
SOFTWARE ARCHITECTURE FOR COOPERATIVE APPLICATIONS

Thomas Tsou (Wireless@Virginia Tech, Blacksburg, VA, USA; ttsou@vt.edu)

Jeffrey H. Reed (Wireless@Virginia Tech, Blacksburg, VA, USA; reedjh@vt.edu)

ABSTRACT

With the initial generation of reconfigurable software radios

now being deployed, an increasing number of flexible and ag-

ile communication devices are being introduced into the field.

Existing SDR research has focused primarily on single node

applications in terms of reconfigurability and performance.

Possibilities exist, however, for distributed applications that

leverage the increasing flexibility of SDR in a cooperative

manner. This paper examines using general purpose commod-

ity hardware as an enabling factor for initial development of

new cooperative waveforms.

Recent research developments in coordinated multi-node

communication are introduced as well as key implementation

challenges. Furthermore, a proposed development architec-

ture using an open-source SDR platform for supporting

cooperative waveforms is described. Specifically, recent real-

time extensions of the Linux operating system are explored

for providing necessary timing requirements at the user level

on general purpose hardware. Initial timing measurements

are provided along with discussion of future development

directions.

I. INTRODUCTION

Over the past decade the path of software defined radio

development has undergone numerous changes. Hardware

platforms and software models have evolved significantly

with continuing breakthroughs in faster, more efficient pro-

cessors and reconfigurable software architectures among

many other notable advancements. Concurrently as tech-

nology progresses and research communities generate new

ideas and applications, novel possibilities emerge that can be

benefited by and integrated with software defined radio.

Recently a rapid area of growth in the research world

that can be assisted by SDR technology is the topic of

distributed and cooperative applications. Generally speaking

these research areas encompass diverse topics such as sensor

networks, signal processing, and network applications. More

specifically, we consider a case where multiple relay nodes

coordinate transmissions in the time domain in order to

improve communications performance and reliability. The

architecture requirements are characterized by timing require-

ments to support coordinated actions at the physical and

MAC layers. From a wireless network perspective, our long-

term goal is to develop architectures and examine software

concepts that can support an initial class of applications.

From a hardware standpoint, we assume a general purpose

processor (GPP) software radio model. After the processor,

perhaps the most critical component of the operating envi-

ronment is the operating system kernel. The kernel controls

the shared processing resources available to the applications

with significant effects on latency, stability, and throughput.

Consequently, close examination of a specific operating sys-

tem, Linux, as a critical component is a primary focus of this

paper.

The remaining paper is organized as follows. Section 2

discusses the current application context and associated re-

quirements and constraints that must be supported on the

individual node level. Section 3 describes the overall software

radio architecture with a specific focus on operating system

effects. Section 4 and 5 describe a basic test environment and

initial results. Finally, from these initial results, subsequent

effects on software architecture decisions are explored in

Section 6 with concluding statements in Section 7.

II. APPLICATION AND REQUIREMENTS

Wireless network relaying and directly related topics such as

distributed MIMO and virtual arrays has recently emerged as

a significant topic of research in a diverse range of communi-

cation areas that include information theory, sensor networks,

and signal processing. Due largely to an established and

still rapidly growing body of published work, researchers

are beginning to direct efforts toward development and im-

plementation issues of cooperative networks. Given the high

cost of dedicated experimental and test solutions, software

radio can play a role in lowering the barriers to entry for

exploring these emerging communication concepts.

As an example of a basic test scenario, a relay channel

with two relaying nodes is shown in Figure 1. S, Rn, and D

refer to the source, n relay node, and destination respectively.

We assume a two stage transmission protocol where the

source transmits in the first stage, while the relay nodes

cooperatively tramsmit in the second stage after receiving the

initial transmission. αn is the complex valued fading channel

coefficient for path n at the mth transmission stage while w

refers to additive white gaussian noise. Notably, τn is the

effective delay at the receiver on each path, and the critial

aspect to SDR that this paper addresses.

