
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

MULTI-RADIO SCHEDULING AND RESOURCE SHARING

ON A SOFTWARE DEFINED RADIO COMPUTING PLATFORM

Kees van Berkel, ST-Ericsson, Adv. R&D, kees.van.berkel@stericsson.com
Artur Burchard, NXP Research, artur.burchard@nxp.com

David van Kampen, ST-Ericsson, Adv. R&D, david.van.kampen@stericsson.com
Pjotr Kourzanov, NXP Research, peter.kourzanov@nxp.com

Orlando Moreira, ST-Ericsson, Advanced R&D, orlando.moreira@stericsson.com
Antti Piipponen, Nokia Research Center, antti.piipponen@nokia.com

Kalle Raiskila, Nokia Research Center, kalle.raiskila@nokia.com
Sverre Slotte, Nokia Research Center, sverre.slotte@nokia.com

Marinus van Splunter, NXP Research, m.van.splunter@nxp.com
Tommi Zetterman, Nokia Research Center, tommi.zetterman@nokia.com

ABSTRACT

Beyond multi-standard operation, SDR for consumer hand-
sets should also aim at multi-radio operation: supporting e.g.
HSPA, DVB-T, and WLAN active simultaneously on a
shared hardware platform (“radio computer”). In essence,
we propose an SDR operating system that provides a virtual
platform for individual radios. By means of a technology
demonstrator we address dynamic multi-radio operation,
incl. key challenges such as unifying critical interfaces, re-
source management under real-time constraints, and effi-
ciency.

1. INTRODUCTION AND SDR VISION

A smartphone today typically has separate baseband hard-
ware resources for 2G, HSPA, WLAN, BT, GPS, and FM.
Wireless communication standards (cellular, connectivity,
broadcast, and positioning) are still evolving and diversify-
ing rapidly. Roadmapping chipsets for such dynamic mar-
kets has become very challenging.
 In response to this diversity, digital wireless transceiv-
ers reuse standard hardware components like micro-
controllers and buses. Hardware architectures tend to con-
verge towards “heterogeneous multi-core”, where individual
semiconductor companies internally standardize on cores,
interconnect, memory, debug, and power management [1].
 A next step on the “SDR staircase” [Fig. 1] is multi-
mode combos: baseband architectures that can be configured
for different wireless standards in run-time. Supporting mul-
tiple radios simultaneously (“multi-radio”) could be based
on multiple baseband architectures, both HW and SW de-
fined ones. By sharing hardware resources during run-time

Radio computer

Architecture convergence

2006 2008 2010 2012 2014

specific radio architecture & cores

hardware component re-use

architecture convergence

multi-mode radios

multi-radio (HW sharing)

“full” (true) SDR

cognitive radio

diversity across standards

more radios with fewer
architectures, better/earlier
radios for same NRE

more radios with fewer ICs

more radios on less die area

more radios with less ownership
(easier migration of radios across platforms)

Radio computerRadio computer

Architecture convergence

2006 2008 2010 2012 2014

specific radio architecture & cores

hardware component re-use

architecture convergence

multi-mode radios

multi-radio (HW sharing)

“full” (true) SDR

cognitive radio

diversity across standards

more radios with fewer
architectures, better/earlier
radios for same NRE

more radios with fewer ICs

more radios on less die area

more radios with less ownership
(easier migration of radios across platforms)

Figure 1 – SDR introduction and evolution

die area can be saved. In the most extreme case, a single
hardware platform supports multi-radio by dynamically
loading, starting, and stopping individual radio applications,
not unlike computer applications. Hence, we propose to call
such device a radio computer [Fig. 2]. On top of it a radio
operating system manages all hardware resources.
 Resource management of multiple (radio) applications
on a (heterogeneous) multi-core architecture under hard
real-time constraints (tens of µs to 1 ms) is an open research
problem. We believe this is only possible when all interfaces
are carefully unified and restricted [Fig. 2]:
1. the interface between the user applications and the radio

OS (“Multi-Radio Access Interface”, MURI);
2. the interface between the radios and the radio OS (“Uni-

fied Radio Application Interface”, URAI);
3. a “Radio Programming Interface” (RPI) including the

programming model for the radio baseband processing;
4. the interface to the RF transceivers (not shown).

mailto:kees.van.berkel@stericsson.com
mailto:artur.burchard@nxp.com
mailto:david.van.kampen@stericsson.com
mailto:peter.kourzanov@nxp.com
mailto:orlando.moreira@stericsson.com
mailto:antti.piipponen@nokia.com
mailto:kalle.raiskila@nokia.com
mailto:sverre.slotte@nokia.com
mailto:m.van.splunter@nxp.com
mailto:tommi.zetterman@nokia.com

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Interfaces 1-3 are considered by ETSI for standardization
[2].

