
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

 
USING INTEL® ARCHITECTURE FOR IMPLEMENTING SDR IN WIRELESS 

BASESTATIONS 
John Mangan (Intel, Shannon, Ireland; john.mangan@intel.com) 
Rajesh Gadiyar (Intel, Portland, OR; rajesh.gadiyar@intel.com)  

Kannan Babu Ramia (Intel, Chandler, AZ; kannan.babu.ramia@intel.com) 
Niall Power (Intel, Shannon, Ireland; niall.power@intel.com) 

Terence Nally (Intel, Shannon, Ireland; terence.nally@intel.com) 
 

ABSTRACT 

 

The requirements for Wireless Basestations are rapidly 

evolving as more and more devices are becoming connected 

and Mobile Broadband has become a reality. Enabled by 

standards such as LTE and WiMax and technologies like 

OFDM and MIMO the throughput and capacity needs are 

increasing exponentially. At the same time Wireless 

Basestations are required to simultaneously support multiple 

radio standards and meet many different deployment and use 

case scenarios. It is becoming increasingly difficult for 

current solutions based on multiple application specific 

architectures to meet these demands while maintaining 

software and engineering investment  

 Software Defined Radio (SDR) has become a key 

element in introducing flexibility in recent solutions, 

however many obstacles still remain towards a single 

architecture and a 100% reuse nirvana.  

 This paper describes some of the Intel® Architecture 

developments and how it is becoming a practical solution 

towards running all Wireless Basestation workloads on the 

same platform. In particular we will focus on the elements 

that have evolved in the architecture that now allows SDR 

workloads to match and in many cases exceed the 

performance of current solutions. We provide proof points 

for some of the latest LTE signal processing workloads and 

also show how the development cost can be significantly 

reduced and maintained across multiple platforms and 

follow-on silicon generations. 

 

1. INTRODUCTION 

 

The pressures on modern Wireless networks to carry more 

and more data at a more competitive price point is 

increasing as subscribers demand a mobile internet 

experience similar to what is available from their home 

network. The telecommunication industry is challenged to 

respond to the explosive increase of data carried on modern 

wireless networks while dealing with a steady reduction in 

revenue earned per data bit.  

 The growth of these networks and evolution to higher 

capacity does not have a single path, with service providers 

moving from one generation to another or skipping 

generation’s altogether, sometimes deploying overlay 

networks or planning on consolidation on a single network. 

Software Defined Radio has a critical part to play in offering 

flexible basestation deployment and the ability to adapt to 

the dynamic networks requirements in the future. 

 Over the years Telecommunication Equipment 

Manufactures (TEMs) have turned to multiple different 

silicon architectures to meet the specific workload demands 

of Basestations. For example we could have Intel® 

Architecture handling application and control workloads, a 

Network Processor running packet processing and signal 

processing on a number of DSPs. Though providing high 

performance to isolated workloads, this approach increases 

the complexity and overall cost of both the basestation 

hardware and software and limits portability and reuse 

between generations. How do you best design a basestation 

supporting more than one service provider’s 2G, WCDMA 

and LTE services? 

 In 1991 Joseph Mitola coined the term “Software 

Defined Radio”, describing it as “A software  radio is a 

radio whose channel modulation waveforms are defined in 

software…” he goes on to define the extraction, down-

conversion and demodulation of the channel waveform is 

done “using software on a general purpose processor”[1]. 

The concept of moving all digital workload to a general 

processor provides the greatest flexibility for SDR design. 

 In this paper we will discuss the evolutionary Signal 

Processing capabilities of Intel® Architecture and how the 

architecture which has a strong history in Application and 

Control (Packet processing capabilities are discussed 

elsewhere) workloads has become a real option for 

executing signal processing workloads. There are many 

advantages to consolidating the workloads on a single 

standard architecture such as the support of a large 

ecosystem, reduction in design complexity, rapid time to 

market and software reuse. These advantages of designing a 

basestation on a single scalable architecture provide the 

platform for fully functional Software Define Radio design. 