A wide range of coding and transmission schemes are pos-

sible of varying complexity [1], and theoretical results have

been widely explored [2]. However, from a software architec-

ture and implementation perspective our current motivations

are somewhat simpler. The critical effect of the software

radio architecture and implementation is altering τ due to

significant internal processing overhead. τ would otherwise

only be subject to propagation delays in a theoretical physical

model. For any implementation - software or not - perfect

alignment of symbols is not an absolute requirement [3];

however, a certain degree of predictable timing behavior is

S D

R2

R1

τ0

τ1

τ2
X

X + X

+ X

+

+X

α2,1

α1,1

α0

α 2,2

α 1,2

w0

w3

w2

w1

Fig. 1. Basic relay model

Radio Hardware

CPU

RT-Kernel

User Space

Driver

Signal

Processing

Host

ADC/DACFPGA

Fig. 2. Generic SDR architecture

necessary between relay nodes, which, at this time, is not

readily acheivable on existing general purpose software radio

architectures. Specific requirements vary upon application,

however, we consider a predictable and bounded additive

latency in the low hundreds of µs range suitable for our

research and testing purposes.

III. SOFTWARE DEFINED RADIO MODELS

Previous work in software radio use in cooperative commu-

nication systems is limited, however, a number of studies

have been performed in related areas. Previous studies have

examined latency and scheduling of software radio systems

in various forms with GNU Radio [4] being a typical starting

point. Notably for experimental MAC layer applications,

studies have been published in [5] and [6]. Also, the use

of software radio for RFID readers was shown in [7]. For

cellular applications, the OpenBTS project targets a software

radio implementation of a GSM basestation [8].

A generic software radio architecture is shown in Figure 2

and is similar to structures mentioned by various software

radio texts [9], [10]. Use of this general model in cooperative

ADC/DA

C

Timing

Control

FPGA

CPU

Kernel

Metadata

Samples

Host

Packet

CLK

C

Radio Hardware

Fig. 3. Split or hybrid SDR architecture

waveforms - and also in MAC, RFID, and cellular applica-

tions - has been difficult due to lengthy and unpredictable

latencies attributed to complexities and overhead of the

software radio processing path. This processing path contrasts

with fixed systems where functionalities are tightly integrated

and deterministic. As a result, recent software projects with

strict timing considerations have introduced hybrid models

that take into account transport and processing delays of

various sections of the software radio. An example of such

an approach is the in-band signalling project [5]; a simplified

version of the architecture is shown in Figure 3.

The consequence of these split models is that usability

and flexibility are sacrificed to an extent in that programming

non-general purpose processors require specialized skills and

toolsets. For our case, rather than discounting the feasibility

of using the model of Figure 2, we choose to examine specific

aspects of the software radio chain and attempt to stabilize

latencies where they occur. Delays occur at multiple transport

and processing points in a software radio. As an example,

we describe the signal path of a popular setup, the Universal

Software Radio Peripheral [11] and a Linux based host PC.

The USRP is a open-source, low-cost digital conversion

board designed to allow general purpose computers to capture

a wide spectrum band through an USB interface. It was

developed for the GNU Radio Project and can be coupled

with several RF daughter boards that allow access to different

spectrum bands. Delays may occur within the USRP itself,

the USB bus, and within the PC host after samples are

transferred to main memory. We primarily focus on the third

point within the GPP main memory as it relates to operating

system use and is the most variable timing factor. A forth

delay point is from the signal processing and used algorithms,

however, this area is not addressed by operating system or

software architecture changes.

Critical to the software interface design is that SDR signal

processing takes place in user space. Thus, direct access

Sample Stream usrp_interface

libusb

fusb

usbfs

Kernel Space

User Space Drivers

Software Radio

Components

usbfs

User Space

USB Host

Controller
USRP

usbcore

Host

Controller

Driver

Hardware

Parallel

Port

Hard IRQ

Handler

Fig. 4. USRP driver stack

to hardware is restricted to interfaces provided through the

operating system API calls. In our example, received samples

enter main memory through the USB bus and subsystem.

Subsequently, this data needs to be made available to the the

user space driver and applications by the operating system.

The code paths of these internal operations are shown in

Figure 4.

Given the complexity of operations to move data from the

RF interface to user space where primary signal processing

occurs, it is evident that the operating system plays an integral

role in timing sensitive software radio waveforms. The kernel

is the central component of the operating system and interacts

directly with system hardware as well as providing interfaces

for user space applications. Linux is based on a monolithic

kernel - similar to most general purpose operating systems

- in that low-level access to hardware is limited to the

operating system and user access is provided through a set

of primitives or system calls. The scope of the monolithic

kernel contrasts with microkernels - sometimes used in hard

real-time operating systems - where services such as device

drivers and protocol stacks are contained in user space and

are more readily accessable. Consequently, in our case, the

Linux kernel directly impacts upper layer applications that

require timing sensitive interactions with the hardware.

