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ABSTRACT 
 
In this paper, we present the agile development, implementation, 
and verification of an OFDM waveform PHY layer on a Software 
Defined Radio (SDR) development platform.  The SDR platform 
is supported by a tailored and highly productive development 
system emphasizing the value of a structured development process 
that takes the developer through modeling, trade-off analysis, 
implementation, and verification.  We comment on the OFDM 
models, the design process used to create them, their 
characterization and verification, and their ultimate performance 
characteristics.  Central to the SDR platform is a massively parallel 
processor which is used for all signal processing, control, and data 
management aspects of the OFDM waveform.  We present details 
of this computational fabric and its advantages in the 
implementation of OFDM waveforms and SDR applications. 
 

1. INTRODUCTION 
 
Traditional SDR platforms use a General Purpose Process (GPP), 
a Digital Signal Processor (DSP), and various Field Programmable 
Gate Arrays (FPGAs) to accomplish the waveform processing 
related to the Physical and Link Layers.  This architecture 
(generally) meets SDR functional and computational performance 
requirements, but is physically large, costly, and not very power 
efficient.  The FPGA devices are generally in very large packages 
and their static and dynamic power dissipation is relatively high.  
(Lower power and smaller FPGA devices are available, but these 
devices generally do not have the capacity or performance required 
for SDR applications.)  The DSP can also be performance limiting, 
providing a relatively limited number of multiply-accumulate and 
other functional units.  These characteristics have proved to be a 
barrier to low-power, small form factor SDR systems. 
 Another difficulty of the traditional SDR architecture is that 
the parts of the system require different design, development, 
implementation, and verification processes.  While applications for 
embedded GPPs generally can be developed in standard software 
programming languages, DSPs often require low-level 
programming in non-standard or manufacturer-specific languages 
or language extensions.  Further, the FPGA portion of the design 
generally is not represented in a software language at all but has to 

be coded in a Hardware Description Language (HDL), such as 
VHDL or Verilog. 
 Given the different representations that must be used for the 
portions of the system depending on whether it happens to be 
located in the GPP, DSP, or FPGA, it can be quite costly (and 
error-prone) to move functionality from one resource to another as 
part of a re-partitioning as system design requirements and/or 
performance constraints change over time. 
 We present an alternative SDR design process and platform 
that minimizes the above difficulties by allowing for a completely 
software based baseband processing solution.  (See [1] for an 
approach that attempts to maintain the traditional architecture.)  
This solution, described in section 2, comprises a hardware 
platform based on a massively parallel processing fabric, a unified 
toolset and design methodology, and a set of reusable, 
reconfigurable components.  To provide a concrete example 
during the ongoing development of this SDR design process and 
platform, an implementation of the 802.11g ([2], [3]) PHY layer 
was created, described in section 3.  A summary of current results, 
other waveform implementations in progress, and ongoing 
methodology, tool, and architecture development is given in 
section 4. 
 

