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ABSTRACT 
 
We present LiveKB, a framework for interaction between a 
reasoner and Software Defined Radio, which allows for use 
of dynamic facts that correspond to particular parameters 
within the SDR software, without having prior knowledge 
of its data structures. LiveKB is platform independent and 
domain API neutral, which allows it to sustain technological 
changes within a particular domain. 
 

1. INTRODUCTION 
 
Cognitive radio (CR) [1] allows for dynamic exploitation of 
contextual information that might come from different kinds 
of sources - RF environment, geographic location, 
waveforms, policies, device capabilities, status, etc. [2]. 
Several proposed approaches [2,3,4,5] to radio cognition are 
based on the Semantic Web technologies, namely on 
ontology and rule reasoning. The focus of this work is the 
problem of interfacing a CR’s reasoner with Software 
Defined Radio (SDR) [6] to utilize its contextual data. The 
problem is presented in Figure 1. The reasoner, usually 
controlled by a monitor that is responsible for feeding the 
reasoner with facts and rules, needs to have access to the 
SDR software. SDR software is treated like a black box and 
the goal is to enable the reasoner to interact with the SDR 
regardless of its platform, its software model and without 
interfering with the end-user applications. 

 Two challenges arise when using knowledge-based 
reasoning in radios: 1) dealing with dynamically changing 
knowledge and 2) software platform independence between 
the reasoner and the radio's software. Using a knowledge 
base for reasoning over SDR’s contextual data is 
challenging because its contents is partially stored on the 
radio itself, and thus is frequently updated, which might 
require non-monotonic reasoning or frequent restarting of 
the reasoner, which increases its runtime complexity. 
Secondly, there is no standard architecture for interfacing a 
CR's reasoner with SDR software components so that any 
reasoner that satisfies the architectural requirements could 
be used to monitor and control software that it has no prior 
knowledge about. We present an approach that tries to 
tackle both challenges with the use of Semantic Web 
technologies, like ontology and rules reasoning, and by the 
use of Common Object Requesting Broker Architecture 
(CORBA), a well-established standard within the SDR 
community. 
 

2. RELATED WORK 
 
One of the known approaches to CR, called Ontology-Based 
Radio (OBR) [3], utilizes architecture with internal buffers 
and custom messages passed between CR and its 
corresponding SDR. The architecture of OBR is shown in 
Figure 2. The Reasoning Component (RC) receives control 
messages from other radios and sometimes must update its 
contextual information and to modify SDR’s parameters via 
Java reflection. An example implementation (in Java) was 
presented with a Prolog-based reasoner and OWL [7] 
ontologies converted into Prolog facts. This approach is 
platform-dependent because it requires SDR software to be 
written in Java.  
 The second approach, presented in [4,5], introduces a 
high-level Perception & Action Abstraction Layer (PAAL) 
which is responsible for mediating between CR and SDR, 
but requires SDR's API to be (most likely manually) 
wrapped to match PAAL. This solution is API-dependent 
because it will work only as long as the API is frozen. The 
abstract view of this interface is depicted in Figure 3. The 
PAAL layer is essentially a domain-specific API between 

Figure 1. Interfacing Cognitive Radio reasoner with SDR 
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the SDR and the monitor. In this solution, the API becomes 

the central part. It is reasonable to expect that there is going 
to be a need for introducing changes to such an API in order 
to match future technological advancements. Such changes 
would have to be followed by all SDR vendors that would 
like to conform to this API. Additionally, this framework 
does not address the problem of platform independence; the 
PAAL layer  is intended to be platform-independent, 
but the authors do not elaborate on how this could be 
achieved. 

 
2.1. Cognitive Radio without Semantic Web 
 
There are a few interesting projects that take a different 
approach to cognitive radio and rather than augmenting 
radio’s cognitive capabilities with the use of Semantic Web 
technologies, they focus on the software platform 
independence and the interoperability between different 
radios. Two of them are Software Communications 
Architecture (SCA) [8] from JTRS and a Cognitive Engine 
(CE) [9] from Virginia Tech. 
 
