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ABSTRACT 
 
Beyond multi-standard operation, SDR for consumer hand-
sets should also aim at multi-radio operation: supporting e.g. 
HSPA, DVB-T, and WLAN active simultaneously on a 
shared hardware platform (“radio computer”). In essence, 
we propose an SDR operating system that provides a virtual 
platform for individual radios. By means of a technology 
demonstrator we address dynamic multi-radio operation, 
incl. key challenges such as unifying critical interfaces, re-
source management under real-time constraints, and effi-
ciency.   
 
 

1. INTRODUCTION AND SDR VISION 
 
A smartphone today typically has separate baseband hard-
ware resources for 2G, HSPA, WLAN, BT, GPS, and FM. 
Wireless communication standards (cellular, connectivity, 
broadcast, and positioning) are still evolving and diversify-
ing rapidly. Roadmapping chipsets for such dynamic mar-
kets has become very challenging.  
 In response to this diversity, digital wireless transceiv-
ers reuse standard hardware components like micro-
controllers and buses. Hardware architectures tend to con-
verge towards “heterogeneous multi-core”, where individual 
semiconductor companies internally standardize on cores, 
interconnect, memory, debug, and power management [1]. 
 A next step on the “SDR staircase” [Fig. 1] is multi-
mode combos: baseband architectures that can be configured 
for different wireless standards in run-time. Supporting mul-
tiple radios simultaneously (“multi-radio”) could be based 
on multiple baseband architectures, both HW and SW de-
fined ones. By sharing hardware resources during run-time  

Radio computer

Architecture convergence

2006 2008 2010 2012 2014

specific radio architecture & cores

hardware component re-use

architecture convergence

multi-mode radios

multi-radio (HW sharing)

“full” (true) SDR

cognitive radio

diversity across standards 

more radios with fewer 
architectures, better/earlier 
radios for same NRE

more radios with fewer ICs

more radios on less die area

more radios with less ownership
(easier migration of radios across platforms)

Radio computerRadio computer

Architecture convergence

2006 2008 2010 2012 2014

specific radio architecture & cores

hardware component re-use

architecture convergence

multi-mode radios

multi-radio (HW sharing)

“full” (true) SDR

cognitive radio

diversity across standards 

more radios with fewer 
architectures, better/earlier 
radios for same NRE

more radios with fewer ICs

more radios on less die area

more radios with less ownership
(easier migration of radios across platforms)

 
Figure 1 – SDR introduction and evolution 
 
die area can be saved.  In the most extreme case, a single 
hardware platform supports multi-radio by dynamically 
loading, starting, and stopping individual radio applications, 
not unlike computer applications. Hence, we propose to call 
such device a radio computer [Fig. 2]. On top of it a radio 
operating system manages all hardware resources. 
 Resource management of multiple (radio) applications 
on a (heterogeneous) multi-core architecture under hard 
real-time constraints (tens of µs to 1 ms) is an open research 
problem. We believe this is only possible when all interfaces 
are carefully unified and restricted [Fig. 2]:    
1. the interface between the user applications and the radio 

OS (“Multi-Radio Access Interface”,  MURI); 
2. the interface between the radios and the radio OS (“Uni-

fied Radio Application Interface”, URAI); 
3. a “Radio Programming Interface” (RPI) including the 

programming model for the radio baseband processing; 
4. the interface to the RF transceivers (not shown). 
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Interfaces 1-3 are considered by ETSI for standardization 
[2]. 
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Figure 2 – SDR design/run-time architecture 
 
The RPI leads to a degree of decoupling of radio applica-
tions (software) from the underlying hardware. This de-
coupling allows hardware evolution (improved micro archi-
tectures, faster CMOS nodes) to be managed independently 
from software evolution (improved algorithms, new features, 
next generation standards). Over time, the lifetime of and 
investments in radio software can easily exceed those of the 
radio hardware. With open standards, it is conceivable that 
radio applications will be provided by third-party vendors 
(“independent radio-software vendors”).  
 Ideally, a radio compiler accepts a generic (platform-
neutral) radio application (software) and generates a so-
called radio package comprising the code and configura-
tions of all hardware components. In practice, a degree of 
manual tuning and optimization towards the specifics of the 
radio computer will be required in order to meet strict cost 
and power targets. 
 The key R&D challenges towards this multi-radio SDR 
vision are: 
• a radio OS and SDR Functional Architecture providing 

a unified interface to diverse radios and vice versa; 
• efficient resource management, supporting multi-radio 

operation, while respecting the hard real-time con-
straints of the individual radios; 

such that radios can be designed and verified independently 
of one another.  
 This paper describes a multi-radio architecture as well 
as an SDR technology demonstrator. The radio computer 
scope is limited to baseband subsystem. In Section 2 we 
elaborate the above challenges and describe our multi-radio 
SDR architecture in more detail. The actual demonstrator 
and five demonstrations are described in Section 3. In a con-
cluding section we assess the results and look forward to 
future work. 
 