2. THE HYPERX™ SDR ENVIRONMENT 
 
2.1. HyperX Processor Architecture 
 
The HyperX processor architecture is a scalable unit-cell-based 
hardware fabric—the HyperX fabric—which consists of an array 
of HyperSlice™ units.  Each HyperSlice contains one to four Data 
Memory and Routing (DMR) units and one Processing Element 
(PE) unit.  The complete hardware architecture is formed by 
replicating the HyperSlice core unit-cell to create a massively 
parallel processing system.  Surrounding the core is a 
programmable I/O structure, the HyperIO™. 
 The PE instruction set architecture is designed for 
computation intensive communications and image/video 
processing.  The PE core contains a 24-bit multiplier, 16-bit ALU, 
40-bit accumulator, 40-bit barrel shifter, and floating-point, 
reciprocal, and reciprocal square-root unit.  The PE can natively 
process 8-bit (using a SIMD capability), 16-bit fixed point, and 32-
bit floating point data.  The PE is based on the Harvard architecture 
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model using flat, separate instruction and data memories.  
Operands can be fetched from a DMR’s memory, instruction 
fields, and registers.  The register set includes sixteen 16-bit 
general purpose registers, a 40-bit accumulator, three 16-bit pointer 
registers, and three 16-bit index registers.  The directly addressable 
data memory space is 32 KB with 8 KB available from each 
adjacent DMR.  The PE operates on a variable width instruction 
word and is built on a variable stage, fully registered pipeline for 
maximum parallelism and hardware efficiency.  Zero overhead 
looping and conditional moves are supported to minimize pipeline 
breaks. 
 The DMR provides data memory and routers for fast routing 
services to the processing resources.  The fabric is created by 
joining the DMRs of adjacent HyperSlices together to form the on-
chip network.  This network operates independently of and 
transparently to the processing resource.  It provides a 
programmable and adaptable communications fabric supporting 
arbitrary network topologies (H-tree, in-place or dilated Butterfly, 
Multi-D mesh, etc.).  The DMR provides nearest neighbor, 
regional, and global communication across the device and from 
device to device through four different transfer modes:  memory to 
memory, memory to register, register to memory, and register to 
register. Each of the transfer modes may physically use the DMR 
resources differently depending on locality of data and software 
requirements.  All DMRs can operate independently of each other. 
 The HyperIO controls the data I/O to and from the core.  Each 
HyperIO connects to a periphery DMR and associated I/O pads.  
The HyperIO extends the HyperX fabric with the added capability 
of seamlessly connecting the on-chip communications to other 
devices while preserving the same programming model across the 
device boundary.  In addition, the HyperIO enables interfacing to 
memory, processor buses, analog-digital converters, sensors, 
displays, etc. 
 Different implementations of the HyperX architecture may 
vary in the size of the fabric and the amount and kind of HyperIO 
connections available.  The current project was implemented on 
the hx2100 version of the HyperX technology, which has a 10x10 
grid of PEs (100 total) and an 11x11 grid of DMRs (121 total). 
 
2.2. FAST™ Design Process 
 
The FAST Design Process has been developed to enable the rapid 
implementation, verification, optimization, and mapping of 
systems onto the HyperX hardware.  This four step iterative 
approach guides the user through the necessary stages to facilitate 
efficient design implementation. 
 In the Functional Analysis step, the user captures the logical 
functionality of the system, defines the required representation 
precision and dynamic range, and determines the required number 
of operations for each function of the system.  In this stage, high-
level models of the various functions can be developed using a 
variety of tools (e.g., MathWork’s MATLAB and/or Simulink, 
GNU Octave).  A comprehensive verification infrastructure is 

developed (including test cases matching the functional models) 
that can be used throughout the process. 
 In the Architectural Constraint Derivation step, the user 
specifies the system performance constraints in the form of 
input/output data rate(s) and/or latency requirements for each of the 
units of logical functionality defined in the Functional Analysis 
step. 
 In the first part of the System Design step, the user analyzes 
the functional and architectural constraints and optimizes the 
design to meet functional and architectural requirements on the 
target hardware.  This step can be iterative, based on the overall 
system performance requirements.  In the second part of the 
System Design step, an ANSI-C version of the application is 
developed using standard coding techniques employing the 
representative natural hierarchy previously derived.  Industry 
standard Message Passing Interface (MPI) [4] calls are used to 
express the parallelism of the system.  From this ANSI-C / MPI 
representation, the final step, Transformation to Hardware, is 
fairly well automated. 
 In the Transformation to Hardware step, the user does 
automated mapping and optimization of the design to the physical 
resources available in the target hardware using the HyperX ISDE 
suite.  The transformation is based on the parallel functionality;  
tasks can then be optimally assigned to different processing 
resources.  This is a four-dimensional constraint-driven resource 
allocation process (two spatial dimensions of the HyperX fabric, 
time-of-execution dimension, and performance dimension).  This 
step can be iterative, based on the overall system performance 
requirements. 
 
