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ABSTRACT 
 
The level of reconfigurability in digital radios varies 
significantly.  At one extreme, dedicated devices, using 
single-function analog components and dedicated digital 
chips, operate for a specific wireless application.  These 
devices lack the flexibility to change or adapt to different 
communication requirements, waveforms, or applications.  
At the other extreme, software-defined radio platforms use 
A/D converters to sample at RF or IF frequencies, allowing 
reconfigurable software running on general processing 
architectures to operate over a wide variety of applications.  
While these devices may offer the most flexibility in terms 
of reconfigurability, they can also have significant overhead 
in terms of power consumption, cost, size, and performance.  
Between these two extremes lie firmware defined radios, a 
class of digital radio that is still highly reconfigurable, but 
uses firmware and modifiable components to determine at 
what point traditional software is run in the digital receive 
process.  This paper investigates the tradeoffs between 
different processing architectures running in firmware and 
software, and reviews current processing architectures and 
products on the market that are using them.  Next, the paper 
defines a series of metrics that can be used to evaluate and 
compare these architectures in a typical use case.  We use 
these results to show the potential advantages and 
disadvantages of these processing architectures. 
 

1. INTRODUCTION 
 
 In the last few years, rather than settling on a standard 
processing architecture, the software defined radio (SDR) 
world has instead produced an ever increasing number of 
variants.  The SDR Forum has amalgamated all of these 
under their definition of a SDR [1]: 
 
… a collection of hardware and software technologies 
where some or all of the radio’s operating functions (also 
referred to as physical layer processing) are implemented 
through modifiable software or firmware operating on 
programmable processing technologies. 

 
 Despite falling under a single definition, the different 
processing architectures have a large tradespace in 
performance, cost, power and ease of use.  For a researcher 
just entering into the SDR world, discerning what 
technologies are appropriate can be a daunting challenge. 
 Before we begin, we must define a new category of 
digital radio that we term firmware defined radio (FDR).  
The Institute of Electrical and Electronics Engineers (IEEE) 
Standard Glossary of Software Engineering Terminology, 
Std 610.12-1990, defines firmware as [2] 
 
… the combination of a hardware device and computer 
instructions and data that reside as read-only software on 
that device. 
 
 From the above definition, firmware designates not 
only hardware, but also software.  A key point when 
defining FDR is that a digital radio should be operated and 
controlled by the firmware.  That is, it is firmware that 
defines the operation of the digital radio.  And generally, 
firmware includes not only general purpose processors 
(GPPs) and digital signal processors (DSPs), but also field 
programmable gate arrays (FPGAs), and application 
specific integrated circuits (ASICs). However, ASICs are 
nearly impossible to be modified in a meaningful way once 
manufactured; therefore, FDRs are largely relegated to 
digital radios that are operated by FPGAs.  In general, we 
define a FDR as 
 
… a digital radio in which the operation is characterized by 
firmware as the primary functional actor.  Firmware is 
defined as user-modifiable, read-only software that controls 
the hardware functionality. 
 
