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Abstract—Software-defined radio (SDR) technologies promise
significant enhancements over traditional radio design in terms
of waveform flexibility, reconfigurability, and modular compo-
nent reuse. These benefits are typically realized through the
deployment of modular software processing blocks on a variety
of processing platforms, however, the processing complexity of
these target platforms severely limits their capacity and, in the
case of mobile radios, their battery life. Because a considerable
percentage of power consumed in SDR is in baseband processing,
reducing its computational load has significant implications
on its power consumption, processing bandwidth, and capable
throughput.

This paper provides analytical analysis for modeling power
consumption on SDR platforms while preserving a necessary
service quality for packet radios by leveraging software flexibility.
We propose using computational complexity of the software-
defined baseband processor as a metric for comparing resource
consumption on such platforms. Furthermore the paper discusses
strategies for managing power consumption by adapting link-
level algorithms to reduce computational complexity, validated
by hardware simulation of running a demodulator and forward
error-correction decoder on an embedded processor.

I. INTRODUCTION

Despite their apparent benefits, software-defined radios tend
to consume considerably more power than their hardware
counterparts. The energy efficiency lost through the flexibility
of baseband processing on a reconfigurable platform severely
limits their computational capacity and has considerable im-
plications on their physical size, weight, and battery life [1].
Resource management on reconfigurable platforms is therefore
a critical step in deploying mobile reconfigurable radios,
particularly those operating in dynamic spectrum environ-
ments. Many of the traditional methods for reducing energy
consumption on mobile radios, however, are inapplicable to
reconfigurable platforms because hardware and software are
no longer strictly bound to one another.

Many SDR implementations seek to optimize DSP algo-
rithms for a range of operating conditions, however because
the performance of mobile radios depends so significantly
upon channel conditions, it is not possible to guarantee min-
imal power consumption for a specific platform unless the
dynamics of the algorithm itself are designed to be energy-
scalable. Therefore the algorithm which minimizes the energy

consumed for a particular application while achieving a certain
quality of service cannot be predetermined without considering
the complex dynamics of the wireless environment in addition
to the platform upon which the application is running.

In contrast, the flexibility within the SDR platform can be
leveraged to actually mitigate its additional power demands.
The immense variability in re-programmable software com-
ponents permits the system to be dynamically rebalanced for
new scenarios, allowing for more efficient use of hardware.
Power management in cognitive radios at the hardware level
was discussed by Khajeh et al. in [2], demonstrating energy
savings exceeding 20% while running a 3G WCDMA modem
and H.264 video decoder. When not constrained to any par-
ticular standard, Bougard et al. in [3] demonstrated though
simulation an energy consumption savings of a factor of 5
to 20 over the worst-case context scenario–a typical strategy
carried over from legacy designs– while considering system
level parameters only. In all these examples, the radio was
given information about how its link-level parameters affected
both is power consumption and its performance.

Some of the most immediate and obvious applications to
this concept are cognitive radios, by which power management
can be achieved through means other than just feedback in the
protocol, namely a self-adapting engine. Despite its promises,
cognitive radios (and otherwise adaptive radios) still require
measureable system-level performance feedback in order to
appropriately switch modes. It is therefore desireable to allow
the radio to monitor its own dynamic resource consumption in
addition to its link-level performance. The challenge therefore
becomes an issue of how to efficiently model or measure the
platform’s consumption of finite resources; a particularly diffi-
cult task as software becomes portable to a growing population
of heterogenous platforms. Highly parallelized architectures
(such as FPGAs and multi-processor platforms) exacerbate the
difficulty in estimating the processing time and complexity of
executing particular algorithms.

This paper takes a renewed look at resource management on
software-defined radio platforms by investigating the inherent
tradeoff between spectrum and processing efficiencies which
relate strongly to both the power consumed by the processor
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and the complexity of the algorithm which it can support. The
analysis is specifically concentrated on DSP implementations
of digital demodulators in conjunction with forward error
correction (FEC) codes in slowly-fading noisy channels.