2.3. HyperX ISDE™ 
 
The HyperX ISDE supports integrated application software 
development and verification in standard ANSI-C, without 
requiring detailed knowledge of the internals of the HyperX 
technology.  The source code developed by the user is platform 
independent until compiled for the target HyperX device. 
 The programming model presents a system view and isolates 
the developers from hardware details by automating task 
allocation, memory allocation, and communication connections.  
(Manual optimizations and user tweaks are supported.)  The 
programming model is transparently scalable across any size 
HyperX fabric or across multiple interconnected HyperX devices.  
After an application is compiled, it is linked to only those specific 
resources that are required to minimize power consumption. 
 The interactive graphic development environment provides 
several views of the application as it is developed, compiled, and 
debugged.  The Software Centric System view shows a task-by-
task breakdown as it was extracted from the user’s ANSI-C / MPI 
source.  It can be used for critical path analysis and for tradeoff 
analysis of latency, power, and resource use.  The 
Communications Centric System view shows the task flow on the 
hardware PE / DMR fabric, showing how the software is mapped 
to the hardware and how the communications network synthesized 
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from the user’s application.  The Energy Centric System view 
helps the user to understand the power consumption profile of the 
application as it is mapped to the hardware.  By visualizing how 
the application consumes power across the two spatial dimensions 
of the hardware and through time, tradeoffs among resource use, 
application performance, and power consumption may be made.  
The Hardware Centric System view includes a debugging 
environment common to both software (via a cycle-accurate 
simulator representing the entire PE / DMR fabric) and hardware 
(through Ethernet or USB connection to hardware).  The debugger 
presents the same capabilities (single step, breakpoints, data 
display/manipulation, source code display/tracing, etc.) for both 
simulation or hardware. 
 
2.4. HyperX Application Development System (HADS) 
 
The HADS board provides hardware and software developers a 
platform for designing applications targeted for the HyperX 
processor.  In a microATX form-factor, the current generation of 
the HADS board (HADS1) has these resources: 
• hx2100 HyperX processor with 384 MB DDR2 

memory, 8 MB flash memory 
• Freescale i.MX31 (ARM 11 core running Linux 

RedBoot O/S) with 128 MB SDRAM memory, 32 MB 
flash memory (on board), 1-4 GB SD flash memory 

• Ethernet, USB, UART connectivity 
• User access to all hx2100 HyperIO pins through 

daughter card connectors 
• FPGA (Cyclone II 2C35) and CPLD (MAX EPM570) 

resources for interfacing 
 
 The HADS board interfaces seamlessly with the HyperX 
ISDE toolset described in section 2.3 above.  Multiple HADS1 
boards may be interconnected via System-to-System boards and 
used to develop high-performance multiprocessor systems. 
 
2.5. Reusable SDR Components 
 
A key part of any high productivity development process or 
environment is the ability to create and deploy reusable and 
reconfigurable components.  This is especially true in the 
development of SDR applications as waveforms in general and 
families of waveforms in particular often share very similar if not 
identical requirements.  Component reuse, however, has not been 
easy to achieve in the traditional architecture SDR (e..g., [5], [6]). 
 The HyperX SDR Platform supports reusable and 
reconfigurable components via its completely software based 
design and development environment.  Once a function has been 
written, it may be reused as simply as one would call a subroutine 
in a software program.  Since an application for the HyperX SDR 

Table 1. OFDM Waveform Parameters 

Parameter 
WiFi 

(802.11a/g) 
Fixed WiMAX 

(802.16d) 
Mobile WiMAX 

(802.16e) 
LTE 

(UMTS) Units 
DL DL Access OFDM OFDM S-OFDM OFDM  
UL UL Access OFDM OFDMA S-OFDMA SC-FDMA  
B Bandwidth 20 DL 1.75/3/ 