2.1.1. Software Communications Architecture (SCA) 
SCA is a software architecture framework that is becoming 
an industry standard for developing SDR’s. SCA addresses 
the problem of waveform software portability by utilizing 
CORBA middleware, which handles the communication 

between software and the radio platforms. In this 
framework, waveform software and hardware components 
are described in XML, which SCA uses for loading, 
deploying and running required components on demand. 
There are two major benefits from using SCA – some 
separation between the waveform application and the radio 
platform [10], as well as software component distribution 
within the radio that is transparent to the software 
developers. This allows for running the same software on 
different hardware platforms. These benefits, however, 
come at an expense; developing SCA-compliant SDR’s 
requires providing and maintaining extensive XML 
descriptions, which might be difficult without the support of 
additional software. Furthermore, SCA depends heavily on 
API’s and before SDR becomes SCA-compliant it must go 
through a complex process of validation. 
 Despite the fact that it is a rather heavy-duty 
architecture, SCA seems to be an attractive approach for 
developing portable software for SDR’s. Nevertheless, it is 
not a standard that was designed with radio cognition in 
mind. SCA doesn’t include an API for reasoners. Therefore 
it is not a ready solution for Cognitive Radios. 
 
2.1.2. Cognitive Engine (CE) 
Similarly to the previously described PAAL layer, the heart 
of Cognitive Engine architecture is an API that allows for 
interfacing a cognitive engine with an SDR. The SDR itself 
is viewed as a set of knobs and meters, which are described 
in a XML document. The CE itself is a set of genetic 
algorithms that make use of the SDR’s parameters in order 
to achieve interoperability between different radios. 
Adopting this framework requires implementing a specific 
API, which exhibits the same problems as PAAL, where the 
API becomes the bottleneck of the framework. 
 

3. LIVEKB 
 
LiveKB is a framework that extends the architecture of 
OBR to allow a platform-independent access to SDR’s 
software parameters. Figure 4 shows how LiveKB fits in 
with OBR. Similarly as SCA, LiveKB achieves platform-
independence through the use of CORBA middleware. SDR 
software objects must be registered with CORBA’s Naming 
Service, which allows for locating distributed objects by 
looking up their logical names, as opposed to their actual 
references. Once LiveKB finds SDR’s objects, it allows the 
reasoner to monitor and manipulate them according to the 
domain rules. The reasoner interacts with the SDR software 
using ontological terms, which are platform-independent, 
thus SDR can be implemented in any language that supports 
CORBA.  

Figure 3. API-centered frameworks 

Figure 2. Architecture of Ontology-Based Radio [3] 
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 LiveKB is suitable to work with any SDR that registers 
its objects with CORBA Naming Service, but it needs the 
information about the SDR’s software model so that it can 

find and manipulate these objects properly. CORBA uses 
Interface Definition Language (IDL) for defining interfaces 
of software components, independently of what language 
the components are implemented (e.g., C++ or Java). IDL, 
which is our choice for describing software models within 
the LiveKB framework, could be substituted with a different 
language that allows for easy serialization and manipulation, 
e.g. UML and XMI. 
  
3.1. ABox and TBox 
 
LiveKB passes information about objects registered with 
CORBA Naming Service to the reasoner in the form of 
OWL ontologies. It is important to make a distinction 
between two kinds of knowledge that is passed to the 
reasoner. The semantics of OWL is based on Description 
Logics (DL), a family of Knowledge Representation (KR) 
formalisms equipped with a formal, logic-based semantics 
[11]. Figure 5 presents architecture of a system based on 
DL. Such a system allows for setting up a Knowledge Base 
(KB) and for reasoning about its content. KB consists of two 
components, a TBox and an ABox. In the context of OWL, 
the TBox introduces axioms defining the ontology – classes 
and properties; the ABox contains assertions about named 
individuals – instances of classes and properties defined in 
the TBox. 

 In the context of LiveKB, the software model, given to 
LiveKB in the IDL form and converted into OWL, stands 
for the TBox component and allows the reasoner to 
understand the structure of the model. The ABox part of the 
KB must be collected in the runtime and corresponds to the 
current values of parameters in the radio. 

 When the reasoner is provided with both a TBox and an 
ABox, it can reason over the knowledge base that 
corresponds to the current contextual data stored in the 
runtime objects of the SDR. Domain experts can write rules 
based on the terms defined in the OWL ontology without 
the need of knowing the platform or the API to access the 
SDR’s internal parameters. Thus the rules can take 
advantage of the contextual information and act 
accordingly, e.g. update software to improve the QoS. 
 