 To analyze the tradeoffs of different processing 
architectures in FDR and SDR systems, we utilize a 
common SDR functionality related to Dynamic Spectrum 
Access (DSA).  Under a DSA scheme, SDRs and FDRs can 
sense radio spectrum, locate spectrum whitespaces, and 
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opportunistically use these vacancies to establish radio 
communication links.   
 We will use the baseline functionality required to 
accomplish this spectrum sensing task as a benchmark to 
compare different FDR and SDR processing architectures.  
Using this baseline requires taking precise digital samples 
of the environment; windowing the time series data; 
performing a Fast Fourier Transform (FFT); using the result 
to compute the power spectral density (PSD); and then 
estimating which of the frequency bins of the PSD has a 
signal present using a threshold test.  
 This baseline functionality occurs in several different 
DSA applications.  For instance, in a public safety and 
disaster communications response scenario [3], cognitive 
radios (CR) performing DSA, identify the presence of 
existing signals in the frequency band.  The CR can then 
join and communicate on an existing link, or act as a 
gateway to bridge multiple communications links together.   
 Existing solutions have relied heavily on GPP-based 
architectures.  However, due to a large area form-factor, and 
consumption of a significant amount of power, these 
architectures could not be supported with a hand-held 
battery-pack.  This limited deployments to ground-stations, 
or at most, vehicle-mounted applications [4].  To move 
beyond a fixed ground-station, or vehicle-mounted mobile 
radio design, it is clear that hardware miniaturization needs 
to occur to allow for the development of a small, power-
efficient hand-held device.   
 Another application that uses this baseline to conduct 
spectrum sensing, is not individual radios, but a larger 
sensor network.  Here a collection of CRs can relay 
spectrum utilization information back to central database, or 
DSA Broker [5], where the data can be fused to give a more 
accurate depiction of the radio environment.  In addition to 
identifying the presence of signals, the multiple independent 
measurements allow a user to geo-locate the origin of the 
signals to complement the radio environment map [6]. 
 For military applications, the presence, as well as the 
locations of the signals, can be significant in identifying 
adversaries in the band.  This knowledge gives military 
planners the option of either avoiding adversaries’ signals or 
jamming them.  This process of identification has been 
demonstrated previously using a GPP-based architecture 
[7]. 

 To develop a larger-scale sensor network, with 
multiple, battery-powered, inexpensive, and potentially 
disposable nodes, we would again need to focus on 
miniaturization, with the goal of developing small, power-
efficient, disposable nodes. 
 Thus, this paper makes the following contributions.  
First, we review current processing architecture options and 
the most popular products on the market which utilize them.  
Next, using a set of metrics we developed, and explain in 
Section 3, we evaluate the three most common of these 
processing architectures, specifically focusing on the 
tradeoffs between SDRs and FDRs. 
 

2. PROCESSOR ARCHITECURES 
 
We begin by reviewing the processor hardware available for 
use in software defined radio and cognitive radios.  
 The GPP is one of the foundational processor 
architectures in SDRs.  Its high clock rate and large on-chip 
memories make GPPs appropriate for SDR.  However, 
because its main purpose is not only for signal processing, 
but also for performing various other system operations, it is 
less efficient and consumes more power than other devices.  
However, since the GPP is continuously being developed 
and improved, some specialty processing features are now 
found on GPPs.   
 A DSP is a microprocessor for digital signal processing 
applications.  DSPs are flexible and can be programmed 
with a HLL (high level language) such as C.  Through this 
HLL, modifications and upgrades can be made easily.  Most 
DSPs execute sequential and parallel operations.  Even if 
the DSP has provisions for parallel execution of 
instructions, such as parallel multiply and accumulate, the 
size and number of units are fixed, and they may not be 
optimal for a particular task.  So, for high-sample rate 
process, more cycles are required and the data is processed 
slower.  However, DSPs are comparatively cheaper than 
other hardware. 
 FPGAs are hardware devices that provide a matrix of 
reconfigurable logic resources on a single chip, which can 
be programmed to implement a user specified circuit.  
FPGAs can execute parallel operations, maintaining an 
optimal word size for a particular algorithm.  Therefore, 

 
Table 1. Evolution of FPGA Technology [8-11] 