II. ENERGY CONSUMPTION IN SDR

For a wireless communications link, the energy and power
loads can be split into those consumed by the transmitter
and the receiver. The transmitter is typically burdened by
the radio frequency front end, of which most of the power
drain is attributed to the power amplifier.The receiver, however,
is limited by its signal processing hardware. Lien et al.
demonstrated that power consumed by the baseband processor
increases non-linearly as a function of processor usage [4,
Eq. (2)]. Power consumption typically increases with a linear
relation to sampling frequency. This is apparent in analog con-
verter (ADC) chips which demonstrate a strong relationship
between clock frequency and power source current draw [5,
TPC 27]. Both the receiver’s computational complexity and
power consumption are strongly related to its occupied signal
bandwidth.

A. Energy Quality Scalability

The notion of energy quality scalability was introduced in
[6] for VLSI systems. Conceptually, quality of service can be
minimally compromised by dramatically reducing the energy
consumed through processing. The tradeoff between accuracy
and energy shows diminishing returns as considerable amount
of energy is wasted reducing error below the tolerance. The
optimal solution is one that achieves a sufficient quality
measure without expending unnecessary resources attaining
it. At a higher level, Khajeh et al. in [2] acknowledge that
not all applications require 100% data correctness; a broad
family of fault-tolerant applications exist, particularly in the
wireless multimedia realm. For the case of fault-intolerant
applications, erroneous packets are simply detected with a
moderate-length cyclic redundancy check, and re-transmitted.
The probability of the receiver being unable to decode a packet
is kept sufficiently low through waveform adaptation.

B. Performance Metrics

Communication link quality is measured through
application-driven metrics, such as bit-error rate (BER),
data throughput, and latency. Link quality is contingent
upon many controllable factors (modulation scheme, transmit
power, forward error-correction coding) and uncontrollable
factors (noise power spectral density, interference levels,
hardware limitations). Some of these factors in particular
can be applied uniquely to the receiver and do not require
link-level adaptation. Equalization is a strong example of
this; the length of the equalizer directly impacts both the
receiver’s computational complexity and its ability to reduce
inter-symbol interference, thus reducing its error rate. Other
factors require radios on both sides of the link to adapt,
such as switching modulation and forward error-correction
schemes.

The relationship between link-level QoS metrics and radio
parameters for a given channel state is well-known, however
quantification of processing complexity and its impact on these
metrics is not. Furthermore, many of these algorithms’ energy
consumption significantly depends on the implementation and
the target platform.

The maximum throughput for a link constrained by trans-
mit power is well-known and is achievable as the occupied
bandwidth approaches infinity, viz.

C = W log2

(
1 +

P̄LP
WN0

)
(1)

where P̄ is the average transmit power, LP is the path
loss, W is occupied bandwidth, and N0 is the noise power
spectral density. However increasing bandwidth has consid-
erable implications on the power consumed by the baseband
processor at the receiver. We can therefore define the receivers
processing channel efficiency as

ηc =
Pc
C

=
Pc(W )

W log2

(
1 + P̄LP

WN0

) (2)

where Pc(W ) is the power required by the processor to
recover the bits at the receiver. Note that ηc is measured
in bits per Joule. Although theoretical channel throughput
increases with bandwidth for a given average transmit power,
the efficiency eventually degrades due to an increase in pro-
cessor complexity and energy consumption at the receiver.
The link can therefore sacrifice throughput for bandwidth
efficiency and energy consumption. Several publications make
reference to measure bits per expended energy as a metric for
power efficiency is software-defined radios [7, Fig. 15], [8,
Fig. 8]. Figure 1 demonstrates this strong relationship between
processing efficiency and bandwidth.

Fig. 1. Channel throughput [b/s] and energy efficiency [J/b] as a function
of bandwidth. Energy efficiency assumes power consumption to be a linear
function of occupied bandwidth.

C. Monitoring and Management

Understanding how algorithm adaptions affect energy con-
sumption in processors it is necessary for an energy-scalable
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system to adapt itself to changing environments. This section
describes several methods of monitoring real-time energy
consumption on DSP platforms.

