
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

DISTRIBUTED WIRELESS COMPUTING WITH MULTIPE DOMAINS

 Sabares Moola , Carlos Aguayo Gonzalez, Carl Dietrich, Jeffrey Reed (Wireless@VT,

Virginia Tech, Blacksburg, VA, USA; sabares, caguayog, cdietric, reedjh@vt.edu).

ABSTRACT

The motivation for distributed computing across multiple
software defined radios (SDRs) evolved from Component and
Service based Radio Architectures like the Software
Communication Architecture (SCA). This architecture
provides an opportunity for value-added services and
collaborative communication through its inherent ability to
provide distributed data processing across multiple SDRs.
We demonstrate a simple proof-of-concept for constructing a
software framework for opportunistic signal processing and
distributed data processing across SDR nodes. We build this
framework on top of the Open source SCA
implementation::Embedded (OSSIE), developed by Virginia
Tech, for demonstration purposes. A preliminary
demonstration implements opportunistic processing of data
collected from SCA-based SDR nodes that are connected
through a wired or fixed wireless backbone network, laying
groundwork for advanced applications like parallel data and
signal processing on both wireless infrastructure and Mobile
Ad-hoc Networks (MANETs).

1. INTRODUCTION

In recent years, Distributed Computing has gained
prominence in the wireless research community [1]. Recent
advances in radio technologies have given leverage for this
research, towards the goal of achieving optimized usage of
power and bandwidth. In addition to this, they provide
advantages like sharing of resources, fault tolerance, and
dynamic adaptability to the environment.

 The emergence of software defined radio (SDR) and
cognitive radio has necessitated the convergence of Wireless
Distributed Computing (WDC) towards these technologies.
The requirement of dynamic reconfiguration of wireless
environment, transparent allocation of resources, reliable
exchange of data among the mobile nodes, etc, has been
satisfied by these radio technologies.

 The SDR has its functionality developed in software
rather than hardware. This approach allows for rapid
deployment, ease of upgrades, etc. In order to make this radio
terminal technology widely accepted and compatible with
legacy radios, an open architecture called the Software

Communication Architecture (SCA) was published by Joint
Tactical Radio System (JTRS) Joint Program Office
(JPO)[2]. Its goals include enhanced interoperability among
different SCA-compliant radios, reduction in development
and operation cost, ease of development and deployment of
waveforms, and portability among different SCA
implementations. The SCA specification relies on Object
Oriented Programming Concepts, Common Object Request
Broker Architecture (CORBA) middleware and CORBA
Component Model (CCM).

 The SCA in its specification of Operating Environment
for SDRs defines interfaces for different software
components. Such interfaces provide common infrastructure
for distributed application deployment. We took advantage of
these interfaces to build a network of nodes across a wired
backbone, to access the services offered by the individual
nodes, and to control the deployment of waveforms across the
nodes. This involved obtaining the references of individual
remote nodes over the CORBA transport protocol. Since the
SCA specifies object-oriented development of components,
obtaining the object references of SCA components will
enable an application to interact with these components to
form a larger distributed application irrespective of its
location.

 To illustrate this concept, we created a simple testbed
using multiple nodes running the OSSIE framework. We used
a C++ implementation and some shell scripting in order to
automatically scan the network and identify nodes available
to share resources for distributed computing.

 The paper is organized as follows: Section 2 gives a brief
description about how to build a distributed architecture
based on the SCA architecture specification. The section also
explains the need for following a multi-domain approach to
achieve WDC. Section 3 discusses the proposed
implementation details using the CORBA middleware
specified by the SCA architecture. Finally, Section 4 gives
the results and presents possibilities for future work.

Figure1. SCA Architecture Abstraction Levels

2. DISTRIBUTED ARCHITECTURE

In this section we describe concisely the various features
involved in creating the distributed architecture.

2.1. SCA Architecture

The SCA architecture is an implementation-independent
software framework for creating JTRS compliant SDR nodes.
The SCA tries to decouple the hardware from the software.
Since the SCA deals mostly with specification of Software
Architecture, we focused on a software-based approach for
realizing distributed computing over wireless networks. The
effective re-configuration of components along with real time
exchange of information across the multiple SDR nodes,
distributed throughout the environment, is made possible by
this approach.

 The SCA addresses the issue of modularity, scalability
and compatibility with different radios including legacy radio.
The architecture provides the flexibility of including all the
modules in the software, which, replacing dedicated hardware
for a wide variety of radio applications and functionality. The
issue of inter-operability between different SDR nodes
residing with multiple parties (e.g., Homeland Security,
Navy, Air Force, etc.) is also addressed by the SCA. The
Figure 1 shows the break down of the SCA. Among these
features CORBA, specified as middleware by the SCA,
enables distributed deployment of radio components. We
further extended the concepts learned from the SCA to create
a framework for realizing distributed applications across
different individual SCA-based radios. We describe in this
paper the work done on top of the existing framework to
realize this.