3.5/5.5/7  
DL 1.25/ 

2.5/5/10/20  
1.4/3/5/10/ 
15/20 

MHz 

UL 1.25/ 
3.5/7/14/28 

UL 1.25/5/10/20 

NFFT FFT 
Dimension 

64 DL 256 128/512/1024/2048 128/256/ 
512/1024/ 
1536/2048 

pts 

UL 2048 

Δf = B/ NFFT Subcarrier 
Spacing 

312.5 11.16 10.94 15.00 kHz 

TFFT = 1/Δf FFT Duration 3.2 89.6 91.4 66.67 μs  
TG = %TFFT Guard Interval 2-2 2-3 2-[2:5] 2-[2, 3.83, 3.678] %TFFT
TS = TFFT + 
TG 

Symbol 
Duration 

4 100.8 114.25, 102.83, 
97.11, 94.26 

83.27, 71.36, 
71.88 

μs  

M Modulation BPSK, QPSK, 
16/64QAM 

BPSK, QPSK, 
16/64QAM 

BPSK, QPSK, 
16/64QAM 

QPSK, 
16QAM, 
64QAM (DL) 

 

c Coding CC RS-CC, BTC, CTC CC, BTC, CTC, 
LDPC 

CC, Turbo  

r Data Rates 6-54 2-134.4 2-134.4 DL 100 Mb/s 

UL 50 
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Figure 1. 802.11g PHY Layer Implementation, Tx left, Rx right 

Platform is written in ANSI-C / MPI, it is a software application 
and reusing functions is as simple as calling a subroutine (or 
sending a message via MPI).  Variations of functions may be 
provided that accomplish the required operation using different 
implementation techniques that emphasize different points in the 
tradeoff space of computational load, resource use, power 
consumption, and throughput performance. 
 In the current project, an example of this kind of reuse is 
given by the FFT module.  The generic FFT may be configured for 
size (2n for n=5..11), data representation (floating point or fixed 
point), aspect ratio on chip (rectangle or square, depending on the 
required floor plan), and number of PEs to use (four or eight).  Test 
cases can be generated along with expected golden output for 
verification. 
 Another reusable component is the system-level Additive 
White Gaussian Noise (AWGN) module.  Characterization of a 
receiver in the presence of AWGN can take a long time when each 
test must be done in a simulation environment (e.g., MATLAB).  
Characterization can be accomplished much more efficiently when 
a loopback version of a transceiver can be combined with a 
programmable AWGN channel model in hardware. 
 

3. OFDM WAVEFORM IMPLEMENTATION 
 
3.1. OFDM 
 
OFDM describes a multi-carrier signaling method whereby the 
available signal bandwidth is subdivided among multiple 
orthogonal subcarriers, the contents of which are modulated 
independently according to some form of QAM or PSK.  SDR 
interests stem from widespread adoption of OFDM across a range 
of standard waveform applications, e.g. 802.11a/g, 802.16d/e, LTE 

