
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

THE IMPLEMENTATION OF OFDM WAVEFORMS ON AN SDR

DEVELOPMENT PLATFORM SUPPORTING A MASSIVELY PARALLEL
PROCESSOR

Brian A. Dalio (Coherent Logix, Inc., Austin, TX, USA, dalio@coherentlogix.com);

Kevin A. Shelby (Coherent Logix, Inc., Austin, TX, USA, shelby@coherentlogix.com)

ABSTRACT

In this paper, we present the agile development, implementation,
and verification of an OFDM waveform PHY layer on a Software
Defined Radio (SDR) development platform. The SDR platform
is supported by a tailored and highly productive development
system emphasizing the value of a structured development process
that takes the developer through modeling, trade-off analysis,
implementation, and verification. We comment on the OFDM
models, the design process used to create them, their
characterization and verification, and their ultimate performance
characteristics. Central to the SDR platform is a massively parallel
processor which is used for all signal processing, control, and data
management aspects of the OFDM waveform. We present details
of this computational fabric and its advantages in the
implementation of OFDM waveforms and SDR applications.

1. INTRODUCTION

Traditional SDR platforms use a General Purpose Process (GPP),
a Digital Signal Processor (DSP), and various Field Programmable
Gate Arrays (FPGAs) to accomplish the waveform processing
related to the Physical and Link Layers. This architecture
(generally) meets SDR functional and computational performance
requirements, but is physically large, costly, and not very power
efficient. The FPGA devices are generally in very large packages
and their static and dynamic power dissipation is relatively high.
(Lower power and smaller FPGA devices are available, but these
devices generally do not have the capacity or performance required
for SDR applications.) The DSP can also be performance limiting,
providing a relatively limited number of multiply-accumulate and
other functional units. These characteristics have proved to be a
barrier to low-power, small form factor SDR systems.
 Another difficulty of the traditional SDR architecture is that
the parts of the system require different design, development,
implementation, and verification processes. While applications for
embedded GPPs generally can be developed in standard software
programming languages, DSPs often require low-level
programming in non-standard or manufacturer-specific languages
or language extensions. Further, the FPGA portion of the design
generally is not represented in a software language at all but has to

be coded in a Hardware Description Language (HDL), such as
VHDL or Verilog.
 Given the different representations that must be used for the
portions of the system depending on whether it happens to be
located in the GPP, DSP, or FPGA, it can be quite costly (and
error-prone) to move functionality from one resource to another as
part of a re-partitioning as system design requirements and/or
performance constraints change over time.
 We present an alternative SDR design process and platform
that minimizes the above difficulties by allowing for a completely
software based baseband processing solution. (See [1] for an
approach that attempts to maintain the traditional architecture.)
This solution, described in section 2, comprises a hardware
platform based on a massively parallel processing fabric, a unified
toolset and design methodology, and a set of reusable,
reconfigurable components. To provide a concrete example
during the ongoing development of this SDR design process and
platform, an implementation of the 802.11g ([2], [3]) PHY layer
was created, described in section 3. A summary of current results,
other waveform implementations in progress, and ongoing
methodology, tool, and architecture development is given in
section 4.

2. THE HYPERX™ SDR ENVIRONMENT

2.1. HyperX Processor Architecture

The HyperX processor architecture is a scalable unit-cell-based
hardware fabric—the HyperX fabric—which consists of an array
of HyperSlice™ units. Each HyperSlice contains one to four Data
Memory and Routing (DMR) units and one Processing Element
(PE) unit. The complete hardware architecture is formed by
replicating the HyperSlice core unit-cell to create a massively
parallel processing system. Surrounding the core is a
programmable I/O structure, the HyperIO™.
 The PE instruction set architecture is designed for
computation intensive communications and image/video
processing. The PE core contains a 24-bit multiplier, 16-bit ALU,
40-bit accumulator, 40-bit barrel shifter, and floating-point,
reciprocal, and reciprocal square-root unit. The PE can natively
process 8-bit (using a SIMD capability), 16-bit fixed point, and 32-
bit floating point data. The PE is based on the Harvard architecture