 The SCA defines an Operating Environment (OE) that
aims to separate the applications and platforms. The
Operating Environment is responsible for defining interfaces
and providing a mechanism for deploying and controlling

Figure2. Simplified Relationship between Domain
Manager and other SCA services

the applications and its components across hardware
platforms. The SCA defines object oriented (OO) model
development for defining various features associated with the
OE. This model modularizes both software and hardware
base components associated with the OE. The associated
interfaces required between the modules are also defined in
the OE. We took advantage of these OE features to create an
environment for building distributed applications.

2.2. Core Framework and Domain Manager

The Core Framework (CF) provides a set of interfaces that
are responsible for inter-connection of software components
in distributed communication systems. These interfaces are
responsible for deployment and running of applications.
Through these interfaces, the CF provides complete
abstraction for underlying Hardware and software layers. The
interfaces are described for Applications, Control,
Framework Services and Domain Profile. We use these
interface to create a federated structure using Domain Profiles
from different SCA-based SDRs to create a system for
distributed waveform applications. Though the specification
by itself enables the distributed computing, we demonstrate
through this paper , a simple proof-of-concept for realizing
advanced signal processing applications that will reach down
to Physical Layer. The applications include distributed
MIMO, cooperative spectrum sensing, cooperative relaying,
etc.

 SCA component, both hardware and software, have to
register with the Domain Manager in order to form single
entity as a radio. The Domain Manager is responsible for
controlling and managing all the devices, resources, and
applications under a single radio. Since it is necessary to

Domain
Manager

Device
Manager

Devices

File Manager

Application Application
Factory

Resources Resource Factory

 Hardware

 Software

CORBA OS CF

Waveform Software

Waveform Components

Processors and Modem

register all the resources available under a radio to a Domain
Manager, it can act as a gateway by which a remote
client/radio can access all these resources. The instantiation
of DomainManager creates a naming context in the CORBA
Naming Service. In the subsequent sections, we describe the
use of CORBA and the necessity of the CORBA Naming
Service in the Distributed Computing.

Figure3. Multi Domain Approach Based on SCA
Framework

2.3 Multiple Domain Managers

A Domain Manager acts a repository for all the services
offered by a single radio. We mention here services such as
DeviceManagers, FileManagers, Resources, Applications,
and Application Factories that are registered to the
DomainManager during their instantiation. Therefore,
obtaining a reference to the DomainManager is like getting a
reference to each of the resources and services offered by the
radio.

 By doing so, any individual radio formed by the
collection of components and resources under a single
DomainManager will be able to interact with other
DomainManager-specific SDR radios. With this interaction
among different Domain Managers, each radio will have the
capability to look into the services and resources available
from radios in its vicinity. Thereafter, the radios can share
data among multiple nodes using a reliable transport
mechanism. Because of the component based model of the
SCA, we could set up a communication system model using
individual components from different nodes. With such a
system model we can configure and control the properties of
components of remote SDR nodes. In the next sub-section we

describe about the mod of realizing the structure for multiple
Domain Managers.

2.4 Federated Structure

Our objective is to create a federated structure from the
services offered by DomainManagers to realize the goal of
WDC. This requires obtaining the list of available SDR
nodes. The mechanism of identifying nodes can be referred to
as service discovery. We rely on CORBA to obtain the
Naming Reference for DomainManager objects from
different radios/network nodes. The details about the
implementation are explained in the subsequent sections.

 The above mentioned method of achieving our goal of
wireless distributed computing became feasible because of
the extension of the OSSIE open source SCA implementation
[5]. In the next section, we describe about the implementation
details of the architecture that was outlined above.

3. IMPLEMENTATION

In this section, we describe in brief the CORBA middleware
and how to utilize the services offered by it to implement
distributed computing.

3.1 CORBA Middleware and Distributed Systems

CORBA middleware is targeted for heterogeneous networks
with varied platforms and operating systems. It is well suited
for distributed computing over heterogeneous networks.
Therefore, SCA architecture specified it as communication
language for the varied components distributed within the
SDR radio. It is also targeted for wider portability among
different hardware platforms. We created a simple proof of
concept for demonstration of WDC using SCA-based radios.
CORBA is used in the SCA Core Framework and it acts as
interface for passing messages between components. We
assume that there exists a reliable transport mechanism across
the nodes. In the following subsections, we describe the
procedure followed for implementation of the distributed
framework.

3.2 Obtaining Object References

Our first task is to obtain Initial References for the Naming
Service from SDR nodes. These references are essential for
establishing communication between different nodes.
Generally, object references are stored in the standard format
called Interoperable Object References (IOR). These
references are transported to other nodes explicitly by e-mail
or by storing it some other file. The initial references acts a
kind of bootstrapping mechanism for establishing contact
with the other nodes.

