
SOFTWARE GPS IN SB3500 PROCESSOR

Daniel Iancu (Sandbridge Technologies Inc., Tarrytown, NY 10591 USA, Tampere University of
Technology, Tampere, Finland, diancu@sandbridgetech.com) Mayan Moudgill (Sandbridge
Technologies Inc., Tarrytown, NY 10591 USA, mmoudgill@sandbridgetech.com), Yuri Pogudin
(Sandbridge Technologies Inc., Tarrytown, NY 10591 USA, ypogudin@sandbridgetech.com), Hua Ye
(Sandbridge Technologies Inc., Tarrytown, NY 10591 USA, huaye@sandbridgetech.com), Andrei Iancu
(Sandbridge Technologies Inc., Tarrytown, NY 10591 USA, aiancu@sandbridgetech.com), Helena
Leppäkoski (Tampere University of Technology, Tampere, Finland, helena.leppakoski@tut.fi) ,
JarmoTakala (Tampere University of Technology, Tampere, Finland, takala@cs.tut.fi) , Emanoil
Surducan (National Institute of Research and Development for Isotopic and Molecular Technologies,
Cluj-Napoca, Romania, esurducan@gmail.com), Vasile Surducan (National Institute of Research and
Development for Isotopic and Molecular Technologies, Cluj-Napoca, Romania, vsurducan@gmail.com)
and John Glossner (Sandbridge Technologies Inc., Tarrytown, NY 10591 USA,
glossner@sandbridgetech.com)

Global Positioning Satellite (GPS) receivers have entirely
changed the way were used navigating. They are part of our
day to day life and we find them in the most common as
well as the most unexpected areas of applications ranging
from less accurate E911 to the most accurate receivers
employed in monitoring the tectonic plates movements.
Due to the computational complexity, implementing the
GPS receivers in low cost low power digital signal
processors targeting smart phones and PDAs is still
prohibitive. GPS receivers are implemented in HW,
employing multiple parallel processing channels. Each
channel is responsible for tracking and demodulating one
satellite. For economic reasons, in some applications, one
channel can be time shared for more than one satellite or, in
most expensive receivers thousands of parallel processing
channels are employed to improve the time to first fix. Also,
in multi protocol communication systems the HW
implementation becomes less attractive due to extra chip
cost and PC board area consumed. In this paper we present a
pure SW implementation of the GPS receiver, implemented
in SB3500 DSP, with time to first fix comparable if not
better then the existing, technologically most advanced GPS
receivers with the same positioning accuracy.

The received GPS signal can be viewed as a superposition
of Ns DS-CDMA signals coming from Ns visible satellites.
Each satellite has its unique signature. The receiver sees
different carrier frequency, for each satellite, due to the
Doppler effect. The GPS composite signal, for the CA cod
[1], can be represented:

The derivation of (1) is illustrated in the APPENDIX.
Without losing generality, in (1), the noise term has been
deliberately ignored for commodity. In order to extract the
payload information embedded in the composite signal, for
one satellite, we perform the following operations:
Multiply equation (1) by

Multiply equation (1) by

Add the two expressions together

=⋅













−×

×













−⋅⋅−×

×













−⋅














−⋅=

)2sin(
1

)()2cos(

1
)()(

'

'

tf
f

mtg

f

N
ktgjtstf

f
mtg

f

N
ktgtst

p

p

π

π

χ

ABSTRACT

1. INTRODUCTION

)2cos(])%[(

1
][)(

'

1

0

iipii

N

i n ik i

p
ii

tfNnnP

f
ntg

f

N
ktgkdAts

s

ϕπ +⋅+×

×







−










−=∑∑∑

−

=

+∞

−∞=

+∞

−∞= (1)

)2cos(
1' tf
f

mtg
f

N
ktg p π⋅














−⋅














−

)2sin(
1' tf
f

mtg
f

N
ktgj p π⋅














−⋅














−⋅− ,

ftj
ii

i

N

i n i

p

k

p
nki

etf
f

ntg
f

mtg

f

N
ktg

f

N
ktg

s

πϕπ

ξ

2

1

0

'
,,

)2cos(
11 −

−

=

+∞

−∞=

+∞

−∞=

+⋅







−














−×

×









−














−⋅=∑∑∑

 (2)

In (2), 1−=j , f is the carrier frequency at the transmitter,
the same for all satellites, and

Without losing generality, f can be viewed as the Local
Oscillator (LO) frequency, equal to the IF frequency in the
receiver. In equation (2) the product of pulse functions

will be nonzero only if k=k’ and m=n. For specified k=k’
and m=n there will be one single chip selected on the time
scale, as illustrated in Figure 1.
Equation (2), after summation, becomes

ftj
ii

N

i i
piiii

etf

ff
ntgNnnPkdAt

s

πϕπ

χ

2

1

0

'

)2cos(

),max(
1

])%[(][)(

−

−

=

⋅+×

×







−⋅+=∑

(3)

Figure 1 The highlighted part is the only non zero
part in equation (2).

