
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

INTERFACING A REASONER WITH AN SDR: A PLATFORM AND DOMAIN

API INDEPENDENT APPROACH

Jakub Moskal (Northeastern University, Boston, MA, USA; jmoskal@ece.neu.edu);
Mieczyslaw M. Kokar (Northeastern University, Boston, MA, USA;

mkokar@ece.neu.edu)

ABSTRACT

We present LiveKB, a framework for interaction between a
reasoner and Software Defined Radio, which allows for use
of dynamic facts that correspond to particular parameters
within the SDR software, without having prior knowledge
of its data structures. LiveKB is platform independent and
domain API neutral, which allows it to sustain technological
changes within a particular domain.

1. INTRODUCTION

Cognitive radio (CR) [1] allows for dynamic exploitation of
contextual information that might come from different kinds
of sources - RF environment, geographic location,
waveforms, policies, device capabilities, status, etc. [2].
Several proposed approaches [2,3,4,5] to radio cognition are
based on the Semantic Web technologies, namely on
ontology and rule reasoning. The focus of this work is the
problem of interfacing a CR’s reasoner with Software
Defined Radio (SDR) [6] to utilize its contextual data. The
problem is presented in Figure 1. The reasoner, usually
controlled by a monitor that is responsible for feeding the
reasoner with facts and rules, needs to have access to the
SDR software. SDR software is treated like a black box and
the goal is to enable the reasoner to interact with the SDR
regardless of its platform, its software model and without
interfering with the end-user applications.

 Two challenges arise when using knowledge-based
reasoning in radios: 1) dealing with dynamically changing
knowledge and 2) software platform independence between
the reasoner and the radio's software. Using a knowledge
base for reasoning over SDR’s contextual data is
challenging because its contents is partially stored on the
radio itself, and thus is frequently updated, which might
require non-monotonic reasoning or frequent restarting of
the reasoner, which increases its runtime complexity.
Secondly, there is no standard architecture for interfacing a
CR's reasoner with SDR software components so that any
reasoner that satisfies the architectural requirements could
be used to monitor and control software that it has no prior
knowledge about. We present an approach that tries to
tackle both challenges with the use of Semantic Web
technologies, like ontology and rules reasoning, and by the
use of Common Object Requesting Broker Architecture
(CORBA), a well-established standard within the SDR
community.

2. RELATED WORK

One of the known approaches to CR, called Ontology-Based
Radio (OBR) [3], utilizes architecture with internal buffers
and custom messages passed between CR and its
corresponding SDR. The architecture of OBR is shown in
Figure 2. The Reasoning Component (RC) receives control
messages from other radios and sometimes must update its
contextual information and to modify SDR’s parameters via
Java reflection. An example implementation (in Java) was
presented with a Prolog-based reasoner and OWL [7]
ontologies converted into Prolog facts. This approach is
platform-dependent because it requires SDR software to be
written in Java.
 The second approach, presented in [4,5], introduces a
high-level Perception & Action Abstraction Layer (PAAL)
which is responsible for mediating between CR and SDR,
but requires SDR's API to be (most likely manually)
wrapped to match PAAL. This solution is API-dependent
because it will work only as long as the API is frozen. The
abstract view of this interface is depicted in Figure 3. The
PAAL layer is essentially a domain-specific API between

Figure 1. Interfacing Cognitive Radio reasoner with SDR

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

the SDR and the monitor. In this solution, the API becomes

the central part. It is reasonable to expect that there is going
to be a need for introducing changes to such an API in order
to match future technological advancements. Such changes
would have to be followed by all SDR vendors that would
like to conform to this API. Additionally, this framework
does not address the problem of platform independence; the
PAAL layer is intended to be platform-independent,
but the authors do not elaborate on how this could be
achieved.

2.1. Cognitive Radio without Semantic Web

There are a few interesting projects that take a different
approach to cognitive radio and rather than augmenting
radio’s cognitive capabilities with the use of Semantic Web
technologies, they focus on the software platform
independence and the interoperability between different
radios. Two of them are Software Communications
Architecture (SCA) [8] from JTRS and a Cognitive Engine
(CE) [9] from Virginia Tech.

