
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

INSTRUCTION SET EXTENSIONS FOR ACCELERATING SNOW 3G ON A

MULTI-THREADED SOFTWARE-DEFINED RADIO PLATFORM

Chris Jenkins
1
, Michael Schulte

1,2
, and John Glossner

3

1
University of Wisconsin, Department of ECE, Madison, Wis., USA

2
AMD, Inc. Research and Advanced Development Labs, Austin, Tex., USA

3
Sandbridge Technologies, Tarrytown, N.Y., USA

cdjenkins@wisc.edu, schulte@engr.wisc.edu, jglossner@sandbridgetech.com

ABSTRACT

Software-defined radio (SDR) is an emerging technology

that facilitates having multiple wireless communication

protocols on one device. New cellular standards, such as

HSPA+, LTE, and LTE+, require speeds in excess of 40

Mbps. SNOW 3G is a new stream cipher approved for use

in these systems. Our optimized software-only version of

SNOW 3G achieves a throughput of 14 Mbps per thread for

message confidentiality and 18 Mbps per thread for message

integrity on our SDR platform. To have secure cellular

communications in SDR platforms, the performance of

security algorithms must be improved. This paper presents

instruction set architecture (ISA) extensions and hardware

designs for SNOW 3G processing. These ISA extensions

and hardware designs are evaluated for the Sandbridge™

Sandblaster
®
 3011 (SB3011) SDR platform. These

enhancements improve the performance of optimized

software implementations by a factor of 2.5 for message

confidentiality and 1.3 for message integrity.

1. INTRODUCTION

Software-defined radios (SDRs) use a combination of

software and hardware to dynamically support multiple

wireless communication standards. These devices have been

widely recognized as one of the most important new

technologies for wireless communication systems [1]. SDRs

enable the efficient implementation of a diverse set of

wireless communication systems. SDRs also provide the

ability to change communication protocols and dynamically

update communication systems through over-the-air

software downloads [2].

 Current cellular systems perform cryptographic

operations, such as confidentiality (i.e., encryption and

decryption) and integrity (i.e., message authentication), on

programmable processors. The former prevents other users

of the wireless medium from eavesdropping on the user’s

data transmission or voice call. The latter ensures a message

or voice frame that a user sends has not been altered during

transmission—either intentionally or inadvertently. As data

rates over the air interface increase, cryptographic

performance can become a bottleneck.

 The 3rd Generation Partner Project (3GPP) has defined

two standards for providing confidentiality and message

integrity during transmission. The first standard uses a block

cipher called Kasumi [3]. The second uses a stream cipher

called SNOW 3G [4]. Both provide confidentiality and

integrity, but have fundamentally different properties to

prevent attacks on one cipher translating into attacks on the

other.

 Future DSP architectures will need to enable

cryptographic processing at very high data rates. For

example, fourth-generation radio access networks seek to

provide over-the-air throughputs of up to 100 Mbps for

mobile environments and up to 1 Gpbs in low-

mobility/stationary environments. On our test SDR

platform, our reference software implementation with

SNOW 3G only achieves 14 Mbps per thread for

confidentiality and 18 Mbps per thread for message

integrity.

 This paper presents hardware designs and ISA

extensions for implementing SNOW 3G processing on a

multi-threaded DSP SDR platform: the Sandblaster 3011.

Our SNOW 3G design has the following important features:

1) the ability to operate efficiently in a multi-threaded

micro-architecture, and 2) no hidden state is added to the

programming model. Our ISA extensions and hardware

designs should also be useful in other SDR architectures.

The primary contribution of this paper is the presentation of

a programmable approach to accelerating SNOW 3G that

utilizes existing hardware features present in many SDR

platforms. The paper also presents profile information for

SNOW 3G to demonstrate which portions of the algorithm

consume a majority of the execution time on an SDR

platform. It also examines the performance benefits of

accelerating different parts of the SNOW 3G algorithm.

 The rest of this paper has the following organization.

Section 2 describes the SNOW 3G algorithm and its use for

confidentiality and message integrity. Section 3 details our

platform architecture, simulation environment, testing

methodology, and SNOW 3G performance profiling results.