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

model using flat, separate instruction and data memories.
Operands can be fetched from a DMR’s memory, instruction
fields, and registers. The register set includes sixteen 16-bit
general purpose registers, a 40-bit accumulator, three 16-bit pointer
registers, and three 16-bit index registers. The directly addressable
data memory space is 32 KB with 8 KB available from each
adjacent DMR. The PE operates on a variable width instruction
word and is built on a variable stage, fully registered pipeline for
maximum parallelism and hardware efficiency. Zero overhead
looping and conditional moves are supported to minimize pipeline
breaks.
 The DMR provides data memory and routers for fast routing
services to the processing resources. The fabric is created by
joining the DMRs of adjacent HyperSlices together to form the on-
chip network. This network operates independently of and
transparently to the processing resource. It provides a
programmable and adaptable communications fabric supporting
arbitrary network topologies (H-tree, in-place or dilated Butterfly,
Multi-D mesh, etc.). The DMR provides nearest neighbor,
regional, and global communication across the device and from
device to device through four different transfer modes: memory to
memory, memory to register, register to memory, and register to
register. Each of the transfer modes may physically use the DMR
resources differently depending on locality of data and software
requirements. All DMRs can operate independently of each other.
 The HyperIO controls the data I/O to and from the core. Each
HyperIO connects to a periphery DMR and associated I/O pads.
The HyperIO extends the HyperX fabric with the added capability
of seamlessly connecting the on-chip communications to other
devices while preserving the same programming model across the
device boundary. In addition, the HyperIO enables interfacing to
memory, processor buses, analog-digital converters, sensors,
displays, etc.
 Different implementations of the HyperX architecture may
vary in the size of the fabric and the amount and kind of HyperIO
connections available. The current project was implemented on
the hx2100 version of the HyperX technology, which has a 10x10
grid of PEs (100 total) and an 11x11 grid of DMRs (121 total).

2.2. FAST™ Design Process

The FAST Design Process has been developed to enable the rapid
implementation, verification, optimization, and mapping of
systems onto the HyperX hardware. This four step iterative
approach guides the user through the necessary stages to facilitate
efficient design implementation.
 In the Functional Analysis step, the user captures the logical
functionality of the system, defines the required representation
precision and dynamic range, and determines the required number
of operations for each function of the system. In this stage, high-
level models of the various functions can be developed using a
variety of tools (e.g., MathWork’s MATLAB and/or Simulink,
GNU Octave). A comprehensive verification infrastructure is

developed (including test cases matching the functional models)
that can be used throughout the process.
 In the Architectural Constraint Derivation step, the user
specifies the system performance constraints in the form of
input/output data rate(s) and/or latency requirements for each of the
units of logical functionality defined in the Functional Analysis
step.
 In the first part of the System Design step, the user analyzes
the functional and architectural constraints and optimizes the
design to meet functional and architectural requirements on the
target hardware. This step can be iterative, based on the overall
system performance requirements. In the second part of the
System Design step, an ANSI-C version of the application is
developed using standard coding techniques employing the
representative natural hierarchy previously derived. Industry
standard Message Passing Interface (MPI) [4] calls are used to
express the parallelism of the system. From this ANSI-C / MPI
representation, the final step, Transformation to Hardware, is
fairly well automated.
 In the Transformation to Hardware step, the user does
automated mapping and optimization of the design to the physical
resources available in the target hardware using the HyperX ISDE
suite. The transformation is based on the parallel functionality;
tasks can then be optimally assigned to different processing
resources. This is a four-dimensional constraint-driven resource
allocation process (two spatial dimensions of the HyperX fabric,
time-of-execution dimension, and performance dimension). This
step can be iterative, based on the overall system performance
requirements.