 

2. MULTI-RADIO SDR ARCHITECTURE 
 
The large number of radios and the even larger number of 
radio combinations makes it impractical to optimize re-
source management for fixed radio combinations. Hence, it 
must be possible to design and verify radios independently. 
Radios running simultaneously on a radio computer share 
hardware resources, but should not interfere with the correct 
operation of one another. 
 
2.1. SDR functional architecture 
 
For our functional architecture we have developed a unified 
view on a diversity of radios [3]. Individual radios follow a 
life cycle, that is, a sequence of administrative states: unins-
talled, installed, loaded, and active. Furthermore, an active 
radio can be in one of several radio-specific operational 
states (characterized by it communication behavior and re-
source use), with a specified set of allowed state transitions 
triggered by the user or across the radio link. Examples of 
operational states are: idle, synchronizing, camping, and 
communicating. 
 The MURI1, see also Fig. 3, provides services to sup-
port transitions of administrative states (e.g. Install Radio, 
Load Radio) as well as connection management and flow 
control services (e.g. Start Scanning, Associate, Add Flow).  
 The URAI1 defines the corresponding services for indi-
vidual loaded radios and resource management services. 
Typical URAI services of radio systems include: Start Scan-
ning, Associate, Synchronize Radio Time [4, 2].  

  
Figure 3 – SDR functional architecture 

                                                 
1 In [4] MURI and URAI were called MRAI and URSI. 
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Resource requirements in the active state of a radio may 
differ considerably, so partitioning the radio operation into 
operational states enables efficient resource sharing among 
multiple radios. The Resource Manager’s Change Opera-
tional State service admits a new state only when the fore-
seen resource needs can be met by the available resources, 
as elaborated below. 
 When radios exhibit rather coarse-grained burstiness 
(e.g. DVB-H bursts, GSM time slots, WLAN packets, etc) a 
form of coordination may help to avoid spectral interfe-
rence, or to allow sharing of e.g. RF resources. The Radio 
Access service of the Multi-Radio Controller (MRC) pro-
vides such coordination.   
 
2.2. Multi-radio resource management 
 
The key to real-time multi-radio resource sharing is the no-
tion of resource budget, capturing the resource needs (pro-
cessor and accelerator loads, memory usage, interconnect 
bandwidth occupation, etc.) of a radio for each operational 
state. At compile time these budgets are calculated as tightly 
as possible. In run time these budgets form the basis for ad-
mission control and isolation. [5] 
 These budgets have the form of vectors of resource 
needs. Admission control of an additional radio is based on 
comparing the combined resource needs specified by the 
active plus new resource vectors with the available re-
sources. This scheme assumes that resource fragmentation 
and overheads can be accounted for accurately. 
 Radios differ widely in their granularity of basic tasks. 
E.g. OFDM symbols for broadcast standards like DVB-T 
and connectivity standards like 802.11g differ by two orders 
of magnitude. Worse even, latency constraints for 802.11g 
are expressed in the µs range, where natural task durations 
of other radios may be in the ms range. Hence for larger 
tasks a form of preemption is required. Accordingly, the 
most fine-grained radio dictates the overall timing granulari-
ty, and hence determines the task switching and scheduling 
overheads. Efficiency dictates that scheduling is as much as 
possible performed at compile time.  
 
2.3. Radio programming model 
 
A programming model for the real-time part of a radio must: 
1. be sufficiently expressive to allow concise descriptions 

of physical-layer processing of a large variety of radios;  
2. allow the calculation of tight budgets and providing 

guarantees that radios will respect these budgets; 
3. be platform neutral. 
Synchronous Data Flow (SDF) [6] is a promising candidate 
with its explicit description of parallelism and its data-
independent communication behavior. With worst-case ex-
ecution times for its atomic actions, it can be analyzed rigo-
rously for guaranteed minimum throughput [7] as well as for 