FEM TRx
BB

/inner
BB

/outer MAC
Inter
Face

Radio Operating System

radio
program
radio

program
radio

program

radio
program
radio

program
radio

package

radio
compiler

installer

Radio computer

(Multi-Radio Control Framework)

loaderradio
storage

radio
1

radio
2

radio
M…

radio-design
time

run time
(in handset)

manufacture
time

/ run time

Radio
Programming
Interface

Unified-Radio
Application Interface

Multi-Radio
Access Interface

FEM TRx
BB

/inner
BB

/outer MAC
Inter
Face

Radio Operating System

FEM TRx
BB

/inner
BB

/outer MAC
Inter
FaceFEM TRx

BB
/inner

BB
/outer MAC

Inter
Face

Radio Operating System

radio
program
radio

program
radio

program

radio
program
radio

program
radio

package

radio
compiler

installer

Radio computer

(Multi-Radio Control Framework)

loader

Radio computer

(Multi-Radio Control Framework)

loaderradio
storage

radio
1

radio
2

radio
M…radio

storage
radio

1
radio

2
radio

M…radio
1

radio
2

radio
M…

radio-design
time

run time
(in handset)

manufacture
time

/ run time

Radio
Programming
Interface

Unified-Radio
Application Interface

Multi-Radio
Access Interface

Figure 2 – SDR design/run-time architecture

The RPI leads to a degree of decoupling of radio applica-
tions (software) from the underlying hardware. This de-
coupling allows hardware evolution (improved micro archi-
tectures, faster CMOS nodes) to be managed independently
from software evolution (improved algorithms, new features,
next generation standards). Over time, the lifetime of and
investments in radio software can easily exceed those of the
radio hardware. With open standards, it is conceivable that
radio applications will be provided by third-party vendors
(“independent radio-software vendors”).
 Ideally, a radio compiler accepts a generic (platform-
neutral) radio application (software) and generates a so-
called radio package comprising the code and configura-
tions of all hardware components. In practice, a degree of
manual tuning and optimization towards the specifics of the
radio computer will be required in order to meet strict cost
and power targets.
 The key R&D challenges towards this multi-radio SDR
vision are:
• a radio OS and SDR Functional Architecture providing

a unified interface to diverse radios and vice versa;
• efficient resource management, supporting multi-radio

operation, while respecting the hard real-time con-
straints of the individual radios;

such that radios can be designed and verified independently
of one another.
 This paper describes a multi-radio architecture as well
as an SDR technology demonstrator. The radio computer
scope is limited to baseband subsystem. In Section 2 we
elaborate the above challenges and describe our multi-radio
SDR architecture in more detail. The actual demonstrator
and five demonstrations are described in Section 3. In a con-
cluding section we assess the results and look forward to
future work.

2. MULTI-RADIO SDR ARCHITECTURE

The large number of radios and the even larger number of
radio combinations makes it impractical to optimize re-
source management for fixed radio combinations. Hence, it
must be possible to design and verify radios independently.
Radios running simultaneously on a radio computer share
hardware resources, but should not interfere with the correct
operation of one another.

2.1. SDR functional architecture

For our functional architecture we have developed a unified
view on a diversity of radios [3]. Individual radios follow a
life cycle, that is, a sequence of administrative states: unins-
talled, installed, loaded, and active. Furthermore, an active
radio can be in one of several radio-specific operational
states (characterized by it communication behavior and re-
source use), with a specified set of allowed state transitions
triggered by the user or across the radio link. Examples of
operational states are: idle, synchronizing, camping, and
communicating.
 The MURI1, see also Fig. 3, provides services to sup-
port transitions of administrative states (e.g. Install Radio,
Load Radio) as well as connection management and flow
control services (e.g. Start Scanning, Associate, Add Flow).
 The URAI1 defines the corresponding services for indi-
vidual loaded radios and resource management services.
Typical URAI services of radio systems include: Start Scan-
ning, Associate, Synchronize Radio Time [4, 2].