D. Modeling

Real-time power monitoring can be modeled through pro-
cessing complexity as in [4], [9] with streaming multimedia
applications. Furthermore, it has been shown that significant
power saving can result from selectively reducing processing
to meet a target quality of service for such applications [10].
It is apparent from these results that the same benefits can
be realized in SDR platforms which provide flexibility over
baseband processing blocks (such as filters, oscillators, and
synchronizers), and cognitive radios which seek to optimize
link parameters (such as modulation depth and forward error-
correction codes). Typical quality of service (QoS) metrics
for data radios measure throughput, latency, and error prob-
abilities: all highly sensitive to these baseband processing
algorithms. Processing complexity therefore can be minimized
while preserving a pre-defined QoS.

Perhaps the most obvious method is to physically measure
the power directly from the source as the system runs. Sev-
eral target platforms support real-time power monitoring. An
excellent example of this is the Lyrtech Small Form Factor
SDR development platform [11] which supports embedded,
independent power monitoring for each processor in real time.
Power can be measured simultaneously with the algorithms
running on the different processors.

If no on-board power-monitoring component is available,
energy consumption can be modeled through measurable quan-
tities. For example, [4] demonstrate the strong relationship
with CPU usage for general purpose processors and power.
Many platforms can monitor CPU usage in real-time, making
this a tractable solution to power monitoring and energy man-
agement. Following the results from [12] in which software
energy consumption is modeled through processor hardware
(supply voltage, clock frequency, static/dynamic current drain,
transistor capacitance, and other parasitics), we propose using
computational complexity as a baseline metric for comparing
resource consumption. Furthermore, [13] demonstrated that
while the energy consumed varied by the specific machine-
level instruction being executed by the processor, this variation
was not a considerable factor. To this end, we collapse our
assessment to receiver complexity by observing the number
of clock cycles required to complete one iteration of a certain
task. DSP algorithms with flexible implementations must
be able to be deployed on a variety of hardware. These
implementations, however, might not consume comparable
amounts of energy on different platforms. Energy consumption
of such processing blocks can be measured offline on the target
platform such that they can be efficiently partitioned when
the application is to be executed. The energy consumption of
each processing block can be either stored in a look-up table
or modeled using simple curve-fitting techniques for a variety
of typical operating ranges of the algorithm. The baseband
receiver chain running in software is comprised of a number of

signal processing algorithms which can be reconfigured at their
execution time depending upon the link protocol, typically
governed by channel conditions. The total computational load
of the receiver in terms of clock cycles can be estimated by
offline benchmarks, and the corresponding voltage/frequency
operating point of the processor can be chosen. Assuming
the supply voltage and clock frequency of the hardware can
be dynamically scaled, the power consumed by the processor
can be modeled quite accurately. This greatly simplifies our
analysis of receiver complexity, and can easily be extended to
processors with multiple, independent cores.

III. METHODOLOGY

We propose to extend the typical SDR model to incorporate
real-time resource monitoring modules necessary for reducing
energy consumption, and valuable computational clock cycles.
SDR frameworks consist primarily of a set of inter-connected
processing components perhaps running on independent pro-
cessors. We formalize the situation as a classic non-linear
optimization problem with the following axioms:

1) Both QoS and energy consumption are measurable quan-
tities and are affected by digital processing blocks’
deployment, allocation, and configuration;

2) QoS performance is measured through the system as a
whole. Any solution is considered valid so long as the
constraints of the system are met;

3) Processing complexity and power consumption perfor-
mance is measured on independent processors, the sum
of which is the true metric to minimize.

Therefore the performance monitor and radio control com-
ponents must be aware of the impact energy-quality tradeoff
one processing block has on the entire system performance.
For example, power savings through reducing the length of the
equalizer might degrade the uncoded BER to a point where
forward error-correction codes cannot sufficiently recover the
packet data.

IV. EXPERIMENTATION

The benefits of SDR are typically realized through the de-
ployment of modular software processing blocks on a variety
of processing platforms. In a heterogenous cognitive network,
however, this presents a problem with communication as now
protocol negotiation must additionally incorporate resource
management considering the different hardware capabilities
of each node. Because the burden of computation is much
greater at the receiving node, this negotiation must subsume its
hardware and software capabilities: what decoding algorithms
are available? can the hardware support running the decoder
at this speed? are the power requirements for the decoder too
great for the hardware to support?