maximum latency [8]. Unfortunately, SDF is not sufficiently 
expressive to capture forms of data-dependent behavior, e.g. 
when synchronizing on a packet header or when processing 
packets of different payload sizes. In order to support such 
mild forms of data-dependence at a relatively coarse grain 
size, we have introduced specialized constructs to support 
so-called modes and mode transitions [5]: 
• a mode switch directs a token to one of several outputs 

specified by a value at its control input port,  
• a mode select can forward a token from one of several 

inputs specified by a value at its control input port, 
• a tunnel connection asynchronously shares data between 

actors in different modes.  
This resulting computation model is called mode controlled 
data flow (MCDF), and can be analyzed rigorously [5]. An 
example of an MCDF graph is given in Section 3.2. The 
proposed Radio Programming Interface can be seen as a 
component model supporting MCDF combined with the API 
of URAI services. 
 
2.4. Radio computer 
 
 The computational load required for the radios in a 
smart-phone today amounts to many tens of GOPS, counting 
algorithmic operations (typically multiply, add). This load 
will quickly grow to several 100s of GOPS when LTE is 
included. With a power budget of only several 100s of mW, 
a heterogeneous multi-core architecture is unavoidable [1]. 
Promising architectures are typically based on low-cost mi-
crocontrollers, powerful SIMD machines [9, 10, 11, 12], and 
configurable accelerators. 
 Given the heterogeneity of the hardware architecture, it 
is essential to provide a largely homogeneous abstraction to-
wards the resource manager, for example based on: 
• budget-based schedulers for the programmable and/or 

configurable cores,  
• FIFO support for the MCDF inter-actor synchronization 

and communication; 
• memory management for all local and shared memories.  
Depending on the specifics of the hardware, these mechan-
isms can be implemented in a more centralized form or in a 
(partially) distributed form. 
 Ideally, the run-time isolation of different radios is en-
forced through mechanisms like preemption and MMUs. 
Only then it can be avoided that a misbehaving radio inter-
feres with another radio. For the short term such mechan-
isms may well prove too costly. 
 

3.  SDR TECHNOLOGY DEMONSTRATOR 
 
The goal of our SDR technology demonstrator is to show: 
• that multiple radios can be dynamically installed/ 

loaded/started/stopped/unloaded, through a unified mul-
ti-radio access interface; 
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• that multiple radios can run in a coordinated fashion;  
• that individual radios respect real-time constraints; 
• and that hardware resources are shared efficiently.  
This section introduces the hardware platform and describes 
a sequence of five demonstrations towards this goal. 
 
3.1. Hardware platform 
 

 
Figure 4 – Photograph of the hardware platform  
 
 The hardware platform consists of a PC (running Linux) 
connected to a board developed for prototyping wireless 
transceivers. This board (Fig. 4) comprises 2 EVPs [11] plus 
3 ARM processors. See also Fig. 7. Channel decoding 
ASIPs are not present, so they are supposed to be hosted 
from the ARM. The available version of the EVP does not 
support interrupts, and hence no preemptive scheduling. 
Two of these boards can be connected by a flat cable to 
emulate bi-directional radio traffic. 
 
3.2. Modeling radios and their resource usage (Demo 0) 
 
In our technology demonstrator the various radios have not 
been programmed in full detail. Instead, so-called radio re-
source models capture all essential interfaces as well as all 
run-time resource needs (cycle counts, memory footprints, 
etc.) for a given resource allocation. The non-RT protocol 
models have been modeled with Rhapsody as communicat-
ing state machines. The RT baseband models are pro-
grammed as MCDF graphs in an input format called LIME 
[13]. Each node (“actor”) component is programmed in C 
extended with an API to support the MCDF primitives (e.g. 
selective multi-ports). An actor can be annotated with a 
worst-case execution time (WCET), assuming mapping on a 
particular core. The data-flow graph is described in XML.  
 Fig. 5 shows a somewhat simplified resource model of a 
WLAN receiver. While “parsing” the input sample stream, 
the receiver switches along four modes: packet synchroniza-
tion (1); header processing (2); payload processing (3); CRC 
checking (4). Tunnels (T) are used e.g. to pass header in-
formation from header analysis to payload demodulate actor. 
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Figure 5 – MCDF graph of a WLAN receiver 
 
Detailed resource models have also been created for DVB-
T, DVB-H, TD-SCDMA, and LTE. In all cases our MCDF 
programming model proved sufficiently expressive.  
 