2.1.1. Software Communications Architecture (SCA)
SCA is a software architecture framework that is becoming
an industry standard for developing SDR’s. SCA addresses
the problem of waveform software portability by utilizing
CORBA middleware, which handles the communication

between software and the radio platforms. In this
framework, waveform software and hardware components
are described in XML, which SCA uses for loading,
deploying and running required components on demand.
There are two major benefits from using SCA – some
separation between the waveform application and the radio
platform [10], as well as software component distribution
within the radio that is transparent to the software
developers. This allows for running the same software on
different hardware platforms. These benefits, however,
come at an expense; developing SCA-compliant SDR’s
requires providing and maintaining extensive XML
descriptions, which might be difficult without the support of
additional software. Furthermore, SCA depends heavily on
API’s and before SDR becomes SCA-compliant it must go
through a complex process of validation.
 Despite the fact that it is a rather heavy-duty
architecture, SCA seems to be an attractive approach for
developing portable software for SDR’s. Nevertheless, it is
not a standard that was designed with radio cognition in
mind. SCA doesn’t include an API for reasoners. Therefore
it is not a ready solution for Cognitive Radios.

2.1.2. Cognitive Engine (CE)
Similarly to the previously described PAAL layer, the heart
of Cognitive Engine architecture is an API that allows for
interfacing a cognitive engine with an SDR. The SDR itself
is viewed as a set of knobs and meters, which are described
in a XML document. The CE itself is a set of genetic
algorithms that make use of the SDR’s parameters in order
to achieve interoperability between different radios.
Adopting this framework requires implementing a specific
API, which exhibits the same problems as PAAL, where the
API becomes the bottleneck of the framework.

3. LIVEKB

LiveKB is a framework that extends the architecture of
OBR to allow a platform-independent access to SDR’s
software parameters. Figure 4 shows how LiveKB fits in
with OBR. Similarly as SCA, LiveKB achieves platform-
independence through the use of CORBA middleware. SDR
software objects must be registered with CORBA’s Naming
Service, which allows for locating distributed objects by
looking up their logical names, as opposed to their actual
references. Once LiveKB finds SDR’s objects, it allows the
reasoner to monitor and manipulate them according to the
domain rules. The reasoner interacts with the SDR software
using ontological terms, which are platform-independent,
thus SDR can be implemented in any language that supports
CORBA.

Figure 3. API-centered frameworks

Figure 2. Architecture of Ontology-Based Radio [3]

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 LiveKB is suitable to work with any SDR that registers
its objects with CORBA Naming Service, but it needs the
information about the SDR’s software model so that it can

find and manipulate these objects properly. CORBA uses
Interface Definition Language (IDL) for defining interfaces
of software components, independently of what language
the components are implemented (e.g., C++ or Java). IDL,
which is our choice for describing software models within
the LiveKB framework, could be substituted with a different
language that allows for easy serialization and manipulation,
e.g. UML and XMI.

3.1. ABox and TBox

LiveKB passes information about objects registered with
CORBA Naming Service to the reasoner in the form of
OWL ontologies. It is important to make a distinction
between two kinds of knowledge that is passed to the
reasoner. The semantics of OWL is based on Description
Logics (DL), a family of Knowledge Representation (KR)
formalisms equipped with a formal, logic-based semantics
[11]. Figure 5 presents architecture of a system based on
DL. Such a system allows for setting up a Knowledge Base
(KB) and for reasoning about its content. KB consists of two
components, a TBox and an ABox. In the context of OWL,
the TBox introduces axioms defining the ontology – classes
and properties; the ABox contains assertions about named
individuals – instances of classes and properties defined in
the TBox.

 In the context of LiveKB, the software model, given to
LiveKB in the IDL form and converted into OWL, stands
for the TBox component and allows the reasoner to
understand the structure of the model. The ABox part of the
KB must be collected in the runtime and corresponds to the
current values of parameters in the radio.

 When the reasoner is provided with both a TBox and an
ABox, it can reason over the knowledge base that
corresponds to the current contextual data stored in the
runtime objects of the SDR. Domain experts can write rules
based on the terms defined in the OWL ontology without
the need of knowing the platform or the API to access the
SDR’s internal parameters. Thus the rules can take
advantage of the contextual information and act
accordingly, e.g. update software to improve the QoS.