Section 4 presents our proposed functional units and ISA

SDR'10 Session 3A- 2

94

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

extensions for accelerating SNOW 3G. Section 5

demonstrates the performance improvements and design

characteristics of our solution. Section 6 presents

conclusions.

2. BACKGROUND

SNOW 3G is a stream cipher approved for use in cellular

communication systems to provide both integrity and

confidentiality [5]. It uses a 128-bit key and a 128-bit

initialization vector (IV). With these two entities, the cipher

produces a key stream, 32 bits at a time. SNOW 3G is

composed of two primary components: a finite state

machine (FSM) and a linear feedback shift register (LFSR),

as shown in Figure 1. The two components operate together

to produce the key stream, Z. The FSM contains three 32-bit

registers, R1, R2, and R3, plus two substitution boxes (or S-

boxes), S1 and S2. Each S-box maps one 32-bit value to

another 32-bit value. The LFSR contains 16 32-bit registers,

S0 through S15, with taps at registers S0, S2, and S11. These

values are combined using bitwise XOR operations to

produce a new value, v, that is loaded into S15. Before the

bitwise XOR operations, S0 is processed by the function

MULα and S11 is processed by DIVα. These functions are

denoted α and α
-1

 in the figure. To define MULα and DIVα,

the SNOW 3G specification defines two additional

functions, MULx(V,c) and MULxPOW(V,i,c) using C

language constructs as:

MULx(V,c) = ((V & 0x80) = = 0x80) ?

 (V << 1) ⨁ c : V << 1

MULxPOW(V,i,c) = (i = = 0) ?

 V : MULx(MULxPOW(V,i-1,c),c)

where V and c are 8-bit input values and i is an integer. With

these two definitions, the SNOW 3G specification defines:

MULα(c) = (MULxPOW(c, 23, 0xA9) || MULxPOW(c,

245, 0xA9) || MULxPOW(c, 48, 0xA9) || MULxPOW(c,

239, 0xA9)).

DIVα(c) = (MULxPOW(c, 16, 0xA9) || MULxPOW(c, 39,

0xA9) || MULxPOW(c, 6, 0xA9) || MULxPOW(c, 64,

0xA9))

 The FSM registers are initialized to zero. The registers

of the LFSR are initialized based on the IV and key as

described by the standard. Figure 1 illustrates how the

cipher runs in initialization mode, during which the LFSR

and FSM are clocked 32 times. For each clock, the output of

the FSM is a 32-bit word, F, which is an input to the LFSR.

Next, the cipher enters key stream mode, as shown in Figure

2. In this mode, the FSM still produces F, but F is used to

generate a 32-bit key stream word, Z. The LFSR then shifts

and loads a new value into register S15. The process repeats

until enough data bits are generated for the confidentiality or

integrity algorithm.

 For encryption, the key stream is XORed with the

plaintext (data to be encrypted). For decryption, the

ciphertext (encrypted data) is XORed with the key stream.

The number of key bits generated matches the length of the

data.

Figure 1 - SNOW 3G in Initialization Mode ([4])

Figure 2 - SNOW 3G in Key Stream Mode ([4])

 The integrity algorithm uses the SNOW 3G cipher in a

different manner. It runs the cipher to produce five 32-bit

words (z1, z2, z3, z4, z5). It pairs up the first four words into

two 64-bit data values, called P (z1 || z2) and Q (z3||z4), as

shown in Figure 3. It also breaks up the message into 64-bit

blocks and performs padding on the last 64-bit block if the

entire message is not a multiple of 64 bits. An additional 64-

bit block, which contains the length (D) of the message, is

appended to the end of the message. To perform the

R1
S1

Sbox
R2

S2

Sbox

XOR

R3

S15

XOR

S5 S4 S3 S2 S1 S0S11

XORXORXOR

α
-1 α

F

FSM

LFSR

Modulo 2
32
additon XOR

Bitwise XOR operation

on 32-bit operands

S5

v

r

95

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

integrity algorithm, D-1 blocks of the message are

multiplied by the polynomial P inside the function

EVAL_M. The multiplication is performed over a Galois

field of 64 bits. The length field is combined (XORed) into

the running data value and the result is multiplied by Q

inside the function MUL, which is a single 64-bit Galois

field multiply. The upper (left-most) 32 bits of the result are

XORed with OTP (z5, the last 32-bit word). The upper (left-

most) 32 bits of the resulting value are used as the message

authentication code (MAC) for the message.