Consider a scenario where two software radios in a network
need to establish a link using packets capable of adapting mod-
ulation and forward error-correction coding schemes. While
both nodes are limited by their platform capabilities, one
in particular is crippled by its hardware clock frequency.
Now they must negotiate an appropriate protocol by which
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to communicate such that the complexity at the receiver is
minimized.

A. Adaptive Modulation/Error-correction in Slowly-varying
Fading Channels

Adaptive switching modulation and coding schemes based
on instantaneous received power is a technique which as been
incorporated in a wide population of wireless radios, however
the impact these switching mechanisms have on baseband pro-
cessors implemented on reconfigurable platforms has garnered
little investigation. In this section we take a renewed look
at adaptive switching modulation/coding schemes not simply
for the sake of improving spectral efficiency, but how appro-
priately choosing a set of schemes can significantly reduce
the complexity of the receiver with unnecessarily sacrificing
capacity.

B. System Model

Given a fading distribution fγ(γ; Ω) for instantaneous re-
ceived signal power γ and average power Ω, an upper bound
on the average bit error rate for a modulation/coding scheme
pair can be computed by averaging its instantaneous BER
performance over the distribution, viz. [14]

P̄m,fb (Ω) =

∞∫
0

Pm,fb (γ)fγ(γ; Ω)dγ (3)

For slowly-varying channels, the received signal power is
assumed to be flat over the duration of a data packet, and
thus the switching procedure chooses the “optimal” modula-
tion/coding scheme pair which matches the estimated target
error probability to the received signal power. The appropriate
pairs for subsequent packets are chosen on the basis of signal
strength alone. The average BER of an adaptive switching
scheme is therefore computed by summing the marginal BER
over the partitioned distribution:

P̄b(Ω) =

∑N−1
i=0 kiri

∫ γi+1

γi
Pi(γ)fγ(γ,Ω)dγ∑N−1

i=0 kiri
∫ γi+1

γi
fγ(γ,Ω)dγ

(4)

where Ω is the average signal power, ki = log2(Mi) bits
per symbol for the modulation type, ri coding rate, γi is the
threshold SNR, and Pi(γ) is the BER distribution for the ith

modulation/coding pair type under an AWGN channel. Note
that the denominator is the average spectral efficiency, η̄(Ω),
viz

η̄(Ω) =
N−1∑
i=0

kiri

γi+1∫
γi

fγ(γ,Ω)dγ (5)

In a similar fashion, we define the average receiver complexity
K̄ as

K̄(Ω) =
N−1∑
i=0

Ki

γi+1∫
γi

fγ(γ,Ω)dγ (6)

where Ki is the computational complexity of the modula-
tion/coding pair measured in terms of CPU clock cycles per
uncoded bit.

V. RESULTS

In order to gain insight into the tradeoffs between compu-
tational complexity and link quality, we adopt the Rayleigh
fading model, a typically pessimistic assumption about the
channel conditions. The Rayleigh fading model for instanta-
neous received signal power γ is

fγ(γ; Ω) =
1
Ω
e−γ/Ω (7)

where Ω is the average power.1 Error rates were generated
by encoding data packets using a discrete set of modu-
lation/coding scheme pairs, pushing the resulting symbols
through an AWGN channel, and measuring the resulting bit
errors. For each data point, a minimum of 10,000 trials were
performed ensuring at least 2000 observed errors. A block
interleaver was inserted after the encoder to help randomize
bit errors within the data packet to aid the decoder. Compu-
tational complexity measurements were conducted by running
100,000 iterations of each demodulator and FEC decoder on an
embedded 867 MHz PowerPC processor with AltiVec SIMD
extensions.

Two sets of adaptive modulation/coding switching schemes
were compared; the first set contains typical half-rate convo-
lutional codes with constraint lengths K = 7, K = 9, and
punctured codes with rates from ranging from 2/3 to 7/8;
the second contains either no error-correction (uncoded) or
only a computationally efficient Hamming(7, 4) block code.
These pairs are presented in Table I along with the average
computational complexity to receive each coded bit, and the
required instantaneous SNR to achieve a BER of 10−3 in an
AWGN channel.