3.2. LiveKB architecture and workflow

The architecture of LiveKB is presented in Figure 6. All the
interaction between the reasoner and the radio is handled by
CORBA with no domain-specific API in use. LiveKB works
in two different phases – offline and online. The offline
phase consists of two steps – 1) retrieving and compiling the
IDL definitions of the SDR software into the LiveKB’s
implementation language stubs and 2) converting the IDL
into an OWL TBox representation. Both steps can be
performed automatically. This phase is done only once, each
time the application is started. The online phase is
responsible for utilizing the products of the offline phase to
create ABox facts that represent the current state of the
SDR’s objects. This phase might occur either periodically to
reflect the changes in the software or on demand, driven by
the reasoner.

Figure 4. LiveKB as an extension of OBR

Figure 5. Architecture of a knowledge representation system
based on Description Logics [11]

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 The interaction between LiveKB and CORBA is
supported by the use of the CORBA-OWL Mapper, which
maps CORBA IDL definitions into ontological terms and
vice versa. This mapping needs to be performed manually if
names of interfaces and attributes in IDL don’t correspond
directly to names of classes and properties in OWL.

 It is worth mentioning that LiveKB could be
implemented in any language that supports reflection. Our
prototype implementation was based on Java, thus IDL
definitions were used to generate Java stubs. The reflection
on SDR’s runtime objects is performed according to the
information included in the TBox. Once the ABox is
generated in the online phase, the entire KB is passed to the
reasoner, which can now process rules written by domain
experts. The reasoner does not need to be aware of the
SDR’s structure and platform.
 To take advantage of the runtime information, the
reasoner must be able not only to monitor, but also to update
the SDR’s parameters. Similarly to creating the ABox, the
monitoring and the updating must be performed via
reflection on the IDL-generated stubs. Through the use of a
domain-independent API, LiveKB provides this
functionality to the reasoner. LiveKB performs the update
on the CORBA objects, creates a new ABox with updated
values and provides the ABox to the reasoner.

3.3. Challenges with dynamic change of the knowledge
base

Changing the values of parameters in the runtime requires
frequent updates to the knowledge base, which as described
in [12], poses a challenge in OWL-based inference,
particularly because OWL is monotonic. In monotonic
logics facts can only be added, but not updated. One way to
deal with this problem is to restart the reasoner with a new
ABox each time a change is made, or in a periodical
fashion, however, this may not prove to be efficient enough.

4. CURRENT STATE OF THE IMPLEMENTATION

Current implementation of the framework is based on a
number of assumptions and simplifications. First of all,
CORBA IDL definitions are constrained only to interfaces

and attributes. In our experiments, IDL definitions were
manually converted into OWL. Interfaces in IDL became
classes; attributes of primitive types became datatype
properties in OWL. Attributes, which were instances of
other interfaces in IDL, were converted into object
properties in OWL. Moreover, to simplify the
implementation, we assumed a tree structure of the model,
i.e., each object in the API could be accessed via reflection
on a root object. The structure (being a tree) did not have
any reference cycles. The names of CORBA attributes were
unique in the global scope and corresponded directly to the
names of properties in the OWL ontology.
 As mentioned earlier, LiveKB was implemented in Java
and it was interfaced directly with only one reasoner,
BaseVISor [13]. BaseVISor can perform inference with a
subset of OWL axioms and over rules, which suited our
needs. Additionally, BaseVISor is implemented in Java,
which provides reflection, necessary for updating
parameters. Each update was not reflected in the knowledge
base until the next run of the LiveKB.

5. CONCLUSIONS AND FUTURE WORK

We presented LiveKB, a framework that addressed the
problem of interfacing a reasoner with a SDR in a platform
and domain API independent fashion. The platform
independence was achieved with the use of CORBA; the
problem of domain API independence was solved by
interfacing the reasoner with the SDR software based on the
information contained within the IDL definitions of the
model.