2.3. HyperX ISDE™

The HyperX ISDE supports integrated application software
development and verification in standard ANSI-C, without
requiring detailed knowledge of the internals of the HyperX
technology. The source code developed by the user is platform
independent until compiled for the target HyperX device.
 The programming model presents a system view and isolates
the developers from hardware details by automating task
allocation, memory allocation, and communication connections.
(Manual optimizations and user tweaks are supported.) The
programming model is transparently scalable across any size
HyperX fabric or across multiple interconnected HyperX devices.
After an application is compiled, it is linked to only those specific
resources that are required to minimize power consumption.
 The interactive graphic development environment provides
several views of the application as it is developed, compiled, and
debugged. The Software Centric System view shows a task-by-
task breakdown as it was extracted from the user’s ANSI-C / MPI
source. It can be used for critical path analysis and for tradeoff
analysis of latency, power, and resource use. The
Communications Centric System view shows the task flow on the
hardware PE / DMR fabric, showing how the software is mapped
to the hardware and how the communications network synthesized

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

from the user’s application. The Energy Centric System view
helps the user to understand the power consumption profile of the
application as it is mapped to the hardware. By visualizing how
the application consumes power across the two spatial dimensions
of the hardware and through time, tradeoffs among resource use,
application performance, and power consumption may be made.
The Hardware Centric System view includes a debugging
environment common to both software (via a cycle-accurate
simulator representing the entire PE / DMR fabric) and hardware
(through Ethernet or USB connection to hardware). The debugger
presents the same capabilities (single step, breakpoints, data
display/manipulation, source code display/tracing, etc.) for both
simulation or hardware.

2.4. HyperX Application Development System (HADS)

The HADS board provides hardware and software developers a
platform for designing applications targeted for the HyperX
processor. In a microATX form-factor, the current generation of
the HADS board (HADS1) has these resources:
• hx2100 HyperX processor with 384 MB DDR2

memory, 8 MB flash memory
• Freescale i.MX31 (ARM 11 core running Linux

RedBoot O/S) with 128 MB SDRAM memory, 32 MB
flash memory (on board), 1-4 GB SD flash memory

• Ethernet, USB, UART connectivity
• User access to all hx2100 HyperIO pins through

daughter card connectors
• FPGA (Cyclone II 2C35) and CPLD (MAX EPM570)

resources for interfacing

 The HADS board interfaces seamlessly with the HyperX
ISDE toolset described in section 2.3 above. Multiple HADS1
boards may be interconnected via System-to-System boards and
used to develop high-performance multiprocessor systems.

2.5. Reusable SDR Components

A key part of any high productivity development process or
environment is the ability to create and deploy reusable and
reconfigurable components. This is especially true in the
development of SDR applications as waveforms in general and
families of waveforms in particular often share very similar if not
identical requirements. Component reuse, however, has not been
easy to achieve in the traditional architecture SDR (e..g., [5], [6]).
 The HyperX SDR Platform supports reusable and
reconfigurable components via its completely software based
design and development environment. Once a function has been
written, it may be reused as simply as one would call a subroutine
in a software program. Since an application for the HyperX SDR

Table 1. OFDM Waveform Parameters

Parameter
WiFi

(802.11a/g)
Fixed WiMAX

(802.16d)
Mobile WiMAX

(802.16e)
LTE

(UMTS) Units
DL DL Access OFDM OFDM S-OFDM OFDM
UL UL Access OFDM OFDMA S-OFDMA SC-FDMA
B Bandwidth 20 DL 1.75/3/

3.5/5.5/7
DL 1.25/

2.5/5/10/20
1.4/3/5/10/
15/20

MHz

UL 1.25/
3.5/7/14/28

UL 1.25/5/10/20

NFFT FFT
Dimension

64 DL 256 128/512/1024/2048 128/256/
512/1024/
1536/2048

pts

UL 2048

Δf = B/ NFFT Subcarrier
Spacing

312.5 11.16 10.94 15.00 kHz

TFFT = 1/Δf FFT Duration 3.2 89.6 91.4 66.67 μs
TG = %TFFT Guard Interval 2-2 2-3 2-[2:5] 2-[2, 3.83, 3.678] %TFFT
TS = TFFT +
TG