The latest Intel® Microarchitecture (Nehalem) allows the 

design process to be significantly streamlined and cost 

optimized. 
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2. INTEL® MICROARCHITECTURE (NEHALEM) 

 

 

 

 

The latest generations of Intel® Architecture processors are 

produced on 45nm and 32nm process technologies and are 

based on the Intel® Microarchitecture (Nehalem). This 

architecture includes many features that suit high 

performance and power efficient execution of signal 

processing workloads. To help understand how this 

architecture is effective a simplified block diagram is shown 

in Figure 1. 

 The front end fetches and decodes instruction streams 

through the L1 cache and can provide a sustained throughput 

of 4 decoded micro-operations (uops) per cycle. Up to 16 

bytes of instructions can be fetched per cycle and the unit 

can support decoding instruction streams for 2 hardware 

threads in alternate cycles (known as Simultaneous 

Multithreading – SMT). Multiple performance and power 

enhancements are integrated such as branch prediction, loop 

caching & streaming, op code fusion and stack pointer 

tracking. 

 The uop stream then enters the first stage of the Intel 

Wide Dynamic Execution unit. This is an out-of-order 

superscalar execution core that can issue up to 6 uops per 

cycle and can have up to 128 uops in flight at any moment. 

The reservation station schedules which uops are issued for 

execution and an entry per uop in the reorder buffer of the 

retirement unit ensures the processing of the operations and 

architectural states are updated according to the specified 

program order.  

Of the six issued uops per cycle, 3 can be related to 

computational operations and 3 to memory operations (up to 

128-bits each). Please refer to Figure 2 for breakdown. For 

signal processing workloads this means that if SIMD (single 

instruction, multiple data) operations are used, the 

architecture is capable of supporting in a single cycle up to 

12 compute and 3 memory I/O operations. These operations 

may be a combination of 4 x 32bit FP MULTIPY, 4 x 32 bit 

FP ADD, an SIMD shuffle or integer ALU op, a load, an 

address store and a data store.  

 To support high instruction throughput the Intel® 

Microarchitecture (Nehalem) contains a sophisticated 

memory sub-system. Each core contains a first level  

instruction cache (32KB 4way), a first level data cache 

(32KB 8way), a second-level unified cache (256KB 8way) 

and a last level cache of up to 8MB 16way that is shared 

amongst all the processor cores. With 3 DDR3 memory 

controllers the processor can provide a peak memory 

bandwidth of 25.6 GB/s. This high throughput capability is 

required to support the multi-gigabit rates for the processing 

of the sample streams from modern Wireless multi-antennae 

standards. 

Figure 1 Intel Microarchitecture (Nehalem) simplified block diagram 
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Figure 2 Execution Units 

 
3. INTEL® ARCHITECTURE INSTRUCTION SET 

CAPABILITY 

 

This section looks at some of the details of the Intel® 

Instruction Set Architecture (ISA) in relation to efficient 

implementation of signal processing requirement for SDR. 

Support for high throughput signal processing is based on 

the SSE (Streaming SIMD Extensions) which are part of the 

standard Intel® ISA [2][3]. Up to the current generation 

(4.2) more than 300 new instructions have been added to the 

ISA. SSE operations work from a set of 16 128-bit wide 

XMMx registers. The main categories covered for optimized 

parallel execution are: 

 - Floating point (single and double precision) 

 - Data Transfer 

 - Packing and unpacking 

 - Comparison and Logical 

 - Shuffle & Streaming 

 - Data Conversion 

It should be noted that for many signal processing 

algorithms the IA implementation in floating point is faster 

and more accurate than the performance of a fixed point 

implementation due to high FP capacity and avoidance of 

range checking. 

Some of the SSEn instructions applicable to signal 

processing are shown in Table 1.  