Figure 6. Architecture of LiveKB

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 The LiveKB framework depends on CORBA
middleware, which may exhibit problems in the radio
domain [14]. Even though CORBA could be replaced with a
different mechanism that allows objects lookup and control
in a language-neutral fashion, CORBA seems to be an
accepted framework in the embedded community, cf.
CORBA implementations on DSP’s or directly in FPGA’s
[15].
 As described in the paper, the current implementation is
not complete and relies on a number of assumptions and
simplifications. Augmenting the implementation to fit the
architecture is going to be a major part of the future work.
We plan to test this framework with a real-world application
and with the use of available SDR’s, cf. GNU Radio. As
mentioned earlier, we intend to develop a generic API
between the LiveKB and a reasoner, so that different
reasoners could be used.

6. REFERENCES

[1] J. Mitola III and G. Maguire, “Cognitive Radio: Making

Software Radios More Personal”, IEEE Personal Commun.
Mag., pp.13—18, Aug 1999

[2] J.D. Poston, W.D. Horne, M.G. Taylor and F.Z. Zhu,
“Ontology-Based Reasoning for Context-Aware Radios:
Insights and Findings from Prototype Development”, New
Frontiers in Dynamic Spectrum Access Networks, DySPAN
2005, pp.634—637, 8—11 Nov 2005

[3] J. Wang, M.M. Kokar, K. Baclawski and D. Brady,
“Achieving self-awareness of SDR nodes through ontology-
based reasoning and reflection”, Software Defined Radio
Technical Conference SDR’04

[4] A. Ginsberg, J.D. Poston and W.D. Horne, “Experiments in
Cognitive Radio and Dynamic Spectrum Access using An
Ontology-Rule Hybrid Architecture”, Second International
RuleML-2006 Conference, 2006

[5] A. Ginsberg, W.D. Horne and J.D. Poston, “Community-
Based Cognitive Radio Architecture: Policy-Compliant

Innovation via the Semantic Web”, New Frontiers in
Dynamic Spectrum Access Networks, DySPAN 2007,
pp.191—201, 17—20 Apr 2007

[6] J. Mitola III, “The Software Defined Radio Architecture”,
IEEE Commun. Mag., vol. 33, no. 5, pp. 26—38, May 1995.

[7] W3C, “Web Ontology Language (OWL)”,
http://www.w3.org/2004/OWL/

[8] Joint Program Executive Office (JPEO) JTRS, “Software
Communications Architecture (SCA) v.2.2.2”,
http://sca.jpeojtrs.mil/

[9] D. Scaperoth, B. Le, T. Rondeau, D. Maldonado and C.
Bostian, "Cognitive Radio Platform Development for
Interoperability", Military Communications Conference
MILCOM 2006, pp.1—6, 23—25 Oct 2006

[10] G. Gailliard, E. Nicollet, M. Sarlotte and F. Verdier,
“Transaction level modeling of SCA compliant software
defined radio waveforms and platforms PIM/PSM”, In
Proceedings of the Conference on Design, Automation and
Test in Europe, Nice, France, 16—20 Apr 2007

[11] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P.
F. Patel-Schneider, The Description Logic Handbook: Theory,
Implementation, Applications, Cambridge University Press,
Cambridge, UK, 2003

 [12] M.M. Kokar and L. Lechowicz, “Language Issues for
Cognitive Radio”, Proceedings of the IEEE, vol. 97, no. 4, pp.
689—707, Apr 2009

[13] C. Matheus, K. Baclawski and M.M. Kokar, "BaseVISor: A
Triples-Based Inference Engine Outfitted to Process RuleML
and R-Entailment Rules", In Proceedings of the 2nd
International Conference on Rules and Rule Languages for
the Semantic Web, Athens, GA, Nov 2006

 [14] F. LeRoy, G. Abgrall, J. Delahaye, J. Diguet, G. Gogniat, "A
Comparative Study of Two Software Defined Radio
Platforms", Software Defined Radio Technical Conference
SDR’08

[15] F. Casalino, G.Middioni and D.Paniscotti, “Experience
Report on the use of CORBA as the sole middleware solution
in SCA-based SDR Environments”, Software Defined Radio
Technical Conference SDR’08

	Home
	Papers by Author
	Papers by Session

