing

algorithms are executed for encoding the video stream data

in accordance with the WiMAX format. The encoded data

are transmitted through the transmit antenna via the radio

frequency (RF) transceiver (XCVR). The transmitted RF

signal is captured at the receive antenna shown at the left-

hand side of Figure 4.1. The received RF signal is processed

at the decoder GPU inside the terminal computer shown at

the left bottom of Figure 4.1 after frequency down-

conversion and analog to digital conversion at the receive

RF XCVR. The retrieved video data are shown in the

monitor in real time as shown in Figure 4.1.

In order to measure the processing time consumed at the

physical layer components, we have used the profiler

provided by the GPU manufacturing company. Figure 4.2

illustrates the operation time consumed by the physical layer

components inside the GPU in comparison to the case of

using DSP. We have observed that the computation time for

the case of GPU is 3-14 times less than that of using DSP.

The main reason for each component to exhibit different

performance in comparison to the case of DSP is due to the

difference in parallelization performance at each component.

 Figure 4.2 Comparison of computation time: GPU vs DSP

As shown in Figure 4.2 most operations can be performed

within 0.1 ms using GPU. However, some operations such

as convolutional coding and viterbi decoding consumes

relative a large computation time due to the difficulty in

parallelization.

 GPU Processing time DSP Processing time

Downlink 754.976 ㎲ 6019.89 ㎲

Uplink 2499.388 ㎲ 20148.2 ㎲

Total time 3.254 ms 26.168 ms

Table 4.1 Processing time for 1 frame: GPU vs DSP

Table 4.1 shows that the computation time required for

processing 1-frame data. Using GPU, downlink takes about

754.976 ㎲ while uplink takes about 2499.388 ㎲, which

means total computation time, 3.254 ms, is within the frame

time 5 ms. Note that a single DSP cannot provide a

successful real-time processing of the WiMAX data

according to table 4.1.

5. CONCLUSION

This paper presents a parallelization technique using GPU

as a modem solution of 2x2 WiMAX MIMO system. In

order to maximize the parallelization capability of GPU, we

first classify all the operations according to the

independency of data used in each operation. Then, each of

the operation is allocated to a thread. The modem of the

WiMAX system has been implemented using a GPU based

on the parallelization technique. Operation speed of the

implemented system has been measured to find that the total

computation time for processing a single frame of WiMAX

system of which the duration is 5ms, is about 3.254 ms

which is short enough for the real time processing.

0 2 4 6 8 10 12

Convolutional coding

IFFT

Zero Forcing

FFT

Channel Estimation

De-Permutation

Viterbi Decoder

LLR 2x2 16QAM

DSP(TI TMS320C6416)

GPU(NVIDIA GTX260)

344

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Consequently, this paper proposes a proper parallelization

technique for using GPU as a modem solution of WiMAX

system. The technique proposed in this paper can be applied

to SDR system once the GPU is properly ported with

corresponding modem code.

ACKNOWLEDGEMENTS

This work was supported by Seoul R&BD Program

(PA090743).

REFERENCES

[1] June Kim, Seungheon Hyeon, “Implementation of an SDR

System Using”, Communications Magazine of the IEEE, vol.
48, March 2010.

[2] JD Owens, M Houston, D Luebke, S Green, JE Stone, JC
Phillips, “GPU Computing”, Proceedings of the IEEE, vol.
96, May 2008.

[3] NVIDIA CUDA Compute Unified Device
Architecture Programming Guide, 2009

[4] John D. Owens, “GPU Computing”, Proceedings of IEEE,
Vol 96, Issue 5, pp. 879-899, May 2008.

[5] E Lindholm, J Nickolls, S Oberman, J Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,”
IEEE Micro, vol. 28, No.2, March-April 2008.

[6] Loutfi Nuaymi, John Wiley & Sons, "WIMAX, Technology
For Broaband Wireless Access", 2007

345