3.2. LiveKB architecture and workflow 
 
The architecture of LiveKB is presented in Figure 6. All the 
interaction between the reasoner and the radio is handled by 
CORBA with no domain-specific API in use. LiveKB works 
in two different phases – offline and online. The offline 
phase consists of two steps – 1) retrieving and compiling the 
IDL definitions of the SDR software into the LiveKB’s 
implementation language stubs and 2) converting the IDL 
into an OWL TBox representation. Both steps can be 
performed automatically. This phase is done only once, each 
time the application is started. The online phase is 
responsible for utilizing the products of the offline phase to 
create ABox facts that represent the current state of the 
SDR’s objects. This phase might occur either periodically to 
reflect the changes in the software or on demand, driven by 
the reasoner. 

Figure 4. LiveKB as an extension of OBR 

Figure 5. Architecture of a knowledge representation system 
based on Description Logics [11] 
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 The interaction between LiveKB and CORBA is 
supported by the use of the CORBA-OWL Mapper, which 
maps CORBA IDL definitions into ontological terms and 
vice versa. This mapping needs to be performed manually if 
names of interfaces and attributes in IDL don’t correspond 
directly to names of classes and properties in OWL. 

 It is worth mentioning that LiveKB could be 
implemented in any language that supports reflection. Our 
prototype implementation was based on Java, thus IDL 
definitions were used to generate Java stubs. The reflection 
on SDR’s runtime objects is performed according to the 
information included in the TBox. Once the ABox is 
generated in the online phase, the entire KB is passed to the 
reasoner, which can now process rules written by domain 
experts. The reasoner does not need to be aware of the 
SDR’s structure and platform. 
 To take advantage of the runtime information, the 
reasoner must be able not only to monitor, but also to update 
the SDR’s parameters. Similarly to creating the ABox, the 
monitoring and the updating must be performed via 
reflection on the IDL-generated stubs. Through the use of a 
domain-independent API, LiveKB provides this 
functionality to the reasoner. LiveKB performs the update 
on the CORBA objects, creates a new ABox with updated 
values and provides the ABox to the reasoner. 
 
3.3. Challenges with dynamic change of the knowledge 
base 
 
Changing the values of parameters in the runtime requires 
frequent updates to the knowledge base, which as described 
in [12], poses a challenge in OWL-based inference, 
particularly because OWL is monotonic. In monotonic 
logics facts can only be added, but not updated. One way to 
deal with this problem is to restart the reasoner with a new 
ABox each time a change is made, or in a periodical 
fashion, however, this may not prove to be efficient enough.  

 
4. CURRENT STATE OF THE IMPLEMENTATION 
 
Current implementation of the framework is based on a 
number of assumptions and simplifications. First of all, 
CORBA IDL definitions are constrained only to interfaces 

and attributes. In our experiments, IDL definitions were 
manually converted into OWL. Interfaces in IDL became 
classes; attributes of primitive types became datatype 
properties in OWL. Attributes, which were instances of 
other interfaces in IDL, were converted into object 
properties in OWL. Moreover, to simplify the 
implementation, we assumed a tree structure of the model, 
i.e., each object in the API could be accessed via reflection 
on a root object. The structure (being a tree) did not have 
any reference cycles. The names of CORBA attributes were 
unique in the global scope and corresponded directly to the 
names of properties in the OWL ontology. 
 As mentioned earlier, LiveKB was implemented in Java 
and it was interfaced directly with only one reasoner, 
BaseVISor [13]. BaseVISor can perform inference with a 
subset of OWL axioms and over rules, which suited our 
needs. Additionally, BaseVISor is implemented in Java, 
which provides reflection, necessary for updating 
parameters. Each update was not reflected in the knowledge 
base until the next run of the LiveKB. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
We presented LiveKB, a framework that addressed the 
problem of interfacing a reasoner with a SDR in a platform 
and domain API independent fashion. The platform 
independence was achieved with the use of CORBA; the 
problem of domain API independence was solved by 
interfacing the reasoner with the SDR software based on the 
information contained within the IDL definitions of the 
model. 