DAB, DVB-T/H, coupled with the inherent scalability afforded a 
multicarrier signaling arrangement. 
 Starting with the Inverse/Forward Fast Fourier Transform pair 
at the center of the TX/RX baseband processing chains, 
respectively, OFDM can be interpreted as a bank of parallel single 
carrier modems tightly packed to maximize bandwidth efficiency.  
The choice of subcarrier spacing (Δf) is driven by the anticipated 
channel characteristics with an interest toward ensuring flat fading 
within the individual subcarrier bandwidth.  This permits use of a 
single tap equalizer along with the associated channel estimation 
per subcarrier at the receiver. 
 Viewed in the time domain, narrow subcarrier spacing 
(relative to the occupied signal bandwidth) equates to slow signal 
variation/long dwell time per subcarrier with respect to the channel 
impulse response.  Inserting a guard interval between OFDM 
symbols whose duration exceeds the RMS channel delay spread 
eliminates the potential for inter-symbol interference (ISI).  
Introducing known pilot subcarriers, inserted to aid the receiver in 
tracking carrier frequency offset, mitigates the effects of inter-
carrier interference (ICI) thereby preserving orthogonality among 
the data subcarriers. 
 Examined from an SDR perspective, the I/FFT represents a 
fixed processing core, the operating rate of which depends on the 
relationship between a small number of system parameters as 
listed in Table 1:  the signal bandwidth (B) divided among a 
prescribed number of subcarriers (NFFT) determines the subcarrier 
spacing.  The FFT window duration (TFFT) is inversely 
proportional to the subcarrier spacing.  Adding a guard interval 
(TG) in turn determines the overall symbol period (TS). 
 Various methods of scalability exist given this arrangement, 
the underlying differences between which point naturally to an 
SDR solution built on a configurable processing fabric.  For 
example, LTE and WiMAX employ fixed subcarrier spacing (the 
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corresponding I/FFT window duration is also fixed).  Additional 
data and pilot subcarriers are transmitted to increase the occupied 
signal bandwidth.  Mobile WiMAX in addition includes 
provisions for a selectable guard interval to account for a range of 
channel delay spreads.  DVB-T/H, on the other hand, employs 
fixed signal bandwidths subdivided among different numbers of 
subcarriers depending on channel conditions, i.e., coherence 
bandwidth and required delay spread tolerance.  (The DVB-T/H 
standard includes provisions for different signal bandwidths, e.g. 5, 
6, 7 or 8 MHz, depending on the regulatory domain.  However, the 
choice of signal bandwidth is fixed per region independent of the 
number of subcarriers used.) 
 Channel Estimation and Tracking can be configured to 
accommodate a variety of pilot arrangements including those 
involving time varying subcarrier assignments.  The data rate 
afforded a given signaling arrangement is derived from the choice 
of modulation and coding employed upstream in the processing 
chain, the configuration of which can be selected as needed to 
accommodate a broad range of system implementations. 
 Scalability can be extended to include the Radio Front End 
and Antenna configurations.  MIMO techniques, e.g. space-time 
coding or spatial multiplexing, can be employed to extend the 
usable signaling range or to increase system throughput. 
 
3.2. 802.11g Implementation 
 
The current project has as its goal for the first phase of 
implementation a (reduced) 802.11g PHY layer on the HyperX 
SDR platform using the FAST design process.  (See [7] for the 
implementation of similar blocks on a traditional DSP 
architecture.)  A full OFDM transmitter is implemented and in this 
initial phase of the project the receiver processing is taken through 

post-equalizer symbol demodulation.  This enables a constellation 
demonstration suitable for AWGN or static multipath 
characterization.  Provisions for frequency offset due to finite 
crystal tolerances or Doppler shift are left for the next phase of 
development.  All data rates of 802.11g (6, 9, 12, 12, 18, 24, 36, 
48, 54 Mb/s), are supported in this implementation.  The Physical 
layer Service Data Unit (PSDU) length may range from 1 to 4,095 
octets.  The target system clock frequency of the HyperX SDR 
platform is set to 225 MHz.  (The completion of the receiver is in 
progress in the second phase of the project;  more information 
about this is given in section 4 below.) 
 Following the steps of the FAST design process, the project 
began by creating a fully functional MATLAB model of the 
802.11g transmitter and receiver PHY layers.  For the full PHY 
layer (i.e., without the limitations in the receiver path mentioned 
above), about 900 lines of MATLAB code were required, along 
with about 560 lines of code to serve as test harness, debug 
plotting, etc. 
 From these models, bit-accurate C++ models were created 
and then used for the performance and resource usage estimates.  
The overall system design was developed from these estimates.  
The ANSI-C / MPI coding of the functionality was produced next 
and was verified to be bit-accurate to the higher level models. 
 This sequence of steps from the Architectural through 
Transformation to Hardware went through a series of quick 
iterations as tradeoffs were made to balance resource usage, 
required performance (e.g., data throughput), and computational 
cost.  These tradeoffs were balanced against the 225 MHz target 
clock rate of the HyperX SDR platform. 
 The sizes of the final modules are now given.  “LOC” stands 
for Lines of Code and includes not only all executable code but 
also extensive in-line comments and documentation (considerably 
inflating the size of the modules). 