Symbol
Duration

4 100.8 114.25, 102.83,
97.11, 94.26

83.27, 71.36,
71.88

μs

M Modulation BPSK, QPSK,
16/64QAM

BPSK, QPSK,
16/64QAM

BPSK, QPSK,
16/64QAM

QPSK,
16QAM,
64QAM (DL)

c Coding CC RS-CC, BTC, CTC CC, BTC, CTC,
LDPC

CC, Turbo

r Data Rates 6-54 2-134.4 2-134.4 DL 100 Mb/s

UL 50

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Figure 1. 802.11g PHY Layer Implementation, Tx left, Rx right

Platform is written in ANSI-C / MPI, it is a software application
and reusing functions is as simple as calling a subroutine (or
sending a message via MPI). Variations of functions may be
provided that accomplish the required operation using different
implementation techniques that emphasize different points in the
tradeoff space of computational load, resource use, power
consumption, and throughput performance.
 In the current project, an example of this kind of reuse is
given by the FFT module. The generic FFT may be configured for
size (2n for n=5..11), data representation (floating point or fixed
point), aspect ratio on chip (rectangle or square, depending on the
required floor plan), and number of PEs to use (four or eight). Test
cases can be generated along with expected golden output for
verification.
 Another reusable component is the system-level Additive
White Gaussian Noise (AWGN) module. Characterization of a
receiver in the presence of AWGN can take a long time when each
test must be done in a simulation environment (e.g., MATLAB).
Characterization can be accomplished much more efficiently when
a loopback version of a transceiver can be combined with a
programmable AWGN channel model in hardware.

3. OFDM WAVEFORM IMPLEMENTATION

3.1. OFDM

OFDM describes a multi-carrier signaling method whereby the
available signal bandwidth is subdivided among multiple
orthogonal subcarriers, the contents of which are modulated
independently according to some form of QAM or PSK. SDR
interests stem from widespread adoption of OFDM across a range
of standard waveform applications, e.g. 802.11a/g, 802.16d/e, LTE

DAB, DVB-T/H, coupled with the inherent scalability afforded a
multicarrier signaling arrangement.
 Starting with the Inverse/Forward Fast Fourier Transform pair
at the center of the TX/RX baseband processing chains,
respectively, OFDM can be interpreted as a bank of parallel single
carrier modems tightly packed to maximize bandwidth efficiency.
The choice of subcarrier spacing (Δf) is driven by the anticipated
channel characteristics with an interest toward ensuring flat fading
within the individual subcarrier bandwidth. This permits use of a
single tap equalizer along with the associated channel estimation
per subcarrier at the receiver.
 Viewed in the time domain, narrow subcarrier spacing
(relative to the occupied signal bandwidth) equates to slow signal
variation/long dwell time per subcarrier with respect to the channel
impulse response. Inserting a guard interval between OFDM
symbols whose duration exceeds the RMS channel delay spread
eliminates the potential for inter-symbol interference (ISI).
Introducing known pilot subcarriers, inserted to aid the receiver in
tracking carrier frequency offset, mitigates the effects of inter-
carrier interference (ICI) thereby preserving orthogonality among
the data subcarriers.
 Examined from an SDR perspective, the I/FFT represents a
fixed processing core, the operating rate of which depends on the
relationship between a small number of system parameters as
listed in Table 1: the signal bandwidth (B) divided among a
prescribed number of subcarriers (NFFT) determines the subcarrier
spacing. The FFT window duration (TFFT) is inversely
proportional to the subcarrier spacing. Adding a guard interval
(TG) in turn determines the overall symbol period (TS).
 Various methods of scalability exist given this arrangement,
the underlying differences between which point naturally to an
SDR solution built on a configurable processing fabric. For
example, LTE and WiMAX employ fixed subcarrier spacing (the