Figure 3 - Flow of the Integrity Algorithm ([6])

3. METHODOLOGY

3.1. Sandbridge Sandblaster 3011

Our test environment simulates the SB3011 SDR platform.

The SB3011 platform contains four DSP cores, an ARM

processor, and input and output peripherals found on many

wireless handheld devices. Each core is multi-threaded and

executes eight threads simultaneously [2]. Each core is

partitioned into three main units: an instruction fetch and

branch unit, an integer and load/store unit, and a single-

instruction/multiple-data (SIMD) vector-processing unit

(VPU). The SIMD VPU consists of four vector processing

elements (VPEs), a shuffle unit, a reduction unit, and an

accumulator register file. The VPU performs logic and

arithmetic operations on 16-bit, 32-bit, and 40-bit fixed-

point data types concurrently in each VPE. The VPU

requires two load instructions to load 32-bit data into each

VPE, while 16-bit data requires one load instruction. The

instruction format allows for up to three source operands

and one destination operand per instruction.

3.2. Simulation Environment

To analyze the impact of our instructions and hardware

designs on performance, we use the Sandblaster toolchain

[7]. This toolchain provides a full-system, cycle-accurate

simulator and provides the ability for the compiler to

recognize user-defined instructions supported at the ISA

level. These instructions are mapped to user-defined

functions inside the simulator that execute in an atomic

fashion with respect to the architecture. Each user-defined

instruction takes the same amount of time as a native

instruction. We use the C code provided in the SNOW 3G

standard, except we change recursive code to a loop-based

implementation. This helps saves stack space and provides

the ability to use zero-overhead loop counters and various

compiler optimization techniques to improve performance.

3.3. SNOW 3G Performance Profile and Optimizations

To determine where to accelerate the SNOW 3G cipher, we

profile the SNOW 3G reference implementation [4, 8] code

using the Sandblaster toolchain and full-system, cycle-

accurate simulator [7]. For both the confidentiality and

integrity algorithms, we identify which parts of each

algorithm consume a significant percentage of the execution

time. SNOW 3G has some potential software optimizations

to improve performance. We analyze the potential benefit

from these optimizations prior to looking at hardware

acceleration.

 Ten 1-KB tables can be used to accelerate SNOW 3G;

the MUL and DIV tables implement the MULα and DIVα

functionality in the LFSR, while the remaining eight tables

implement the S1 and S2 S-boxes. Figure 4 shows the

speed-up gained from using tables stored in level-1 (L1)

data memory for the different operations. Each bar

represents adding a table only for the specified function(s).

Using all of the tables provides a total speed-up of almost

25x. This comes with a cost of 10 KB of static data in L1

memory. We also modify the LFSR code from the standard

to use vector instructions to perform the shift of the LFSR.

Even with all the tables present, plus this optimization (a

27x speed-up over the original code), the architecture only

achieves a throughput of 14 Mbps per thread for

confidentiality.

P

Message

D

EVAL_M

Q MUL

MAC

XOR

OTP XOR

D-1 64-bit blocks

64 bits

64 bits

32 bits

64 bits

32 bits

96

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 The integrity algorithm, called UIA2, specifies one

additional method for improving message integrity

performance. The optimization happens outside the main

SNOW 3G processing and inside the EVAL_M computation.

Similar to the confidentiality algorithm, called UEA2, pre-

computed tables can be used to improve performance.

Unlike UEA2, the tables are not static and must be

generated for each set of key and IV values. To perform this

optimization, an extra 16 KB of data must be generated and

stored for these tables, resulting in a total of 26 KB in table

data. The pre_mul_p function initially reads the value of P

and sets up the eight tables. Each table has 256 64-bit

entries. The new MUL_P function, which replaces the

EVAL_M function, performs eight table lookups and XORs

the table outputs to produce a single 64-bit quantity.

Implementing this software optimization provides a speed-

up of 60x for message integrity, which improves throughput

to 18 Mbps per thread on our test platform. Like

confidentiality, additional performance must be obtained to

run SNOW 3G at next-generation cellular data rates.