Figure 3 – SDR functional architecture

1 In [4] MURI and URAI were called MRAI and URSI.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Resource requirements in the active state of a radio may
differ considerably, so partitioning the radio operation into
operational states enables efficient resource sharing among
multiple radios. The Resource Manager’s Change Opera-
tional State service admits a new state only when the fore-
seen resource needs can be met by the available resources,
as elaborated below.
 When radios exhibit rather coarse-grained burstiness
(e.g. DVB-H bursts, GSM time slots, WLAN packets, etc) a
form of coordination may help to avoid spectral interfe-
rence, or to allow sharing of e.g. RF resources. The Radio
Access service of the Multi-Radio Controller (MRC) pro-
vides such coordination.

2.2. Multi-radio resource management

The key to real-time multi-radio resource sharing is the no-
tion of resource budget, capturing the resource needs (pro-
cessor and accelerator loads, memory usage, interconnect
bandwidth occupation, etc.) of a radio for each operational
state. At compile time these budgets are calculated as tightly
as possible. In run time these budgets form the basis for ad-
mission control and isolation. [5]
 These budgets have the form of vectors of resource
needs. Admission control of an additional radio is based on
comparing the combined resource needs specified by the
active plus new resource vectors with the available re-
sources. This scheme assumes that resource fragmentation
and overheads can be accounted for accurately.
 Radios differ widely in their granularity of basic tasks.
E.g. OFDM symbols for broadcast standards like DVB-T
and connectivity standards like 802.11g differ by two orders
of magnitude. Worse even, latency constraints for 802.11g
are expressed in the µs range, where natural task durations
of other radios may be in the ms range. Hence for larger
tasks a form of preemption is required. Accordingly, the
most fine-grained radio dictates the overall timing granulari-
ty, and hence determines the task switching and scheduling
overheads. Efficiency dictates that scheduling is as much as
possible performed at compile time.

2.3. Radio programming model

A programming model for the real-time part of a radio must:
1. be sufficiently expressive to allow concise descriptions

of physical-layer processing of a large variety of radios;
2. allow the calculation of tight budgets and providing

guarantees that radios will respect these budgets;
3. be platform neutral.
Synchronous Data Flow (SDF) [6] is a promising candidate
with its explicit description of parallelism and its data-
independent communication behavior. With worst-case ex-
ecution times for its atomic actions, it can be analyzed rigo-
rously for guaranteed minimum throughput [7] as well as for

maximum latency [8]. Unfortunately, SDF is not sufficiently
expressive to capture forms of data-dependent behavior, e.g.
when synchronizing on a packet header or when processing
packets of different payload sizes. In order to support such
mild forms of data-dependence at a relatively coarse grain
size, we have introduced specialized constructs to support
so-called modes and mode transitions [5]:
• a mode switch directs a token to one of several outputs

specified by a value at its control input port,
• a mode select can forward a token from one of several

inputs specified by a value at its control input port,
• a tunnel connection asynchronously shares data between

actors in different modes.
This resulting computation model is called mode controlled
data flow (MCDF), and can be analyzed rigorously [5]. An
example of an MCDF graph is given in Section 3.2. The
proposed Radio Programming Interface can be seen as a
component model supporting MCDF combined with the API
of URAI services.

2.4. Radio computer

 The computational load required for the radios in a
smart-phone today amounts to many tens of GOPS, counting
algorithmic operations (typically multiply, add). This load
will quickly grow to several 100s of GOPS when LTE is
included. With a power budget of only several 100s of mW,
a heterogeneous multi-core architecture is unavoidable [1].
Promising architectures are typically based on low-cost mi-
crocontrollers, powerful SIMD machines [9, 10, 11, 12], and
configurable accelerators.
 Given the heterogeneity of the hardware architecture, it
is essential to provide a largely homogeneous abstraction to-
wards the resource manager, for example based on:
• budget-based schedulers for the programmable and/or

configurable cores,
• FIFO support for the MCDF inter-actor synchronization

and communication;
• memory management for all local and shared memories.
Depending on the specifics of the hardware, these mechan-
isms can be implemented in a more centralized form or in a
(partially) distributed form.
 Ideally, the run-time isolation of different radios is en-
forced through mechanisms like preemption and MMUs.
Only then it can be avoided that a misbehaving radio inter-
feres with another radio. For the short term such mechan-
isms may well prove too costly.