 LUTs 
(Per a slice) Input capacity of LUT Flip-flops 

(Per slice) 
Slices 

(per CLB) DSP Capability of multiplier 
in DSP 

Virtex-2 2 4-input 2 4 None None 
Virtex-4 2 4-input 2 4 32-512 18X18 multiplier 
Virtex-5 4 6-input / 5 input-dual output 4 2 32-512 25X18 multiplier 
Virtex-6 4 6-input / 5 input-dual output 8 2 288-2016 25X18 multiplier 
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they can achieve a much higher computational performance 
than a DSP.  Furthermore, they require less engineering cost 
than an ASIC, because they are reconfigurable and can 
leverage existing intellectual property.  FPGAs are 
programmed using Hardware Description Languages 
(HDLs).  However, since FPGAs are highly configurable, 
HDLs are often considered more difficult to learn and use 
than HLLs.   
 Since modern FPGAs can meet many of the 
performance and power consumption requirements of 
ASICs, as well as the flexibility and low development costs 
of GPPs and DSPs, they are increasingly being used and 
improved.   
 The key evolutionary trends of FPGA development are:  
1.) increasing resources (termed slices), 2.) the use of 
specialized embedded blocks, serving to improve delay, 
power, and area if utilized by the application, but waste area 
and power if unused, and 3.) device families with additional 
mixes of features [12].  As an example, Table 1 summarizes 
the number of look-up-tables (LUT) and flip-flops in the 
Xilinx family of FPGAs.  The increase in the number of 
LUTs and flip-flops indicates that the computational power 
of each is getting larger.  In addition, there is an increase in 
the input capacity of each LUT.  However, since area 
increases with the number of inputs, but the logic depth 
decreases, the trend for larger LUTs also reflects an increase 
in interconnection logic delay. 
 The number of embedded DSP blocks in FPGAs 
reflects that embedded blocks are becoming increasingly 
common in FPGAs.  For instance, the Xilinx Virtex 2 
family has no embedded DSPs, but the Virtex 6 has a 
maximum of 2016 embedded DSPs in the FPGA.  Also, the 
capability of each DSP has increased.  At first, DSP had 
18x18 multipliers, but now it has 25x18 multipliers, (of 
course, FPGA DSPs have more capabilities than just 
multipliers, such as adders and accumulators).  There are 
also other specialized embedded blocks, such as soft-core 
and hard-core processors.   
 All of these processor architectures have been utilized 
in several different products, for varying market segments.  
We will highlight some of the most popular products, 
identify the processor architecture, and discuss some of the 
tradeoffs inherent in the product. 

 The Universal Software Radio Peripheral (USRP) 
comes in two models:  the USRPv1 and USRPv2.  The first 
uses an Altera Cyclone 1 FPGA; the second, uses a Xilinx 
Spartan FPGA for basic, high sample-rate processing, like 
digital up-and-down conversion.  The GPP on the host 
computer is used for the more complex, low sample-rate 
processing operations.  For this reason, we do not consider 
the USRPv1 to really be a FDR, since the FPGA is not 
directing the operation of the platform.  The FPGA is just 
responsible for pre-processing, and it does not have the 
capability to do anything more.  The USRPv2 can do more 
of both the high and low sample–rate processing operations 
in the FPGA, making it resemble more of a true FDR.  Both 
devices are low cost – $700 for the USRPv1 and $1400 for 
the USRPv2 [13]. 
 The Small Form Factor (SFF) SDR Platform by 
Lyrtech uses both a Virtex 4 SX35 FPGA and a specialized 
embedded DSP called a digital media processor (DMP) 
which consists of DSP and a GPP based on the ARM 
architecture.  This platform has an FPGA, DSP and GPP, 
making it very difficult to categorize.  Depending on how 
its processors are utilized, the SFF platform can be more 
SDR oriented or more FDR oriented.  This is demonstrated 
by the SFF software development kit, which allows a user 
to develop C/C++ for DSP and GPP, or HDL code for 
FPGA.  It also allows the user to generate code for the DSP 
and the FPGA using MATLAB and Simulink.  It costs 
$3500 for board and $8500 for kit [14]. 
 The wireless open access research platform (WARP) 
version 2 uses Virtex 4 FX100 FPGA as its primary 
processing unit.  Although the radio can communicate with 
a GPP-based PC, the platform is designed to perform all 
radio calculation on the local FPGA.  Even though it uses 
same Virtex 4 family as the SFF SDR by Lytrech, the 
FPGA in WARP is tweaked for high-performance logic 
applications.  For example, it has features such as more 
logic slices (almost 3 times more slices than the SFF 
Virtex4) and more RAM.  On the other hand, the number of 
DSP slices is almost the same as the SFF SDR.  The WARP 
board costs approximately $8500 for a basic single-antenna, 
single radio model [15]. 
 Although not commercially available, Kansas 
University has developed a SDR that uses Virtex 2 Pro P30  
 