Until recently, however, Linux did not have direct support

for real-time operation. With development coming from the

PREEMPT RT community [12], Linux is becoming a more

suitable operating system for time sensitive applications.

Recently, many significant features have been merged into the

mainline kernel, which now supports mechanisms such as a

preemptable kernel and priority scheduling. Without full pre-

emption capabilities conflicts over shared resources may lead

latency: 70 us, #268/268, CPU#0 | (M:desktop VP:0,

|task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| /

||||| delay

||||| time | caller

||||| \ | /

0dNh. 0us : usb_hcd_irq (handle_IRQ_event)

0dNh. 1us : uhci_irq (usb_hcd_irq)0dNh. 1us : uhci_irq (usb_hcd_irq)

0dNh. 2us : _spin_lock (uhci_irq)

0dNh. 2us+: uhci_scan_schedule (uhci_irq)

0dNh. 4us : uhci_free_td (uhci_scan_schedule)

0dNh. 4us : dma_pool_free (uhci_free_td)

0dNh. 4us : _spin_lock_irqsave (dma_pool_free)

0dNh. 5us : _spin_unlock_irqrestore

… … …

0dNh. 69us : uhci_urbp_wants_fsbr

0dNh. 69us : _spin_unlock_irqrestore

0dNh. 70us : usb_free_urb (usb_hcd_giveback_urb)

0dNh. 70us : _spin_lock (uhci_giveback_urb)

0dNh. 70us : uhci_urbp_wants_fsbr

0dNh. 71us : usb_hcd_irq (handle_IRQ_event)

0dNh. 71us : trace_hardirqs_on (handle_IRQ_event)

Fig. 5. Hard interrupt latency trace

to unpredictable delays. For example, due to device driver

designs, certain interrupt handlers operate in hard context

with interrupts disabled. Examination into our development

system using ftrace [13], reveals that during a testing interval

the longest time period with interrupts off is roughly 70 s. A

truncated trace is shown Figure 5 and illustrates the complex

operations that may occur in a non-preemptable interrupt

context. In the next section, we describe a test environment

so these effects can be measured in a method more specfic

to a software radio waveform applications.

IV. TESTING

In order to determine the suitability of the Linux kernel as

the foundational software layer for our distributed software

radio tasks, we created tests to measure interrupt latency

and jitter from within the kernel as well as from user

space applications, where software radio signal processing

functionality resides. The test approach is representative of

a receive data transfer from another device on the hardware

platform, the ADC or front-end FPGA for example, using

direct memory access (DMA), which occurs independently of

the central processor operation. When incoming data is ready

for processing, an interrupt is triggered by the transferring

device through a dedicated interrupt on the processor. The

processor subsequently performs a mode switch and begins

executing an interrupt handler which either directly processes

the data, or more likely prepares the data for processing by

a userspace application. The goal of our tests is to measure

the latency and stability of the interrupt signaling process in

Interrupt

Parallel Port

Driver

USRP

Signal Gen

User Space

Driver

User Space

Oscilloscope

USRP

Kernel SpaceTrigger Source

Fig. 6. Software delay measurement setup

controlled settings representative of software radio operation.

This approach allows us to identify specific causes of system

latency that would be otherwise difficult to trace using an

end-to-end testing with a complete waveform.

To measure interrupt latency we created a simple device

driver for the parallel port on a basic PC (Intel Pentium

4, 3.20GHz). To initiate the interrupt, we fed in a square

wave which triggered the parallel port and Intel Advanced

Programmable Interrupt Controller (APIC) [14] with the

leading edge on an unshared IRQ at an interrupt frequency

of 10 kHz. Upon interrupt, the handler immediate returned

a pulse on an output pin of the parallel port from interrupt

context. Both the input wave and output pulse were output

on an oscilloscope where the timing values were examined

and logged. Operating from a hard interrupt context is the

shortest and most direct method for simple request-and-

acknowledgement signaling, but it is not representative of the

more general of software radio waveform operation since no

transfer of samples is involved.