3. SDR TECHNOLOGY DEMONSTRATOR

The goal of our SDR technology demonstrator is to show:
• that multiple radios can be dynamically installed/

loaded/started/stopped/unloaded, through a unified mul-
ti-radio access interface;

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

• that multiple radios can run in a coordinated fashion;
• that individual radios respect real-time constraints;
• and that hardware resources are shared efficiently.
This section introduces the hardware platform and describes
a sequence of five demonstrations towards this goal.

3.1. Hardware platform

Figure 4 – Photograph of the hardware platform

 The hardware platform consists of a PC (running Linux)
connected to a board developed for prototyping wireless
transceivers. This board (Fig. 4) comprises 2 EVPs [11] plus
3 ARM processors. See also Fig. 7. Channel decoding
ASIPs are not present, so they are supposed to be hosted
from the ARM. The available version of the EVP does not
support interrupts, and hence no preemptive scheduling.
Two of these boards can be connected by a flat cable to
emulate bi-directional radio traffic.

3.2. Modeling radios and their resource usage (Demo 0)

In our technology demonstrator the various radios have not
been programmed in full detail. Instead, so-called radio re-
source models capture all essential interfaces as well as all
run-time resource needs (cycle counts, memory footprints,
etc.) for a given resource allocation. The non-RT protocol
models have been modeled with Rhapsody as communicat-
ing state machines. The RT baseband models are pro-
grammed as MCDF graphs in an input format called LIME
[13]. Each node (“actor”) component is programmed in C
extended with an API to support the MCDF primitives (e.g.
selective multi-ports). An actor can be annotated with a
worst-case execution time (WCET), assuming mapping on a
particular core. The data-flow graph is described in XML.
 Fig. 5 shows a somewhat simplified resource model of a
WLAN receiver. While “parsing” the input sample stream,
the receiver switches along four modes: packet synchroniza-
tion (1); header processing (2); payload processing (3); CRC
checking (4). Tunnels (T) are used e.g. to pass header in-
formation from header analysis to payload demodulate actor.

src

cf
sync

ff
ce

hdem pdem

crc

hdec

hana

pdec

sink

mode switch

mode selectmc

•

T

T

□

□

□

□

□

□

□

□

□□
□

□

1 2 3

1 2 4

4

3

T

□

□

M
1
2
3
4

WCET
3186
3016
3257
1219

M
1
2
3
4

WCET
2033
3311
3328
3393

Figure 5 – MCDF graph of a WLAN receiver

Detailed resource models have also been created for DVB-
T, DVB-H, TD-SCDMA, and LTE. In all cases our MCDF
programming model proved sufficiently expressive.

3.3. Compiling a radio (Demo 1)

The radio compiler [5] accepts the resource model and pro-
duces a radio package, comprising of a collection of dynam-
ically loadable executables for the various HW cores (in-
cluding relocation information) and a transceiver configura-
tion file including the resource budget, see Fig. 6.
 The Heracles scheduler accepts an analysis model (ob-
tained by parsing the LIME graph, actor components and an
actor-to-core assignment), temporal constraints and the
hardware platform description. It:
• statically schedules actors that run on the same core and

clusters them into a single task to reduce overheads for
scheduling and communication; in Fig. 5 dashed lines
indicate task clusters;

• computes scheduler settings, and FIFO sizes;
• does rigorous temporal analysis of the MCDF graph;
In Fig. 5 the mode-specific WCET in ns for the EVP (top)
and ARM (bottom) cluster tasks is provided. Analysis shows
that the application meets its RT constraints (assuming sin
gle radio and round-robin schedulers).

Figure 6 – Radio compiler

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

The mode sequence M1, M1, M2, N×M3, M4 takes 26.74
µs, with N being 1 for the shortest packet, which is less than
the duration of the packet plus the SIFS latency constraint,
starting the processing after one OFDM symbol period: 12 +
N×4 + 16 - 4 µs.
 Per cluster the code generator creates a task shell that
calls the actor functions and handles all inter-task communi-
cation using the FIFO library of the SoD (“Sea of DSP”)
streaming framework on which the tasks will run (see Sec-
tion 3.4). It further efficiently generates MCDF constructs
like mode switches with its conditional execution of actors.