Given the simplicity of the distribution of signal power for
the Rayleigh fading model, the expressions for average spectral
efficiency in (5) and average computational complexity (6)
can be rewritten as η̄(Ω) =

∑N−1
i=0 kiri

(
e−γi/Ω − e−γi+1/Ω

)
and K̄(Ω) =

∑N−1
i=0 Ki

(
e−γi/Ω − e−γi+1/Ω

)
respectively.

The values for average error probability given by (4), were
computed through numerical integration. The switching levels
for adaptation are given in Table I.

Figure 2 depicts the results of the simulations. While it is
hardly surprising that the stronger convolutional codes provide
a higher capacity than the uncoded/weakly-coded set, the
actual spectral efficiency does not suffer a significant hit.
The strongest discrepancy of η̄ between the two sets exists
at Ω ≈ 23dB where the spectral efficiency is only about 0.9
b/s/Hz (a 16% degradation) as seen in Figure 2(a). In contrast,
Figure 2(b) demonstrates that the difference in computational
complexity between the two sets is greater than a factor 5 for
low SNR, and nearly a factor 2 for high SNR in favor of the
weaker codes. Analysis could easily be run for any number of
modulation/coding combinations, with appropriate sets sought
to maximize spectral efficiency, minimize complexity, or some

1It is important to note that while fading models typically are expressed in
terms of signal amplitude, (7) denotes fading in terms of signal power. This
is a trivial variable transformation necessary for analysis.
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TABLE I
AVAILABLE MODULATION/FEC SCHEME PAIRS, BROKEN INTO 2 SETS

Modulation scheme FEC scheme η, [b/s/Hz] Ki, [cycles/bit] γi [dB]

QPSK conv. r=1/3, K=9 0.67 612.5 6.45
QPSK conv. r=1/2, K=9 1.00 492.9 7.84
QPSK conv. r=2/3, K=9 1.33 521.2 9.57
QPSK conv. r=3/4, K=9 1.50 511.5 10.34
16-QAM conv. r=1/2, K=9 2.00 519.1 13.52
16-QAM conv. r=2/3, K=9 2.67 540.8 15.32
16-QAM conv. r=3/4, K=7 3.00 211.7 16.61
16-QAM conv. r=4/5, K=9 3.20 526.0 17.02
16-QAM conv. r=7/8, K=9 3.50 501.3 18.06
64-QAM conv. r=2/3, K=9 4.00 520.7 20.39
64-QAM conv. r=3/4, K=9 4.50 511.0 21.48
64-QAM conv. r=4/5, K=9 4.80 509.2 22.23
64-QAM conv. r=7/8, K=9 5.25 485.9 23.40

BPSK Hamming (7,4) 0.57 104.8 8.92
BPSK uncoded 1.00 56.2 10.07
QPSK Hamming (7,4) 1.14 66.3 10.49
QPSK uncoded 2.00 34.2 12.77
8-PSK uncoded 3.00 141.4 17.28
16-QAM uncoded 4.00 47.3 18.90
64-QAM uncoded 6.00 33.8 24.28

middle-ground combination of the two; the particular sets were
chosen specifically to accentuate this tradeoff.

VI. CONCLUSIONS

Modeling processing complexity for DSP algorithms and
the power they consume on a variety of platforms is a difficult
problem to solve. When mapping platform-independent to
platform-specific models one must incorporate a host of hard-
ware design considerations. In this paper we have highlighted
the advantages in managing resources on software-defined
radio platforms by permitting the radio to be cognizant of its
own power consumption and processing complexity. As are
result, significant computational savings can be gained at the
receiver at the expense of either spectral efficiency of the link
or transmit power.
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(a) Average spectral efficiency, η̄(Ω)

(b) Average computational complexity, K̄(Ω)

Fig. 2. Performance of adaptive switched modulation/coding scheme sets in
a slowly-fading Rayleigh channel.
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