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

corresponding I/FFT window duration is also fixed). Additional
data and pilot subcarriers are transmitted to increase the occupied
signal bandwidth. Mobile WiMAX in addition includes
provisions for a selectable guard interval to account for a range of
channel delay spreads. DVB-T/H, on the other hand, employs
fixed signal bandwidths subdivided among different numbers of
subcarriers depending on channel conditions, i.e., coherence
bandwidth and required delay spread tolerance. (The DVB-T/H
standard includes provisions for different signal bandwidths, e.g. 5,
6, 7 or 8 MHz, depending on the regulatory domain. However, the
choice of signal bandwidth is fixed per region independent of the
number of subcarriers used.)
 Channel Estimation and Tracking can be configured to
accommodate a variety of pilot arrangements including those
involving time varying subcarrier assignments. The data rate
afforded a given signaling arrangement is derived from the choice
of modulation and coding employed upstream in the processing
chain, the configuration of which can be selected as needed to
accommodate a broad range of system implementations.
 Scalability can be extended to include the Radio Front End
and Antenna configurations. MIMO techniques, e.g. space-time
coding or spatial multiplexing, can be employed to extend the
usable signaling range or to increase system throughput.

3.2. 802.11g Implementation

The current project has as its goal for the first phase of
implementation a (reduced) 802.11g PHY layer on the HyperX
SDR platform using the FAST design process. (See [7] for the
implementation of similar blocks on a traditional DSP
architecture.) A full OFDM transmitter is implemented and in this
initial phase of the project the receiver processing is taken through

post-equalizer symbol demodulation. This enables a constellation
demonstration suitable for AWGN or static multipath
characterization. Provisions for frequency offset due to finite
crystal tolerances or Doppler shift are left for the next phase of
development. All data rates of 802.11g (6, 9, 12, 12, 18, 24, 36,
48, 54 Mb/s), are supported in this implementation. The Physical
layer Service Data Unit (PSDU) length may range from 1 to 4,095
octets. The target system clock frequency of the HyperX SDR
platform is set to 225 MHz. (The completion of the receiver is in
progress in the second phase of the project; more information
about this is given in section 4 below.)
 Following the steps of the FAST design process, the project
began by creating a fully functional MATLAB model of the
802.11g transmitter and receiver PHY layers. For the full PHY
layer (i.e., without the limitations in the receiver path mentioned
above), about 900 lines of MATLAB code were required, along
with about 560 lines of code to serve as test harness, debug
plotting, etc.
 From these models, bit-accurate C++ models were created
and then used for the performance and resource usage estimates.
The overall system design was developed from these estimates.
The ANSI-C / MPI coding of the functionality was produced next
and was verified to be bit-accurate to the higher level models.
 This sequence of steps from the Architectural through
Transformation to Hardware went through a series of quick
iterations as tradeoffs were made to balance resource usage,
required performance (e.g., data throughput), and computational
cost. These tradeoffs were balanced against the 225 MHz target
clock rate of the HyperX SDR platform.
 The sizes of the final modules are now given. “LOC” stands
for Lines of Code and includes not only all executable code but
also extensive in-line comments and documentation (considerably
inflating the size of the modules).

Transmitter Module LOC
Transmitter (top level) 83
Frame converter 231
Header transmission 1,148
Scrambler 511
Convolutional Encoder 1,054
Interleaver 830
Modulator 511
IFFT 930
Header data concatenation 171

Total: 5,469
Receiver Module LOC

Receiver (top level) 82
Preamble and CP deletion 116
Channel Estimation 1,115
FFT 910
Equalizer 251
Demodulator 1,075

Total: 3,549

Figure 2. 802.11g Loopback with AWGN Channel
Impairment

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 The design also included about 800 LOC representing the
interface between the PHY layer code and the HyperX Application
Development System.