 

Sub Group Instructions Usability Description 

Load and 

Store 

Floating 

Point 

(single/doubl

e) precision 

MOVAPS, 

MOVAPD, 

MOVHPS, 

MOVHPD, 

MOVLPS, 

MOVLPD 

Data Movement instructions. 

Load and store packed 

single/double precision floating 

point value from/to 

memory/registers. They are 

used extensively in FFT and 

other single processing 

algorithms 

Arithmetic 

Floating 

Point 

(single/doubl

e ) precision 

ADDPS/PD 

SUBPS/PD 

MULPS/PD 

SQRTPS/PD,  

ADDSUBPS, 

ADDSUBPD 

These Arithmetic instructions 

are heavily used in signal 

processing algorithm like FFT, 

FIR etc. 

Floating 

Point Dot 

Product 

DPPS, DPPD Improved performance for 

AOS(Array of structures) data 

processing through support for 

single and double precision dot 

products. Usages can be found 

in channel estimation 

algorithms. 

Floating 

Point Round 

ROUNDPS, 

ROUNDSS, 

ROUNDPD, 

ROUNDSD 

Efficiently rounds the scalar 

and packed single and double- 

precision operands to integers, 

with enhanced support for 

various language requirements. 

Packed Test 

and Set 

PTEST Faster branching from SIMD 

decisions to support 

conditionally vectorized code. 

Accelerated 

searching and 

pattern 

recognition of 

large data sets 

POPCNT Calculates the number of bits 

set to 1 in the given operand. 

Often used for schedulers and 

buffer/memory management 

Thread 

synchronizati

on 

MONITOR, 

MWAIT 

Places Processor in an 

optimized state until write to 

the monitored address range 

occurs. SDR performance is 

dependent on efficient 

threading 

Memory 

Barriers 

SFENCE, 

LFENCE, 

MFENCE 

Insures a performance efficient 

way of store and load memory 

ordering. Benefits multitasking 

programming where tasks 

execute in the out of order core. 

Typical use cases are 

implementing the inter 

thread/process communication 

mechanisms like queues and 

shared memory.  

Table 1 Common SSE instructions used in SDR 

applications.  
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4. SIGNAL PROCESSING – EXAMPLE 

 

This section describes the performance of two of the most 

common signal processing algorithms, the Fast Fourier 

Transform (FFT) and the Finite Impulse Response (FIR) 

filter. 

 The FFT implementation used in this example is a 

version that is included in the Intel Performance Primitive 

(IPP) library. The Intel IPP libraries contain a wide range of 

functions that are optimized implementations of common 

algorithms. and take advantage of Intel® ISA features such 

as SSE. Many signal processing functions are included such 

as filtering, convolution, transforms, windowing, sampling 

and array operations. The latest implementation is optimized 

for Intel® Microarchitecture (Nehalem) [4]. Other 

optimized software is available from the ecosystem such as 

the open source FFTW libraries. A large range of intrinsics 

may also be used to access specific instruction extensions. 

 This example uses 32-bit single precision complex 

floating point samples. The FFT is implemented for different 

sizes and the number of cycles per sample has been 

measured. Figure 3 shows the profiled results using a single 

thread on an Intel® Microarchitecture (Nehalem) core 

running at 2.67 GHz (Core i7 platform).  

 

 

Figure 3 FFT Cycles per sample 

 

The complexity of a N point FFT can be described as an 

order of O(N.log2N) complex multiplications and additions. 

The IPP implementation uses a complex multiplication 

taking 6 operations (2MUL & 2ADD) and a complex 

addition takes 2 operations (2ADD) for each point (Note: a 

MUL takes 4 operations). This amounts to 8N.log2N floating 

point operations (FLOPs). By calculating the number of 

FLOPs per cycle the sustained GFLOP performance can be 

derived. Figure 4 shows that a single core is capable of 

between 20 and 30 GFLOPS for FFT execution which is up 

to more than 90% of theoretical capability. 