3.3. Compiling a radio (Demo 1) 
 
The radio compiler [5] accepts the resource model and pro-
duces a radio package, comprising of a collection of dynam-
ically loadable executables for the various HW cores (in-
cluding relocation information) and a transceiver configura-
tion file including the resource budget, see Fig. 6. 
 The Heracles scheduler accepts an analysis model (ob-
tained by parsing the LIME graph, actor components and an 
actor-to-core assignment), temporal constraints and the 
hardware platform description. It: 
• statically schedules actors that run on the same core and 

clusters them into a single task to reduce overheads for 
scheduling and communication; in Fig. 5 dashed lines 
indicate task clusters; 

• computes scheduler settings, and FIFO sizes;  
• does rigorous temporal analysis of the MCDF graph;  
In Fig. 5 the mode-specific WCET in ns for the EVP (top) 
and ARM (bottom) cluster tasks is provided. Analysis shows 
that the application meets its RT constraints (assuming sin 
gle radio and round-robin schedulers). 

Figure 6 – Radio compiler 
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The mode sequence M1, M1, M2, N×M3, M4 takes 26.74 
µs, with N being 1 for the shortest packet, which is less than 
the duration of the packet plus the SIFS latency constraint, 
starting the processing after one OFDM symbol period: 12 + 
N×4 + 16 - 4 µs. 
 Per cluster the code generator creates a task shell that 
calls the actor functions and handles all inter-task communi-
cation using the FIFO library of the SoD (“Sea of DSP”) 
streaming framework on which the tasks will run (see Sec-
tion 3.4). It further efficiently generates MCDF constructs 
like mode switches with its conditional execution of actors. 
 
3.4. Creating and running a single radio (Demo 2) 
 
Fig. 7 summarizes the run-time software components of the 
baseband subsystem. On the EVPs and J-ARMs radio tasks 
run on top of SoD streaming kernels, which provide round 
robin scheduling and FIFO communication support. At load-
time of a radio, SoD tasks are created and added to the 
schedulers from a function preloaded in the core’s instruc-
tion memory. Further, ports of the created tasks are con-
nected by FIFOs. This is done by Baseband Resource Man-
ager (BBRM) calling the SoD Network Manager (NM based 
on the transceiver configuration in the radio package). The 
NM, BBRM, and other non-real-time functions run on the F-
ARM on top of µC/OS. The dynamics of BBRM interfacing 
with the components in the SDR SFA (largely mapped on a 
PC in our demonstrator) will be discussed in Section 3.5. 
 SoD is a light-weight OS. The code size of the ARM 
kernel is 1.6 KB, for the NM it is 16.8 KB. The overhead of 
task switching in the round-robin scheduler is 30 clock 
cycles on the EVP. The overhead of calling the SoD syn-
chronization functions is around 2×30 cycles per port for an 
ARM task. This synchronization overhead is negligible for 
slow-paced, long packet processing radios like DVB-T 
(<3% for 2K mode). For the WLAN ARM cluster (bottom 
of Fig. 5) in payload processing mode the two active ports 
give a synchronization overhead of 116 cycles, i.e. 44% of 
the total execution time. This percentage improves when the 
ARM runs at a higher clock frequency, as the WCET of this 
mode includes a fixed 930 ns on an assumed hosted channel 
decoder ASIP. The sync overhead can be reduced to 59 
cycles by inlining these functions in the shell. 

 
Figure 7 – Run-time software  

3.5. Loading and running multiple radios (Demo 3) 
 
The SDR functional architecture (Fig. 3) with its system 
components and services has been specified in UML using 
Telelogic Tau [4]. Based on this specification the system 
components have been prototyped in Telelogic Rhapsody 
using its UML to C++ code generator. The SFA system 
components run on the Linux PC as depicted in Fig. 7. 
 Using a menu-based GUI, the services of the MRAI are 
called. For example, the Configuration Manager (CM) is 
invoked to install a radio package into a radio repository on 
the host PC. After installation, the loading of a radio is re-
quested to the Resource Manager via the CM. The loading 
of a radio will go through the admission control procedure 
of subsystem resource management (e.g. BBRM). After suc-
cessful admission check, the resources are allocated (memo-
ry, scheduler settings) and the radio is created (for BB in 
SoD as explained in Section 3.4). Dynamic loading in the 
baseband subsystem includes the fetching of loadable ob-
jects from the radio repository (via CM), relocating its sec-
tions to the allocated memory segments and linking unre-
solved references in the code (e.g. to the SoD libraries). 
 A loaded radio can be activated by the Radio Connec-
tion Manager through the GUI. In the next phase scanning 
for communication peers is requested (e.g. WLAN peers in 
an ad-hoc network). With any found peer an association can 
be created. Then a data flow is mapped onto such associa-
tion. The GUI interfacing with the Flow Controller allows to 
stream different forms of content (e.g. audio, video) over 
these flows.  
 With our demonstrator we can for example sequentially 
set up three radio pairs on two connected boards with sepa-
rate flows (while the activated ones already stream data we 
add other radios without disruption) and finally they all run 
simultaneously without interference. 
 BBRM prototype requires 24.5KB of instruction memo-
ry. The data memory dominates its memory footprint, with a 
size of 49.8KB, of which 28.6 KB are spent on caching con-
figurations and job information. For a radio containing 16 
tasks and 22 FIFOs, the loading of a job takes 201 ms, 196 
ms of which were taken by memory allocation. 
 