 Figure4. Simple Distributed Application based on OSSIE Framework

For our proof of concept, we considered a real-time scenario,
by creating a local network with three to four nodes running
the OSSIE framework, in which there is no information
available about a node apart from its Internet Protocol (IP)
address (IPv4). We used the IP addresses to obtain the initial
Naming reference from different nodes. We devised a Linux-
based approach to scan the entire network in order to obtain
the IP address of the SDR nodes connected to the local
network. From the list of IP addresses, we were able to obtain
the initial references.

 Before a node can interact with another node, it has to
initialize an Object Request Broker (ORB) between those two
nodes. This has to be done for multiple nodes in order for
their resources to be used for computing purposes. In general
the initial reference to the Naming Service either by
bootstrapping mechanism or by explicitly specifying the
mode of obtaining reference like underlying transport
mechanism, address of the location. In the open source
omniORB CORBA implementation used in our work [8],
when an ORB is initialized between any two nodes, by
default it takes the reference for bootstrapping from a
configuration file, e.g., omniORB4.cfg. Instead, we passed
the initial reference as argument to the code that initialized
the ORB.

In order to ensure interoperability between different ORB
products, we used a bootstrapping mechanism based OMG
defined URL called corbaname. This URL takes the
following form:

-ORBInitRef NameService=corbaname::<IP Address>.

 The above URL forms a command line argument for
ORB initialization. Thus, we perform ORB initialization as
soon as we have the list of IP address. Once we obtain the
initial reference to Naming service, we use the
ORB::resolve_initial_references() function to further narrow
down to other references. For every SDR node in our
network, we have a DomainManager that makes a unique
context under every initial Context. Therefore, once we
obtain the reference to the initial Naming Context we can
obtain reference for a radio’s DomainManager, which then
acts as a gateway for all the components and resources
available under that radio.

3.3 System Setup

We used two nodes with Intel Centrino Processor and two
nodes with an Intel Atom Processor. All these nodes ran the
Ubuntu 8.04 OS and had OSSIE v0.7.3 installed. These
nodes are connected to form a local network with a wired
backbone.

GPP Node 1

GPP Node 2 GPP Node3

Speaker Decimator am_demod

USRP
Commander

USRP

CORBA

USRP Commander USRP Commander

Rx antenna

 3.4 Distributed Application Model

In this section, we describe a simple distributed application
that can built from the re-configurable components from the
OSSIE [5] framework. The system description is shown in
figure4.This application involves a simple SDR radio that
acts a AM radio receiver whose frequencies can be controlled
by other SDR nodes. The application uses OSSIE
Components like USRP_Commander, Decimator,
am_demod. The audio can be played through Sound card or
played through ALF speaker.

 The Node1 acts a simple AM receiver. Its initial Naming
reference is obtained by other two nodes Node2 and Node3
that can control the AM receiving frequency of the Node1.
The same system can be implemented by making the
components like Decimator and am_demod operating in other
nodes Node2 and Node 3 respectively. The audio can then be
heard in Node1. In this system, every transport of data is
handled through CORBA transport layer.

4. RESULTS AND FUTURE WORK

In this paper, we demonstrated a simple proof of concept for
distributed computing using the OSSIE framework. Through
this demonstration, we are able to prove that enhancement to
already available service based radio architectures like the
SCA can enable opportunistic signal processing. This
processing can take for advantages of both infrastructure and
mobile ad-hoc networks, which provide the more challenging
opportunity for wireless distributed computing (WDC). These
distributed processing capabilities can be used for
applications like parallelization of data and signal processing,
data reduction and data fusion. Advanced applications
include position location, distributed MIMO and automated
frequency planning in ad-hoc networks.

 For the future work, we aim to develop self-configuring
software that will be used on top of existing open source SCA
implementation called OSSIE. This will become target for
advanced distributed applications that will reach down to
physical layer in both static and dynamic wireless
environment.

5. REFERENCES

[1] S.Zhou, M. Zhao, X.Xu, J.Wang, Y.Yao, “Distributed
Wireless Communication System: a new architecture for
future public access”, IEEE Communication Magazine,
Vol 41, Issue 3, March 2003.

[2] Software Communication Architecture Specification,

Version 2.2.2.

[3] J.Bard, Vincent J.Kovarik Jr., “Software Defined Radio –
The Software Communication Architecture’, John Wiley &
Sons Ltd, England, 2007.

[4] C.A. Gonzalez, C. Dietrich, J.H. Reed, “Understanding

Software Communication Architecture”, IEEE Communication
Magazine, To be published.

[5] OSSIE Website, http://www.ossie.wireless.vt.edu.

[6] M. Henning, S.Vinoski, “Advanced CORBA Programming

with C++”, Addison-Wesley Professional Computing Series,
USA, 1999.

[7] D. Grisby, S. Lo, D. Riddoch, “The omniORB version 4.1

User’s Guide”.

[8] omniORB 4.1, http://omniorb.sourceforge.net.

	Home
	Papers by Author
	Papers by Session