 
Table 2. Summary of Market Research 

 USRP ½ Lyrtech RICE/WARP KUAR BEE2/BEE3 TI DSK6416 
Cost $700 / $1400 $10,395 $3500 Not for sale Not figured out $495 

FPGA 
Cyclone 1 EP1C12 /  

Xilinx Spartan 3-
2000 

Virtex-4 SX35 
Virtex-2 Pro P70 
(V.1) / Virtex-4 

FX100 (V.2) 

Virtex-2 Pro 
V20  

Virtex-2 Pro P70/ 
Virtex-5 (LX/SX) • 

Other elements 
(signal 
processing) 

Host 
computer(GPP) 

DM6446 DMP 
SoC from TI 
(DSP+MPU) 

• PowerPC 405 
 

TMS320C6416 
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FPGA in conjunction with a 1.4 GHz Pentium M GPP.  It 
has an internal power supply with a battery pack, so it can 
operate self-contained [16].  Since all radio functionality is 
handled on the GPP, we consider it a SDR. 
 The BEE2 uses 5 FPGAs (all Virtex 2 Pro P70s) [17].  
The BEE3 uses 4 FPGAs (all Virtex 5s, of the 
LXT/SXT/FXT varieties).  This is somewhat different from 
previous platforms [18], in that the original purpose of this 
platform is to make a FPGA base computer system.  Since it 
has only FPGAs, a radio that utilizes a BEE would be 
considered a FDR. 
 An interesting GPP based processor architecture is 
found in the TI Beagleboard.  The Beagleboard has an 
OMAP3530 application processor featuring the ARM 
Cortex-A8.  The OMAP processor contains both a GPP 
(ARM) and a DSP (TI architecture).  This GPP board is 
much cheaper than a host PC which is generally used with 
radio frontends such as the USRP.  Even though the 
performance of the GPP on the Beagleboard is lower than a 
GPP in a laptop, the DSP can make up the deficiency.  For 
example, it is expected that a low cost SDR can be 
developed by using the Beagleboard in place of a standard 
PC [19].  
 Finally, the TMS320C6416 DSP Starter Kit (DSK) is a 
low-cost development platform used for the development of 
high performance digital signal processing applications.  
The system uses the TMS320Cx DSP chipset.  The board 
features USB communications for off-board connectivity.  
The system is compatible with TI’s Code Composer Studio 
IDE and eXpressDSP Software.  The hardware board sells 
for $400-500 [20]. 
 Table 2 summarizes these products.  Note that every 
platform except the TI DSK6416, whether considered to be 
an FDR or SDR, uses FPGAs in some capacity.  
Furthermore, some platforms use not only FPGAs, but also 
GPPs and/or DSPs.  The only platform that uses only 
FPGAs is the WARP.  Not surprisingly, FDR FPGAs have 
much more capacity such as more logic slices, larger RAM, 
more cores, more I/O interface, and more transceivers. 
 

3. EXPERIMENTAL COMPARISON 
 
This section defines the metrics that we used to characterize 
and evaluate SDR and FDRs.  To evaluate the relative 
performance of three classes of digital radios (GPP, FPGA, 

and DSP), we investigated the performance of the hardware 
under various metrics.  Each class of digital radio was 
investigated in the context of a commercial platform that 
contained a RF front end, consisting of digital and analog 
components, in addition to the processor being evaluated.   
 To eliminate cost disparities arising from the front end, 
we investigated the price of the processing chipset 
independently.  Therefore, the price of hardware is defined 
as the approximate retail cost of a single instance of the 
processing chip in U.S. dollars. 
 We defined performance in the context of the spectrum 
sensing application.  Performance is defined as the wall 
clock time required (in seconds) to complete one sense 
cycle (filter, FFT, and detect), once the A/D samples are in 
local registers (and assuming the sense cycle is not 
interrupted by another thread or process).  In this case, a 
lower clock time represented a higher level of performance. 
 Working with fixed point resolution versus floating 
point has issues.  Each mathematical operation leads to a 
loss of fidelity as rounding and truncation errors build.  
Fidelity captures the issues associated with these errors.  We 
measured fidelity in dB lost over the SNR of floating point 
operation. 
 Hardware cost is not the only expense.  The price of 
software metric measures the approximate commercial 
single seat license price in U.S. dollars of the standard 
development kit for the platform.  It does not take into 
account support, maintenance or development hardware 
costs. 
 Power is measured as the number of Watts consumed 
by the processing chip alone.  It excludes the front end 
power and support hardware power requirements. 
 The amount of time required to build a standard project 
on the processing platform given only a background in a 
standard, functional programming language, such as C or 
Java, is its development difficulty, or its learning curve.  It is 
qualitatively measured based on our experience in 
developing systems on the platforms as low, medium, or 
high.  
 Figure 1 details the configuration of our experimental 
comparison.  We used a RF capture board to collect radio 
samples of the environment.  These samples were then 
passed to three architectures, which executed our FFT-based 
PSD sensor algorithm.  These architectures were:  1.) a 
Linux PC laptop which used an Intel Core2Dou GPP, 