3.4. Creating and running a single radio (Demo 2)

Fig. 7 summarizes the run-time software components of the
baseband subsystem. On the EVPs and J-ARMs radio tasks
run on top of SoD streaming kernels, which provide round
robin scheduling and FIFO communication support. At load-
time of a radio, SoD tasks are created and added to the
schedulers from a function preloaded in the core’s instruc-
tion memory. Further, ports of the created tasks are con-
nected by FIFOs. This is done by Baseband Resource Man-
ager (BBRM) calling the SoD Network Manager (NM based
on the transceiver configuration in the radio package). The
NM, BBRM, and other non-real-time functions run on the F-
ARM on top of µC/OS. The dynamics of BBRM interfacing
with the components in the SDR SFA (largely mapped on a
PC in our demonstrator) will be discussed in Section 3.5.
 SoD is a light-weight OS. The code size of the ARM
kernel is 1.6 KB, for the NM it is 16.8 KB. The overhead of
task switching in the round-robin scheduler is 30 clock
cycles on the EVP. The overhead of calling the SoD syn-
chronization functions is around 2×30 cycles per port for an
ARM task. This synchronization overhead is negligible for
slow-paced, long packet processing radios like DVB-T
(<3% for 2K mode). For the WLAN ARM cluster (bottom
of Fig. 5) in payload processing mode the two active ports
give a synchronization overhead of 116 cycles, i.e. 44% of
the total execution time. This percentage improves when the
ARM runs at a higher clock frequency, as the WCET of this
mode includes a fixed 930 ns on an assumed hosted channel
decoder ASIP. The sync overhead can be reduced to 59
cycles by inlining these functions in the shell.

Figure 7 – Run-time software

3.5. Loading and running multiple radios (Demo 3)

The SDR functional architecture (Fig. 3) with its system
components and services has been specified in UML using
Telelogic Tau [4]. Based on this specification the system
components have been prototyped in Telelogic Rhapsody
using its UML to C++ code generator. The SFA system
components run on the Linux PC as depicted in Fig. 7.
 Using a menu-based GUI, the services of the MRAI are
called. For example, the Configuration Manager (CM) is
invoked to install a radio package into a radio repository on
the host PC. After installation, the loading of a radio is re-
quested to the Resource Manager via the CM. The loading
of a radio will go through the admission control procedure
of subsystem resource management (e.g. BBRM). After suc-
cessful admission check, the resources are allocated (memo-
ry, scheduler settings) and the radio is created (for BB in
SoD as explained in Section 3.4). Dynamic loading in the
baseband subsystem includes the fetching of loadable ob-
jects from the radio repository (via CM), relocating its sec-
tions to the allocated memory segments and linking unre-
solved references in the code (e.g. to the SoD libraries).
 A loaded radio can be activated by the Radio Connec-
tion Manager through the GUI. In the next phase scanning
for communication peers is requested (e.g. WLAN peers in
an ad-hoc network). With any found peer an association can
be created. Then a data flow is mapped onto such associa-
tion. The GUI interfacing with the Flow Controller allows to
stream different forms of content (e.g. audio, video) over
these flows.
 With our demonstrator we can for example sequentially
set up three radio pairs on two connected boards with sepa-
rate flows (while the activated ones already stream data we
add other radios without disruption) and finally they all run
simultaneously without interference.
 BBRM prototype requires 24.5KB of instruction memo-
ry. The data memory dominates its memory footprint, with a
size of 49.8KB, of which 28.6 KB are spent on caching con-
figurations and job information. For a radio containing 16
tasks and 22 FIFOs, the loading of a job takes 201 ms, 196
ms of which were taken by memory allocation.

3.6. Controlling multi-radio (Demo 4)

The MRC (see Fig. 3) plays a key role in solving radio co-
existence conflicts (e.g. spectrum interference) but can also
be used for sharing resources e.g. the RF transceiver. It does
so through dynamic scheduling of the radio spectrum access
requests from the individual radios. In the demonstrator se-
tup, the boards have no RF transceivers. Instead, two boards
were connected together by a cable, mimicking a shared RF
transceiver resource. The transmitting radio computer ex-
ecutes three radios, which are used by three different user
applications of different priority (radio 1: RT video

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

R1 TX Denied

R1 TX Granted

R2 TX Denied

R2 TX Granted

R3 TX Denied

R3 TX Granted
Figure 8 – A MRC use case (top) and execution (bottom)

stream; radio 2: RT audio stream; radio 3: file transfer), as
depicted in Fig. 8 (top). Fig. 8 (bottom) also shows the deci-
sions made by MRC. The first radio system doing periodic
requests is always granted access for the requested intervals
as it has highest priority. The second and third radios are
denied access when their request intervals overlap with the
first. So when first two radios are active, radio 3 gets very
few requested slots granted. When traffic of radio 2 reduces,
the extra free time is dynamically granted to radio 3. Each
radio, as well as the application using it, is executed in isola-
tion without knowledge about other radios, and without any
other coexistence mechanism between radios. It is possible
to start new radios so that new and old radios adapt them-
selves automatically to the changing situation and operate
together without knowing the combinations beforehand.