 

Figure 4: FFT Performance GFLOP's 

 

The second Signal Processing example focuses on the FIR 

filter. Similar to the FFT example the FIR example is 

implemented using the Intel IPP functions. The results 

shown are for a 64 tap FIR filter using single precision 32bit 

complex floating point samples and coefficients. Figure 5 

shows the profiled results using a single thread on an Intel® 

Microarchitecture (Nehalem) core running at 2.67 GHz 

(Core i7 platform).  

Figure 5 FIR filter, cycles per sample 

 

 The implemetation of the FIR filter for 64 taps requires 

64 additions and 64 multiplications. This equates to a total 

of 512 floating point operations per sample. By calcualting 

the number of FLOP’s per cycle the sustained GFLOPS 

Performance can be derived.  

Figure 6 FIR filter GFLOP performance 
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5. PARALLELIZATION 

 

Effective SDR implementation requires efficient use of all 

the resources on a processor platform. It is essential to be 

able to parallelize algorithms across multiple cores in a 

linear manner. This section presents an example of the 

parallelized scaling across multi-cores of an Intel® 

Microarchitecture (Nehalem) based platform. The example 

used here is complex multiplication, a common operation 

used in signal processing. The same approach can be applied 

to the parallelizing of more computationally intense 

algorithms. The implementation used in this example is 

based on the IPP library implementation of complex 

floating-point multiplication.  

 A threading model was used to implement the algorithm 

with parallel execution. The input data is divided into 

blocks, and each block (or number of blocks, depending on 

data size) is executed in full in separate parallel threads. 

This method is assumes no interdependence between blocks.  

 Some processor architecture parameters are required to 

be taken into account to optimize performance. These are 

cache size, cache line alignment and thread affinity. Inter-

thread dependencies need to be minimized or avoided 

altogether.     

 In the example a single processor Core i7 platform was 

used to execute the complex floating point multiplications. 

The processor includes 4 cores and from Figure 7 we see a 

linear scaling result for the first 4 threads which are assigned 

to run on separate cores. Going from 4 to 8 threads takes 

advantage of the symmetrical multithreading (SMT) 

capabilities of the Intel® Microarchitecture (Nehalem) 

which supports 2 independent hardware threads per core. 

While performance here does not scale linearly the benefits 

are evident.  

Figure 7: Complex floating point multiplication performance 

 

The complexity of a single floating point complex 

multiplication is 6 FLOPs, 4 multiplications and 2 additions. 

C = A.B where C(real)=A(real).B(real)-A(img).B(img) and 

C(img)=A(real).B(img)+A(img).B(real). 

The number of FLOPs per cycle can be calculated and Figure 

8 shows the sustained GFLOPS performance based on 

number of threads used on the processor running at 

2.67Ghz. Again, we see linear performance scaling across 

the 4 cores and an additional benefit when SMT is included.  

 

Figure 8: GFLOPS Per Thread 

 

6. WIRELESS WORKLOAD EXAMPLE 

 

In April 2009 Aricent, a global innovation, technology and 

services company focused exclusively on communications 

announced that they would create a complete Long Term 

Evolution(LTE) eNodeB reference solution including Layer 

1 signal processing and Layer 2 protocols stacks for Intel® 

Architecture. The example used in this section is the 

downlink physical layer processing for LTE 2x2 MIMO. 

The uplink processing and other protocol stacks have also 

been completed. 