 
Table 3. Architecture Evaluation 

Evaluation 

Price of 
Hardware 
(Dollars) 

Performance 
(ns) 

Fidelity 
(dB) 

Price of 
Software 
(Dollars) 

Power 
(Watts)

Development Difficulty 
(opinion) 

GPP 2,000 100‐200 ‐302 2,000 20‐50 Low 
DSP 231 406.111 ‐48 445 1.5 Medium 
FPGA 2,188 7.4322 ‐302 4,000 1.44 High 

 
 

285



 

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved 

DSPDSP

TI DSP6416 Development Board
RF Capture Board

A/D

Antenna

FPGA

WARP Development Board

GPPGPP

Linux PC Laptop

 
Figure 1. Experimental Setup 

 
2.) the Texas Instruments 6416 DSP development board 
with a TMS320C6416 DSP processor, and 3.) the WARP 
development board with Virtex 4 FX100 FPGA.   
 For each system, we evaluated our metrics and listed 
our results in Table 3.  Prices were based on actual 
acquisition costs for the software and hardware systems.  
Power statistics were computed via system specifications, 
but tailored to our particular processor configuration.  We 
approximated performance results using software profiling 
and debugging tools, which tallied the clock cycles and run 
time consumed by the FFT-based sensor algorithm.  We 
assigned the development difficulty rating as a qualitative 
judgment of the overall ease of use of the hardware and 
software design flow tools. 
 These numbers enumerate the strengths and weaknesses 
of each processor’s architecture.  For example, the GPP 
system had high fidelity, high ease of development, but high 
power constraints and moderately high costs.  The DSP 
system had lower fidelity and performance, but was 
inexpensive, had low power requirements, and moderate 
ease of use.  The FPGA had the highest performance, nearly 
highest fidelity, and low power constraints, but it had high 
costs and low ease of development.  

 Next, we plotted these metrics in a series of spider plots 
in Figures 2-4, to visually represent the trends.  Here, the 
better, a more desirable metric value is represented by a 
larger quantity on the plot.  For example, a large acquisition 
cost was a disadvantage and scored low on the plot, while a 
short execution time was favorable and scored high.  These 
figures reveal that each processor tended to best cover their 
own unique region of the metric space, and the optimum 
choice for a processor may depend on the specific 
application. 
 

4. CONCLUSIONS 
 

The results in Figures 2-4 establish how processor 
architectures each have their own strengths and weaknesses, 
and how the optimum choice of a processor for a system 
may depend on that system’s application.  For example, the 
GPP architecture may be best suited for ground-based 
communication and spectrum sensing applications, where 
power is plentiful, and where high ease of development, 
high fidelity, and moderate costs are desired.  On the other 
hand, in mobile or vehicle mounted devices where power is 
a constraint, and high performance and fidelity is a 
requirement, then FPGAs may be best suited.  Or, in a 
battery-powered sensor network application, where low 
cost, low power is a must, at the expense of performance or 
fidelity, then a DSP system may be the best choice.  Better 
understanding these design and performance tradeoffs will 
assist the designer when selecting a processor architecture 
for his/her specific system application. 
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