3.7. Resource sharing among multiple radios (Demo 5)

Our software architecture and radio compiler flow have been
designed to enable platform resource sharing among mul-
tiple RT constrained radio applications. In the current plat-
form with RR schedulers we can demonstrate this for radios
working on the same timing granularity, e.g. running 2x
DVB-T or 2x WLAN receiver resource models without in-
terference. This is backed up by analysis results. N.B. for the
2x WLAN case we had to scale the execution times of our
resource models by a factor of two (“scaled real-time”) as
the processors operate at rather low clock frequencies: EVP
183 MHz, ARM 61 MHz. As discussed, running DVB-T in
parallel with WLAN, would require a preemptive scheduler.
Assuming a TDMA scheduler with a 4µs time period, then
13.7% of the load would be spent on context switching as-
suming 100 cycles (scaled to 50) for context save/restore on
EVP running at 183 MHz. This overhead is not insignifi-
cant, but still an affordable price for this multi-radio use
case.

4. CONCLUSION

Key SDR handset challenges include the abilities to:
• port radios as software-defined entities across multiple

platform and platform instances, and
• run multiple radios simultaneously on shared resources,
while maintaining real-time guarantees and with acceptable
overheads. Note that multi-radio goes beyond SCA [14].
 In this paper we report an SDR technology demonstra-
tor that shows that these challenges can be addressed by:
• unifying and standardizing the radio access interface

and the radio application interface;
• constraining the radios to MCDF;
• managing shared resources at multiple levels: opera-

tional states, access intervals (burst, slots), and MCDF
modes.

These essential multi-radio capabilities are demonstrated on
an available hardware platform, and amount in essence to
providing a virtual radio computer to individual radios. This
is work in progress. Future work includes the demonstration
of real radios (rather than resource models), forms of pre-
emptive scheduling, de-fragmentation of resources, multi-
radio capabilities of RF interfaces, and more.

5. REFERENCES

[1] K. van Berkel. Multi-Core for Mobile Phones. In Proc. of
DATE 2009, 2009.

[2] ETSI TR 102 680. Reconfigurable Radio Systems (RRS);
SDR Reference Architecture for Mobile Device”. 2009.

[3] A. Ahtiainen et al. Architecting Software Radio. In Proc. of
the SDR Forum 2007.

[4] A. Ahtiainen et al. Multi-radio Scheduling and Resource
Sharing on a Software Defined Radio Computing Platform. In
Proc. of the SDR Forum 2008.

[5] O. Moreira et al, “Data-flow-driven Software Architecture for
Software Defined Radio”, (manuscript) 2009.

[6] E.Lee and D.Messerschmitt. Synchronous Data Flow. In Proc.
of the IEEE, Vol. 75, No. 9, pp 1235-1245, 1987.

[7] S. Sriram et al. Embedded Multiprocessors: Scheduling and
Synchronization, Marcel Dekker Inc., 2000.

[8] O. Moreira and M. Bekooij. Self-timed scheduling analysis
for real-time applications. In EURASIP Journal on Advances
in Signal Processing, Vol. 2007.

[9] U. Ramacher. Software-Defined Radio Prospects for Multi-
standard Mobile Phones. In IEEE Computer, Vol. 40, no. 10,
pp. 62-69, Oct. 2007.

[10] J. Glossner et al. A Software-Defined Communications Base-
band Design. In Communications IEEE, Vol 41, no 1, pp
120-128, 2003.

[11] K. van Berkel et al. Vector Processing as an Enabler for
Software-Defined Radio in Handheld Devices. In EURASIP J.
on Applied Signal Processing Vol. 2005, 16, pp. 2613-25

[12] Y. Lin et al. SODA: A Low-power Architecture for Software
Radio. In IEEE Proc. ISCA 06, 2006.

[13] P. Kourzanov, LIME, http://sourceforge.net/projects/sub-lime
[14] http://sca.jpeojtrs.mil.

	Home
	Papers by Author
	Papers by Session