 SNOW 3G contains several primary functions that

implement the algorithm. As discussed before, SNOW 3G

consists of two modes: initialization mode and key stream

mode. We extract the portions of the FSM that occur in each

phase. The LFSR is implemented using two functions. One

function implements the LFSR in the initialization mode,

and the other function implements the LFSR in the key

generation mode.

Table 1 and Table show the percentage execution time for

different functions (parts) of the UEA2 and UIA2

algorithms on the SB3011 with all software optimizations

utilized. The ClockFSM function implements the FSM.

Table and Table show the execution time breakdown of the

ClockFSM and LFSRKeyStreamMode functions,

respectively. In the tables, “Other processing” corresponds

to all processing outside the functions explicitly given in the

table.

Figure 4 - UEA2 Speed-ups Due to Using Tables

Table 1 - UEA2 Percentage Execution Time Summary

Function Name Percentage (%)

ClockFSM (KeyStream) 41.8

ClockFSM (Initialization) 11.0

LFSRInitializationMode 8.3

LFSRKeyStreamMode 30.3

Other processing 8.0

Table 2 - UIA2 Percentage Execution Time Summary

Function Name Percentage (%)

MUL64 28.9

MUL_P 20.2

ClockFSM 3.8

ClockLFSRInitializationMode 2.4

ClockLFSRKeyStreamMode 0.4

pre_mul_p 38.8

Other processing 3.9

Table 3 - FSM Percentage Execution Time Summary

Function Name Percentage (%)

S1 29.0

S2 29.0

Other processing 42.0

Table 4 - LFSR Percentage Execution Time Summary

Function Name Percentage (%) (Initial/KeyStream)

MULα 9.6 / 10.0

DIVα 9.6 / 10.0

Other processing 80.8 / 80.0

4. PROPOSED IMPLEMENTATION

4.1. New Proposed Instructions

To access the new SNOW 3G hardware, described in

Section 4.2, the ISA was modified to include new SNOW

3G instructions. As stated before, our simulation

environment allows for custom instructions to be supported

at the ISA level using C code. For our work, we implement

new VPU instructions to accelerate various aspects of the

algorithm. These instructions take up to three source

operands and a single destination operand.

 We introduce new SNOW 3G instructions to implement

the FSM and update the value v. Figure 5 illustrates the

transformation of the register file in each VPE when

implementing the SNOW 3G instructions. Here, R1, R2, and

R3 correspond to the FSM register values, while S0, S2, S5,

S11, and S15 correspond to the LFSR register values. We

model each 64-bit load (ld) as either loading 16 bits into

each VPE or loading 32 bits into two consecutive VPEs,

where ld_upper loads data into the first pair of VPEs (VPE0

and VPE1) and ld_lower loads data into the second pair of

1.00 1.03 1.22

4.04

15.27

24.43

0

5

10

15

20

25

30

None S1 and S2 MUL DIV MUL and DIV All Tables

S
p

e
e

d
u

p

Tables Used

97

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

VPEs (VPE2 and VPE3). The same is true for stores. We

propose the following instructions to accelerate SNOW 3G:

• snow3g_fsm(VRD, VRS1, VRS2, VRS3). This

instruction reads two 32-bit values from the first pair of

VPE registers, specified by VRS1, and two 32-bit

values from the second pair of VPE registers, specified

by VRS2 and VRS3. It passes the values from VRS1 to

the corresponding S1 and S2 transforms. It stores the

resulting value in the appropriate registers specified by

VRD in the first pair of VPEs. The second set of VPEs

uses the values in VR2 and VR3 to implement the part

of the FSM that generates a new F value and r value as

F = (S15 + R1) ⊕ R2 and r = (R3 ⊕ S5) + R2. The

resulting F and r values are stored in the appropriate

registers specified by VRD in the second pair of VPEs.

• snow3g_shuffle(VRD, VRS). This instruction rearranges

the 32-bit values in VRS and stores the result in VRD.

The effective result is rotating a 128-bit register to the

right by 32-bits.