The integral of)(tχ over the entire time axis represents the

Fourier transform of)2cos(iitf ϕπ + scaled by a constant:

After integration, keeping only the positive frequencies, for
a single satellite Equation (4) becomes:

=⋅⋅×

×+−

−⋅⋅+

=⋅+⋅+

−

⋅+

⋅

−

⋅+

⋅

−

⋅+

∫

∫

∫

ftj
i

TTn

Tn

iii

ftj
i

TTn

Tn

iii

ftj
ii

TTn

nT

ii

etfdt

nnkD

etfdtnnkD

etfdtnnkD

i

i

i

π

π

π

π

ϕ

πϕ

ϕπ

2

),max()1(

'

2

),max()1(

'

2

),max()1(

'

)2sin(

sin),(

)2cos(cos),(

)2cos(),(

−⋅⋅+= −∫ ftj
i

T

iii etfdtnnkD ππϕ 2

0

')2cos(cos),(

=⋅⋅+−

−⋅⋅++

+⋅⋅+−

−

−

−

∫

∫

∫

ftj
i

T

T
iii

ftj
i

T

T
iii

ftj
i

T

iii

etfdtnnkD

etfdtnnkD

etfdtnnkD

i

i

π

π

π

πϕ

πϕ

πϕ

2'

2'

2

0

'

)2sin(sin),(

)2cos(cos),(

)2sin(sin),(

])%[(]['
,, piiiinki NnnPkdA +=ξ









−⋅








−⋅








−⋅








−

ii

pp

f
ntg

f

N
ktg

f
mtg

f

N
ktg

11')4()2cos(

])%[(][

...)2cos(])%[(][

)2cos(])%[(][

)2cos(])%[(][

)(

)(

2
11

'
11

),max()1(

2
11

'
1111

),max()1(

2
00

'
000

),max()1(

2
1

0

'

),max()1(

),max()1(

11

1

1

0

ftj
NN

pNNN

TTn

Tn

ftj
p

TTn

Tn

ftj
po

TTn

Tn

ftj
ii

N

i
piiii

TTn

Tn

TTn

Tn

etf

NnnPkdAdt

etfNnnPkdAdt

etfNnnPkdAdt

etfNnnPkdAdt

dtt

dtt

ss

sNsss

sN

si

i

π

π

π

π

ϕπ

ϕπ

ϕπ

ϕπ

χ

χ

−
−−

−−

⋅+

⋅

−

⋅+

⋅

−

⋅+

⋅

−
−

=

⋅+

⋅

+

⋅

+∞

∞−

⋅+×

×++

+⋅+⋅++

+⋅+⋅+=

=⋅+⋅+=

==

=

−−

−

∫

∫

∫

∑∫

∫

∫

time

)(
f

N
ktg p−

)
1

(
f

ntg −

Where:

is the total error due to windowing.
For all visible satellites:

From the above expression follows that to minimize the
detection error for a particular satellite i, both conditions,

0=− iff and 0=iϕ need to be enforced. In other words,
one has to correct for the Doppler shift as well as for the
phase shift for each satellite. Coarse Doppler shift correction
value is calculated through Fourier transform while the zero
phase is enforced through a proportional integral differential
(PID) controller for example.
In HW implementation the carrier is tracked by advancing
or retarding the LO frequency and conforming to the output
of a Phase Locked Loop (PLL) circuit. The integrals in (5)
are performed in parallel, each by a separate channel. Each
channel must have its own LO, PLL and Pseudo Number
(PN) generator.
In SW, the LO is a sin-cosine real time function generator
with the frequency established, for each satellite, by the
Doppler search engine and the phase information is
provided by the proportional integral differential (PID) type
PLL as shown in Figure 2. The PN sequences are stored in
memory.

Figure 2 Sin – Cosine generation

In a multithreaded environment, all integrals in (5) are
executed in parallel. The number of virtual channels is
dynamically allocated depending on different technical or
economical criteria.

The 1575.42 MHz L1 carrier is down converted to
4.092MHz intermediate frequency and digitized, two bits
per sample, at 16.368MHz sampling rate yielding a four
times oversampled digital data. The digital samples are
transferred to the digital signal processor through one of the
high speed parallel interfaces.

The HW platform used for implementation is shown in
Figure 3.

Figure 3 HW block diagram

The based band processing is described by a state machine
partitioned in three major states as illustrated in Figure 4.
The non real time satellite search processing blocks (state 1
and 2 in the state machine flow chart) are shown in Figure 5
while the tracking is illustrated in Figure 6.

)5()(
2

sin),(

)(
2

cos),(

'

'

ii
iii

i
iii

Eff
nnkD

j

ff
nnkD

+−
+

+−
+

=

δ
ϕ

δ
ϕ

ftj
i

T

T

iii

ftj
i

T

T

iiii

etfdtnnkD

etfdtnnkDE

i

i

π

π

πϕ

πϕ

2'

2'

)2sin(sin),(

)2cos(cos),(

−

−

⋅⋅+−

−⋅⋅+=

∫

∫

)6()(
2

sin),(

)(
2

cos),(
)(

1

0

'

1

0

'1

0

∑

∑∑ ∫
−

=

−

=

−

=

+∞

∞−

−
+

+

+−
+

=

s

ss

N

i
ii

iii

N

i
i

iii
N

i

Eff
nnkD

j

ff
nnkD

dtt

δ
ϕ

δ
ϕ

χ

2. IMPLEMENTATION

Figure 4 Receiver state machine flow chart

Figure 5 Simplified block diagram of the satellite

search engine.