Transmitter Module LOC 
Transmitter (top level) 83 
Frame converter 231 
Header transmission 1,148 
Scrambler 511 
Convolutional Encoder 1,054 
Interleaver 830 
Modulator 511 
IFFT 930 
Header data concatenation 171 

Total: 5,469 
Receiver Module LOC 

Receiver (top level) 82 
Preamble and CP deletion 116 
Channel Estimation 1,115 
FFT 910 
Equalizer 251 
Demodulator 1,075 

Total: 3,549 

 
Figure 2. 802.11g Loopback with AWGN Channel 
Impairment 
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 The design also included about 800 LOC representing the 
interface between the PHY layer code and the HyperX Application 
Development System. 
 
3.3. Results 
 
Following the implementation of the transmitter and receiver PHY 
layers, the applications were place-and-routed in an hx2100 
HyperX device.  The resulting layouts are shown in Figure 1.  The 
transmitter (left) and receiver (right) are each shown in a 
standalone verification configuration. 
 To demonstrate the complete functionality simultaneously as 
well as provide a means for characterizing the receiver 
performance, a combined “loopback” configuration connected via 
a hardware Additive White Gaussian Noise (AWGN) channel 
impairment module was implemented.  This layout is show in 
Figure 2.  The AWGN module was itself designed using the FAST 
process and implemented on the HyperX SDR platform.  This 
module was about 640 LOC. 
 Characterization runs were made with 512 octet payloads 
across all data rates.  Sample constellation diagrams for, left to 
right, 6 Mb/s (BPSK), 24 Mb/s (16-QAM), and 54 Mb/s (64-
QAM) are shown in Figure 3.  The measured Error Vector 
Magnitude (EVM) for 6 Mb/s at an SNR of 5 dB was 0.338.  For 
24 Mb/s at an SNR of 16 dB, the EVM was 0.098 and for 54 Mb/s 
at an SNR of 25 dB, the EVM was 0.014. 
 

4. SUMMARY AND ONGOING WORK 
 
In this paper we have presented the implementation of an 802.11g 
PHY Layer Transmitter and (reduced) Receiver completely in 
software as an application for the HyperX SDR Platform.  The 
implementation was developed using the FAST design process.  
All 802.11g data rates were successfully implemented.  The 
project continues—the completion of those parts of the receiver 
omitted in the initial phase are currently in progress. 
 Other waveforms have been or are being developed for the 
HyperX SDR Platform.  These include strictly military waveforms 
such as the Soldier Radio Waveform (SRW) and the Wideband 
Networking Waveform (WNW) as well as civilian waveforms 

such as the present project, 802.11g, and 802.16e.  Another 
example is GPS in both its civilian and military versions. 
 Each waveform implementation project has provided insight 
into how to improve, enhance, and extend.  In particular, the next 
generation of the HyperX Application Development System 
(HADS2) is now undergoing board-level test.  Replacing the 
single HyperX device capability of the HADS1 board with a 4-, 8-, 
and 16-slot backplane, HADS2 provides for up to 32 HyperX 
devices in a single system.  Extended I/O and GPP boards are also 
being tested.  In the toolset, automatic packing of concurrent tasks 
into a single PE and direct compilation of Simulink models are 
undergoing evaluation.  We continue to improve the energy 
efficiency of the HyperX architecture itself by continuing the 
exploration of the tradeoff possibilities between software and 
hardware. 
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