• snow3g_v(VRD, VRS1, VRS2,
1
VRS3). This instruction

produces the value v=α
-1

(S11) ⊕ S2 ⊕ α(S0), during

initialization mode and v=α
-1

(S11) ⊕ S2 ⊕ α(S0 ⊕) F,

during key stream mode. It takes the source registers

specified by VRS1 and VRS2 and extracts the

appropriate values to compute v. When the instruction

uses three operands, the last register of VRS3 in the

second pair of VPEs is used as well. The instruction

uses the MULα and DIVα tables. The results from the

table lookups and S2 are combined to produce v, which

is written into the first register of the first set of VPEs

specified by VRD.

• snow3g_clmul(VRD, VRS1, VRS2). This instruction,

which is not shown in Figure 5, is performed in all four

VPEs in SIMD fashion. It performs a 16-bit-by-16-bit

carry-less multiplication using VRS1 and VRS2 in each

VPE and stores the resulting 31-bit output in VRD of

the same VPE. This instruction is only used for the

UIA2 algorithm.

Pseudo-code for implementing the FSM functionality and

value v generation follows, where memory address are

represented by the letters a = {R1, R2}, b= {R3, F}, c =

{S15, X}, d = {S4, S5}, e = {v, S0}, and f = {S1, S2}, g =

{S11, S12}. The notation {X, Y} denotes the concatenation

of values X and Y, and ‘||’ denotes an operation separator

for the given VLIW instruction.

Initilizaiton Mode

ld_upper (vr1, a)

ld_lower (vr1, b)

FSM:

ld_lower (vr2, c)

1
 VRS3 is optional

ld_lower (vr3, d)

snow3g_fsm (vr1, vr1, vr2, vr3) || ld_upper (vr3, e)

snow3g_shuffle (vr1, vr1) || ld_lower (vr3, f)

ld_lower (vr2, g)

LFSR v generation:

snow3g_v (vr3, vr3, vr2, vr1) || st_lower (vr1)

st_lower (vr1)

goto FSM

KeyStream Mode

ld_upper (vr1, a)

ld_lower (vr1, b)

FSM:

ld_lower (vr2, c)

ld_lower (vr3, d)

snow3g_fsm (vr1, vr1, vr2, vr3) || ld_upper (vr3, e)

snow3g_shuffle (vr1, vr1) || ld_lower (vr3, f)

ld_lower (vr2, g)

LFSR v generation:

snow3g_v (vr3, vr3, vr2) || st_lower (vr1)

st_lower (vr1)

goto FSM

Figure 5 - FSM and v Generation

98

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

4.2. Execution Unit Description

Our proposed implementation is designed to reuse existing

hardware. While ASIC solutions exist [9-11], a

programmable solution potentially yields less area because

bus interface logic, FIFOs, and additional registers -- which

are present with an ASIC -- are not needed with ISA

extensions. We chose to utilize the VPU to implement our

new instructions. The SB3011 VPU has some benefits for

placement of our new functional units. First, it has a larger

load/store bandwidth than the integer unit—64 bits versus

32 bits. Second, the VPU can access more data for a given

instruction—480 bits versus 64 bits. Third, the VPU can

hold more state than the integer unit—1,280 bits per thread

versus 256 bits per thread.

 To implement the instructions, we add the hardware

shown in Figure 6 to the different VPEs. The FSM uses the

S1, S2, and fused addition-XOR units. The LFSR uses the

MULα and DIVα tables. The MUL operation uses the 16-

bit-by-16-bit carry-less multiplier (CLMUL).

5. EXPERIMENTAL RESULTS

We synthesized our proposed functional units to determine

their impact on the processor hardware. The latency, area,

and power of each proposed additional functional unit and

the existing SB3011 vector multiply-accumulate (VMAC)

unit are listed in Table . The VMAC unit performs a 16-bit-

by-16-bit plus 40-bit multiply-accumulate operation. The

SB3011 contains four VMAC units. Our proposed ISA

extensions utilize four CLMUL units and one of each of the

other units. Figure 6 depicts the throughput due to adding

the ISA extensions. Compared to the optimized software

with table lookups and vector shifting, the ISA extensions

improve the performance of UEA2 and UEI2 by factors of

roughly 4.2 and 1.5, respectively.