Figure 9 shows the pipeline of the layer 1 downlink 

implementation. Based on the protocol stacks supplied by 

Aricent the code was profiled and optimized for Intel® 

Microarchitecture (Nehalem). The configuration used as the 

basis for these measurements is the downlink PDSCH 

channel. This is the highest bandwidth channel used to send 

data to the user equipment. A 20 MHz channel was used 

with 2x2 MIMO in transmit diversity mode. The highest 

modulation 64-QAM was coded and the output of the 

system’s is 4 antenna channels each of 30.72 Msamples/sec 

of 32-bit (I and Q samples) ready for analog conversion. The 

signal consists of 10ms radio frames which are broken into 

1ms sub-frames and 0.5ms slots. Each slot is divided into 15 

kHz sub-carriers which carry 7 OFDM symbols each. For a 

20Mz channel 1200 sub-carriers are available which 

corresponds to 8400 symbols per slot or just over 100Mb/s 

of raw data when 64-QAM coding is used.   
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The 2 subsystems of the pipeline are the Modem and the 

Channel Coding & Multiplexing. They consist of a mix of 

many sophisticated DSP algorithms working either at bit 

level (ex. Turbo Encoder) or 32-bit single precision floating 

point (ex. IFFT in OFDM signal generation). The pipeline 

executes on a single core of an Intel Core i7 platform with 

hyper-threading enabled. The complete processing of a sub-

frame for all 2 antennae is taking 1.87M cycles. This 

corresponds to 0.7 milliseconds with the processor 

frequency at 2.67 GHz. With a budget of 1ms to achieve 

sustained throughput the result shows that a single IA 

processor core is capable of meeting the requirement with 

headroom.  

 The overall results show that the complete uplink and 

downlink processing for LTE 20MHz + 20MHz 2x2 MIMO 

can be performed on 3 IA processor cores (ex. Turbo 

Decoding) with scope to reduce this to just 2 cores in the 

future. 

7. FUTURE TECHNOLOGY 

 

The processors using Intel® Architecture are evolving at a 

regular yearly beat rate. Known as the tick/tock model the 

major evolutions of the Microarchitecture are interleaved 

with process technology evolution. The 2010 ‘tick’ sees the 

introduction of products based on 32nm technology while 

the 2011 ‘tock’ introduces the new ‘Sandy Bridge’ 

architecture which contains the instruction extensions (AVX 

[5]) doubling the FLOP performance. 

 Another technology that is relevant to signal processing 

is emerging from the Intel Visual Computing Group. 

Codenamed ‘Larabee’ it is initially targeting high-

performance GPU products. The Intel Embedded Group is 

evaluating the technology for Wireless Signal Processing. 

The Larabee ‘core’ is an IA based processor that contains a 

new 512-bit wide vector processing unit (VPU). The VPU 

can handle 16 parallel 32-bit operations (integer or FP) or 

512-bit level operations and has a very flexible and 

comple

te set of instructions. Future embedded solution for signal 

processing may integrate this technology.  

 

8. CONCLUSION 

 

Intel Architecture has evolved significantly over the past few 

years and has incorporated several micro-architectural, 

platform and Instruction Set Architecture (ISA) 

enhancements for much improved Signal Processing. In this 

paper a selection of SSE instructions have been described 

and the performance of 2 common Signal Processing 

algorithms (FFT and FIR) benchmarked. The Wireless LTE 

Workload example epitomizes how these architectural 

improvements combined with software parallelization 

techniques can be used to implement a high performance 

SDR solution. The prowess of IA for Applications, Control 

and Data Plane processing is already well established. The 

Telecom Equipment Manufacturers (TEMs) now have the 

unique opportunity to consolidate all their workloads – 

Applications, Control, Data Plane and Signal Processing on 

a single architecture (IA) thereby achieving a scalable 

design, reduced software investment and time to market and 

improved total cost of ownership (TCO). 
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Figure 9 LTE Downlink PHY processing using SDR 

Channel Coding & Multiplexing

CRC 
attach

Code-blk 

segmentation & 

CRC

Turbo

Encoder

Code-blk 

concatenation

Rate 

Matching 

HARQ

Modem

Resource 

Element Mapper Pre-

coding

Layer 

Mapper
Scrambler

Modulation 

Mapper

OFDM 

Resource 

Element Mapper
OFDM 


	Home
	Papers by Author
	Papers by Session