As another test, we wrote a similar user space driver

triggered from the parallel port. In this test setup, the

interrupt handler finished immediately upon triggering and

signaled that a return signal be generated from the user space

application. The user space application was run at a real-

time priority using the preemptive scheduler, SCHED FIFO.

In addition, a number of other procedures were taken to

minimize possibilities of non-determinacy. These procedures

included locking memory to avoid page faults due to virtual

memory use [15] and pre-faulting the stack to reduce the pos-

sibility of a stack fault [16]. Furthermore, for a comparison

we included an application configuration running with normal

user space scheduling and no other preventive methods.

During the tests an idle processor was used to determine

minimal latencies and jitter values. To simulate a large back-

ground load, we the canonical kernel-hacking workload [15]

of a parallel kernel build. This latter test provides insight

into how well the system can maintain stability under load.

With respect to a software defined radio environment, the test

Fig. 7. Oscilloscope output

characterizes how well the processor and operating system

can maintain high priority MAC and physical layer timing

constraints while dealing with a lower priority background

load. The results are shown in Table 1 and Table 2 which

show the externally measured round trip times under idle

and loaded conditions respectively. We defined jitter as the

width of the time interval for 99.9% of samples. Maximum

latencies, or statistical outliers, were recorded over an interval

of 60 seconds.

V. RESULTS

Our initial test results displayed in Table V and Table V

show that the process of triggering the processor based on an

external event and handling the interrupt is a stable operation

when no other tasks are contending for the CPU. Do to the

idle load and no contention on the specific interrupt used

for the parallel port, which likely removed any detectable

variance due to the APIC, or, in general, anything in the

signaling path to the CPU, the interrupt latency is stable and

predictable within the time frames that we measured. The

Intel APIC is known for interrupt latency jitter though this

behavior was not detected in the idle testing [14].

Median Jitter Max

IRQ Context 6 ¡1 9
User Mode 11 4 100

RT PREEMPT 10 1 20

TABLE I
LOW UTILIZATION (µs)

Median Jitter Max

IRQ Context 8 6 53
User Mode 30 1ms 1ms

RT PREEMPT 12 13 200

TABLE II
UNDER APPLIED LOAD (µs)

Real-time priorities are not applicable to interrupt handlers

since they run in interrupt context. More specifically the

basic driver that we used ran in hard context with interrupts

disabled so thread priorities were not applicable. On the

other hand, our signaling interrupts can be delayed by other

interrupts for the same reason, which we will describe next.

Moving the handler to a user process raised the maximum

delay by a large amount with smaller changes in average

latency and jitter. The small changes in average latency can

be attributed to the change from interrupt to process con-

text and additional associated function calls. The significant

change in maximum latency is due to the fact that user space

threads preemptable by interrupts and in the case of non-RT

scheduling, any other running process. Given the structure

of the Linux kernel used, compared to industrial real-time

operating systems, these results fall within expectations with

the following conclusions. Most significantly, system load is

the primary factor. The actual processing time of responding

to an interrupt is an extremely short and largely deterministic

operation even from user space and delays occur when other

processor, or other interrupts, prevent or preempt the handler

from running during periods of processor contention.

VI. OUTLOOK

Given our initial results, the Linux kernel offers the potential

to support timing sensitive cooperative applications under

certain general conditions. First, the timing requirements

of the application can not exceed fundmental limitations

of the hardware platform and operating system. Second, a

stable operating environment must be maintained. The first

condition, which can only be determined through thorough

testing, is intuitive and not specific to Linux. The second con-

dition, however, is due to the fact the Linux with preemptive

and real-time capabilities enabled is still a general purpose

operating system. As such, Linux does not achieve the the

level of process separation and allow dedicated processor

utilization as done in hard real-time operating systems.

As previously mentioned, the stability of the operating

environment is dependent on a number factors with system

load being the primary concern. More specifically this lim-

itation is a result of contention over shared resources by

multiple processes. With the basic kernel configuration that

we used, operating under load with real-time priorities or

even in interrupt context was not sufficient to guarantee

an upper bound on execution time for our basic signaling

task even if application requirements are relaxed by dropping

worst-case instances and statistical outliers. Consequently,

our current kernel configuration may not be sufficient for

the cooperative signal processing and computing tasks when

relative processing loads are high. One possible solution

in this case is to maintain adequate headroom and open

availability of resources though this approach comes at the

detriment of efficiency goals.