3.6. Controlling multi-radio (Demo 4) 
 
The MRC (see Fig. 3) plays a key role in solving radio co-
existence conflicts (e.g. spectrum interference) but can also 
be used for sharing resources e.g. the RF transceiver. It does 
so through dynamic scheduling of the radio spectrum access 
requests from the individual radios. In the demonstrator se-
tup, the boards have no RF transceivers. Instead, two boards 
were connected together by a cable, mimicking a shared RF 
transceiver resource. The transmitting radio computer ex-
ecutes three radios, which are used by three different user 
applications of different priority (radio 1: RT video  
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R1 TX Denied

R1 TX Granted

R2 TX Denied

R2 TX Granted

R3 TX Denied

R3 TX Granted  
Figure 8 – A MRC use case (top) and execution (bottom)   
 
stream; radio 2: RT audio stream; radio 3: file transfer), as 
depicted in Fig. 8 (top). Fig. 8 (bottom) also shows the deci-
sions made by MRC. The first radio system doing periodic 
requests is always granted access for the requested intervals 
as it has highest priority. The second and third radios are 
denied access when their request intervals overlap with the 
first. So when first two radios are active, radio 3 gets very 
few requested slots granted. When traffic of radio 2 reduces, 
the extra free time is dynamically granted to radio 3. Each 
radio, as well as the application using it, is executed in isola-
tion without knowledge about other radios, and without any 
other coexistence mechanism between radios. It is possible 
to start new radios so that new and old radios adapt them-
selves automatically to the changing situation and operate 
together without knowing the combinations beforehand. 
 
3.7. Resource sharing among multiple radios (Demo 5) 
 
Our software architecture and radio compiler flow have been 
designed to enable platform resource sharing among mul-
tiple RT constrained radio applications. In the current plat-
form with RR schedulers we can demonstrate this for radios 
working on the same timing granularity, e.g. running 2x 
DVB-T or 2x WLAN receiver resource models without in-
terference. This is backed up by analysis results. N.B. for the 
2x WLAN case we had to scale the execution times of our 
resource models by a factor of two (“scaled real-time”) as 
the processors operate at rather low clock frequencies: EVP 
183 MHz, ARM 61 MHz. As discussed, running DVB-T in 
parallel with WLAN, would require a preemptive scheduler. 
Assuming a TDMA scheduler with a 4µs time period, then 
13.7% of the load would be spent on context switching as-
suming 100 cycles (scaled to 50) for context save/restore on 
EVP running at 183 MHz. This overhead is not insignifi-
cant, but still an affordable price for this multi-radio use 
case.  
 
 

4. CONCLUSION 
 
Key SDR handset challenges include the abilities to: 
• port radios as software-defined entities across multiple 

platform and platform instances, and 
• run multiple radios simultaneously on shared resources, 
while maintaining real-time guarantees and with acceptable 
overheads. Note that multi-radio goes beyond SCA [14].  
 In this paper we report an SDR technology demonstra-
tor that shows that these challenges can be addressed by:  
• unifying and standardizing the radio access interface 

and the radio application interface; 
• constraining the radios to MCDF; 
• managing shared resources at multiple levels:  opera-

tional states, access intervals (burst, slots), and MCDF 
modes. 

These essential multi-radio capabilities are demonstrated on 
an available hardware platform, and amount in essence to 
providing a virtual radio computer to individual radios.  This 
is work in progress. Future work includes the demonstration 
of real radios (rather than resource models), forms of pre-
emptive scheduling, de-fragmentation of resources, multi-
radio capabilities of RF interfaces, and more. 
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