3.3. Results

Following the implementation of the transmitter and receiver PHY
layers, the applications were place-and-routed in an hx2100
HyperX device. The resulting layouts are shown in Figure 1. The
transmitter (left) and receiver (right) are each shown in a
standalone verification configuration.
 To demonstrate the complete functionality simultaneously as
well as provide a means for characterizing the receiver
performance, a combined “loopback” configuration connected via
a hardware Additive White Gaussian Noise (AWGN) channel
impairment module was implemented. This layout is show in
Figure 2. The AWGN module was itself designed using the FAST
process and implemented on the HyperX SDR platform. This
module was about 640 LOC.
 Characterization runs were made with 512 octet payloads
across all data rates. Sample constellation diagrams for, left to
right, 6 Mb/s (BPSK), 24 Mb/s (16-QAM), and 54 Mb/s (64-
QAM) are shown in Figure 3. The measured Error Vector
Magnitude (EVM) for 6 Mb/s at an SNR of 5 dB was 0.338. For
24 Mb/s at an SNR of 16 dB, the EVM was 0.098 and for 54 Mb/s
at an SNR of 25 dB, the EVM was 0.014.

4. SUMMARY AND ONGOING WORK

In this paper we have presented the implementation of an 802.11g
PHY Layer Transmitter and (reduced) Receiver completely in
software as an application for the HyperX SDR Platform. The
implementation was developed using the FAST design process.
All 802.11g data rates were successfully implemented. The
project continues—the completion of those parts of the receiver
omitted in the initial phase are currently in progress.
 Other waveforms have been or are being developed for the
HyperX SDR Platform. These include strictly military waveforms
such as the Soldier Radio Waveform (SRW) and the Wideband
Networking Waveform (WNW) as well as civilian waveforms

such as the present project, 802.11g, and 802.16e. Another
example is GPS in both its civilian and military versions.
 Each waveform implementation project has provided insight
into how to improve, enhance, and extend. In particular, the next
generation of the HyperX Application Development System
(HADS2) is now undergoing board-level test. Replacing the
single HyperX device capability of the HADS1 board with a 4-, 8-,
and 16-slot backplane, HADS2 provides for up to 32 HyperX
devices in a single system. Extended I/O and GPP boards are also
being tested. In the toolset, automatic packing of concurrent tasks
into a single PE and direct compilation of Simulink models are
undergoing evaluation. We continue to improve the energy
efficiency of the HyperX architecture itself by continuing the
exploration of the tradeoff possibilities between software and
hardware.

5. REFERENCES

[1] D. Haessig, J. Hwang, S. Gallagher, M. Uhm, “Case-Study of a

Xilinx System Generator Design Flow for Rapid Development of
SDR Waveforms”, Proceedings of the SDR 05 Technical Conference
and Product Exposition, 2005.

[2] IEEE, IEEE Std 802.11-2007, IEEE, New York, NY, June 2007.
[3] IEEE, IEEE Std 802.11g-2003, IEEE, New York, NY, June 2003.
[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,

MPI: The Complete Reference, MIT Press, Cambridge, MA, Sept.
1998.

[5] C. Epifanio and M. Uhm, “The Myths of Code Portability”,
Proceedings of the SDR 07 Technical Conference and Product
Exposition, 2007.

[6] D. Rupe, “An FPGA Framework Supporting Software
Programmable Reconfiguration and Rapid Development of SDR
Applications”, Proceedings of the SDR 07 Technical Conference and
Product Exposition, 2007.

[7] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, J. Glossner,
“Software Implementation of 802.11a Blocks on Sandblaster DSP”,
Proceedings of the SDR 06 Technical Conference and Product
Exposition, 2006.

Figure 3. Sample AWGN Impaired Constellation Diagrams

	Home
	Papers by Author
	Papers by Session