Table 5 - Synthesized modules at 600 MHz using a 65-nm

TSMC standard cell library

Unit Delay (ns) Area (µm
2
) Power (µW)

S1 0.93 4,162 372.5

S2 1.00 4,068 373.9

16x16 CLMUL 1.50 2,100 570.2

Addition-XOR 1.58 453 75.2

MULα 0.40 126 18.5

DIVα 0.33 123 17.0

SB3011 VMAC 1.65 6,864 1,543.1

Table 6 - Throughput of UEA2 and UIA2 algorithms

Version Throughput (Mbps)

UEA2 (optimized software) 14.4

UEA2 (ISA extensions) 36.2

UIA2 (optimized software) 19.1

UIA2 (ISA extensions) 24.9

Figure 6 - New Execution Units

6. CONCLUSION AND FUTURE WORK

 Our proposed ISA extensions seek to accelerate SNOW

3G by reusing existing hardware present in SDR platforms.

This alleviates the area overhead of communication logic

and storage elements needed by an ASIC. Our extensions

use the VPU of the Sandbridge Sandblaster 3011 because it

provides access to more data than the integer load/store unit

in three areas: 1) loading/storing data, 2) specifying data,

and 3) storage space to hold the data inside the processor.

By merging the aforementioned features with new function

units, our ISA extensions are portable to other SIMD-type

architectures.

 In conclusion, we have profiled and demonstrated a

method to accelerate SNOW 3G on a SDR platform. We

maintained the programming model and micro-architecture

of our SDR platform in the process. To reach more than 50

Mbps per thread for confidentiality and integrity, additional

instructions, assembly optimization, and hardware may be

needed.

99

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

7. REFERENCES

[1] M. Mehta, N. Drew, G. Vardoulias, N. Greco, and C.

Niedermeier, "Reconfigurable terminals: an overview of

architectural solutions," IEEE Communications Magazine,

vol. 39, pp. 82-89, 2001.

[2] S. Mamidi, E.R. Blem, M.J. Schulte, J. Glossner, D.

Iancu, A. Iancu, M. Moudgill, and S. Jinturkar, "Instruction

set extensions for software defined radio on a multithreaded

processor," in Proceedings of the 2005 International

Conference on Compilers, Architectures and Synthesis for

Embedded Systems, 2005, pg. 273.

[3] 3rd Generation Partnership Project. 3GPP confidentiality

and integrity algorithms. 2010 (June/5).

[4] ETSI/SAGE (2006, September 6, 2006). Specification of

the 3GPP confidentiality and integrity algorithms UEA2 &

UIA2. Document 2: SNOW 3G specification. Available:

http://www.gsmworld.com/documents/snow_3g_spec.pdf.

[5] ETSI/SAGE (2006, September 6, 2006). Specification of

the 3GPP confidentiality and integrity algorithms UEA2 &

UIA2. Document 5: Design and evaluation report.

[6] ETSI/SAGE (2006, September 6, 2006). Specification of

the 3GPP confidentiality and integrity algorithms UEA2 &

UIA2. Document 1: UEA2 and UIA2 specification.

[7] J. Glossner, S. Jinturkar, M. Moudgill, E. Hokenek, M.

Schulte, and S. Vassiliadis. (2005, "Sandbridge software

tools," in Embedded Computer Systems: Architectures,

Modeling, and Simulation).

[8] ETSI/SAGE. (2006, September 6, 2006). Specification

of the 3GPP confidentiality and integrity algorithms UEA2

& UIA2. Document 4: Design conformance test data.

Available:

http://www.gsmworld.com/documents/snow_3g_spec.pdf.

[9] Elliptics. CLP-41: SNOW 3G cipher core. 2010

(June/5), Available: http://www.elliptictech.com/products-

clp-41.php.

[10] IP Cores. SNOW 3G LTE cipher. 2010 (June/5),

Available: http://www.ipcores.com/Snow3G.htm.

[11] P. Kitsos, G. Selimis, and O. Koufopavlou. “A high

performance ASIC implementation of the SNOW 3G stream

cipher,” presented at 16th International Conference on very

Large Scale Integration (VLSI-SoC 2008).

100