If we assume that the primary means of maintaining

reliable timing characteristics on a Linux based SDR is

by maintaining low relative system loads, counter to the

concerns of timing are a number of factors. Energy utilization

and processor efficiency are two of these factors which are

critical for any processor working with multiple functionali-

ties. Ideally to maximize efficiency, a processor and software

stack would allow operation at maximum utilization while

maintaining timing capabilities required for communication.

Currently, dedicated hard real-time operating systems can

achieve these objectives to a much greater extent than the

main Linux kernel.

The traditional approach in embedded systems is to move

computationally heavy or critical applications into dedicated

hardware routines on a DSP, FPGA, or simply a separate

dedicated GPP [17]. This approach reveals the compromises

of real-time performance requirements against design flexi-

bility and solutions that are easy to modify and customize.

Underpinning these approaches is the goal of giving high

priority, time-critical tasks full utilization of the process in an

uninterruptable manner, which leads to predictable operation.

This is easily achievable on a processor with a single task,

which is rarely the case in modern multitasking software

systems where conflicts over shared processor resources

readily occur.

Nevertheless, technology changes quickly so these consid-

erations may change as the community progresses and the

Linux kernel develops. Only recently has the Linux kernel

been considered suitable for general real-time tasks without

the use of major patches or extensions. Furthermore, current

multi-core processors and platforms may be operable in

configurations that could separate processes physically such

that real-time response is achieved in a different manner. As

a result, significant potential remains to be examined using

Linux based systems in cooperative software radio systems.

VII. CONCLUSIONS

This paper considers the role of SDR in examining distributed

cooperative applications. A basic GPP based hardware plat-

form was described that included the use of the Linux

operating system. The relevance of accurate timing capability

was discussed with subsequent discussion about the use of

the Linux kernel for a general outlined application. A test

environment was described and latency measurements were

provided along with alternatives and tradeoffs. Additional

testing with the Linux kernel remains as well as further

development of proposed application implementations.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research

under Grant No N30001407010536.

REFERENCES

[1] B. Sirkeci-Mergen and A. Scaglione. Randomized space-time coding
for distributed cooperative communication. Signal Processing, IEEE

Transactions on, 55(10):5003–5017, October 2007.
[2] J. N. Laneman and G. W. Wornell. Distributed space-time-coded

protocols for exploiting cooperative diversity in wireless networks.
Information Theory, IEEE Transactions on, 49(10), 2003.

[3] Shuangqing Wei. DiversityMultiplexing Tradeoff of Asynchronous
Cooperative Diversity in Wireless Networks. Information Theory, IEEE
Transactions on, 53(11):4150–4172, November 2007.

[4] GNU Radio Website. Available at: http://www.gnuradio.org.
[5] Zhuocheng Yang Srinivasan Seshan Peter Steenkiste George Nychis,

Thibaud Hottelier. Enabling mac protocol inplementations on software-
defined radios. In Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation, April 2009.
[6] Mani Srivastava Thomas Schmid, Oussama Sekkat. An experimental

study of network performance impact of increased latency in software
defined radios. In WiNTECH ‘07, September 2007.

[7]
[8] The OpenBTS Project. Available at: http://openbts.sourceforge.org.
[9] J.H. Reed. Software Radio: A Modern Approach to Radio Engineering.

Prentice Hall, 2002.
[10] B.A. Fette. Cognitive Radio Techonolgy. Newnes, 2006.
[11] Ettus Research Website. Available at: http://www.ettus.com.
[12] Real-Time Linux Wiki. Available at: http://rt.wiki.kernel.org.
[13] S. Rostedt. Ftrace, April 2009.
[14] Intel 64 and IA-32 Architectures Software Developers’s Manual Volume

3A: System Programming Guide Part I, No. 253668-031US, June 2009.
[15] P.E. McKenney. ‘real time’ vs. ‘real fast’. In Proceedings of the Linux

Symposium, July 2008.
[16] Dominic Duval. From fast to predictably fast. In Proceedings of the

Linux Symposium, July 2009.
[17] I. Lee. Handbook of Real-Time and Embedded Systems. Chapman and

Hall, 2008.

	Home
	Papers by Author
	Papers by Session