Figure 6. Architecture of LiveKB 
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 The LiveKB framework depends on CORBA 
middleware, which may exhibit problems in the radio 
domain [14]. Even though CORBA could be replaced with a 
different mechanism that allows objects lookup and control 
in a language-neutral fashion, CORBA seems to be an 
accepted framework in the embedded community, cf. 
CORBA implementations on DSP’s or directly in FPGA’s 
[15]. 
 As described in the paper, the current implementation is 
not complete and relies on a number of assumptions and 
simplifications. Augmenting the implementation to fit the 
architecture is going to be a major part of the future work. 
We plan to test this framework with a real-world application 
and with the use of available SDR’s, cf. GNU Radio. As 
mentioned earlier, we intend to develop a generic API 
between the LiveKB and a reasoner, so that different 
reasoners could be used. 
  

6. REFERENCES 
 
[1] J. Mitola III and G. Maguire, “Cognitive Radio: Making 

Software Radios More Personal”, IEEE Personal Commun. 
Mag., pp.13—18, Aug 1999 

[2] J.D. Poston, W.D. Horne, M.G. Taylor and F.Z. Zhu, 
“Ontology-Based Reasoning for Context-Aware Radios: 
Insights and Findings from Prototype Development”, New 
Frontiers in Dynamic Spectrum Access Networks, DySPAN 
2005, pp.634—637, 8—11 Nov 2005 

[3] J. Wang, M.M. Kokar, K. Baclawski and D. Brady, 
“Achieving self-awareness of SDR nodes through ontology-
based reasoning and reflection”, Software Defined Radio 
Technical Conference SDR’04 

[4] A. Ginsberg, J.D. Poston and W.D. Horne, “Experiments in 
Cognitive Radio and Dynamic Spectrum Access using An 
Ontology-Rule Hybrid Architecture”, Second International 
RuleML-2006 Conference, 2006 

[5] A. Ginsberg, W.D. Horne and J.D. Poston, “Community-
Based Cognitive Radio Architecture: Policy-Compliant 

Innovation via the Semantic Web”, New Frontiers in 
Dynamic Spectrum Access Networks, DySPAN 2007, 
pp.191—201, 17—20 Apr 2007 

[6] J. Mitola III, “The Software Defined Radio Architecture”, 
IEEE Commun. Mag., vol. 33, no. 5, pp. 26—38, May 1995. 

[7] W3C, “Web Ontology Language (OWL)”, 
http://www.w3.org/2004/OWL/ 

[8] Joint Program Executive Office (JPEO) JTRS, “Software 
Communications Architecture (SCA) v.2.2.2”, 
http://sca.jpeojtrs.mil/ 

[9] D. Scaperoth, B. Le, T. Rondeau, D. Maldonado and C. 
Bostian, "Cognitive Radio Platform Development for 
Interoperability", Military Communications Conference 
MILCOM 2006, pp.1—6, 23—25 Oct 2006 

[10] G. Gailliard, E. Nicollet, M. Sarlotte and F. Verdier,  
“Transaction level modeling of SCA compliant software 
defined radio waveforms and platforms PIM/PSM”, In 
Proceedings of the Conference on Design, Automation and 
Test in Europe, Nice, France, 16—20 Apr 2007 

[11] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. 
F. Patel-Schneider, The Description Logic Handbook: Theory, 
Implementation, Applications, Cambridge University Press, 
Cambridge, UK, 2003 

 [12] M.M. Kokar and L. Lechowicz, “Language Issues for 
Cognitive Radio”, Proceedings of the IEEE, vol. 97, no. 4, pp. 
689—707, Apr 2009 

[13] C. Matheus, K. Baclawski and M.M. Kokar, "BaseVISor: A 
Triples-Based Inference Engine Outfitted to Process RuleML 
and R-Entailment Rules", In Proceedings of the 2nd 
International Conference on Rules and Rule Languages for 
the Semantic Web, Athens, GA, Nov 2006 

 [14] F. LeRoy, G. Abgrall, J. Delahaye, J. Diguet, G. Gogniat, "A 
Comparative Study of Two Software Defined Radio 
Platforms",  Software Defined Radio Technical Conference 
SDR’08 

[15] F. Casalino, G.Middioni and D.Paniscotti, “Experience 
Report on the use of CORBA as the sole middleware solution 
in SCA-based SDR Environments”, Software Defined Radio 
Technical Conference SDR’08 

 
 

  


	Home
	Papers by Author
	Papers by Session