Figure 6 State 3 processing blocks for one of the

early, late or prompt branch

2.1. Satellite Search

Initial satellite search is performed on 7ms of collected
ADC samples (1023*16*7 samples, 2bits/sample) at
sampling rate Fs=16.368MHz. For every satellite in the
search list, a search of Doppler frequency is performed
starting from an initial Doppler frequency range of -8000Hz
to 9000Hz, with an initial Doppler search bin of 1000Hz.
Each time when a search iteration is completed, the Doppler
bin is reduced to 1/10 of the previous bin, the search for that
satellite is completed when the Doppler bin is reduced to
within 1Hz (+/- 20Hz from the true Doppler frequency
guaranties correct decoding). Each 4096 point FFT/IFFT is
performed on one millisecond worth of data and zero delay
cross correlated over 7 milliseconds [6] .
The initial coarse search will locate the satellites that have
the highest energy and will report for each satellite the
Doppler frequency shift and an approximate sample position
in one millisecond range. Since the initial search will only
provide a coarse estimate of the initial sampling position
that may not be accurate enough for the despreading
operation, a fine sampling position search, in time domain,
is performed for each detected satellite ranging a few

samples left and right from the position reported by the
initial coarse search.

2.2. Satellite Tracking

Real time satellite tracking is performed in State 3. The
receiver State 3 is the steady state that performs the
despreading operation, decoding operation and satellite
position calculation. For each active satellite, the
despreading operation is performed for 3 branches: early,
prompt and late branches concurrently. Assume that the
prompt branch takes samples from sampling position x, the
early branch will take samples from sampling position x-8,
while the late branch will take samples from sampling
position x+8. Figure 6 shows the despreading operation for
one of the three branches. The prompt branch’s I/Q outputs
are used by PLL to adjusts the LO’s phase to track the
Doppler shifts, while the DLL requires I/Q outputs from all
the early, prompt and late branches. The DLL adjusts the
sampling position for the despreading operation in order to
compensate for any sampling clock drift. The prompt
branch’s output is also fed into the preamble detection and
bit decoding.
The preamble detection will search for 2 preambles that are
6 seconds apart. Once found, the bit decoding can be started.
The decoded bits at 50bits/sec will be collected to check
CRC. For each frame of decoded bits, if all the CRC’s are
correct, the decoded frame will be used in the satellite
position calculation. Four active satellites are used for the
satellite position calculation. The final position estimation is
made through Best Linear Unbiased Estimation (BLUE) [5]
.

A software GPS receiver has been implemented on the
SB3500 SoC [4] . The SB3500 has three fixed-point DSPs
implementing the Sandblaster 2.0 architecture. Of these,
only one DSP is used for the GPS receiver. Each DSP is 4-
way multithreaded with a 16-way 16-bit SIMD unit and
256KB of local memory. Among other features, the SIMD
unit can do 4 radix-2 FFT butterflies in a single instruction.
The software GPS receiver is, in principle, a fairly direct
fixed-point implementation of the algorithm described in the
previous section. However, there were several challenges
that had to be overcome during the implementation process.
In this section, we shall describe some of them.

3.1. Memory vs. Parallelism

The SB3500 DSPs are 4-way multi-threaded. To fully
utilize these threads, we have to split the task into 4
different components that can be executed in parallel. There
are two models that can be used: independent or co-
operative. In the independent model, the task is split into

3. SW IMPLEMENTATION

disjoint portions, and each thread processes these disjoint
portions. For instance, in the case of the coarse search, each
thread could have picked 8 (i.e. ¼) of the satellites to
process for the initial Doppler bin. Alternatively, the four
threads could co-operate so that all 4 threads would work on
the same satellite.
Each model of parallelization has advantages and
disadvantages. The co-operative model requires more co-
ordination between threads, leading to cycles being used for
co-ordination rather than actually doing work. The
independent model uses more memory. For instance, if we
have four threads each doing a 4K point FFT instead of four
threads working on the same FFT, we will need roughly
four times the memory.
For states 1 & 2 of the algorithm, memory utilization
concerns compel us to use a co-operative model of
parallelization, For instance, the 4K point FFT in state 1 is
implemented by having each of the 4 threads do a 1K point
FFT, arrive at a synchronization barrier and them do the
remaining 2 radix-2 FFT stages before coming to another
synchronization barrier.
We have added special hardware on the SB3500 to decrease
the cost of co-ordination; in particular, it is possible to
implement a synchronization barrier so that all threads exit
the barrier within a few cycles of the arrival of the last
thread at the barrier.
In state 3 of the algorithm, the memory utilization is not
very high. Consequently, we have chose to have 3 threads
each track upto 4 satellites independently.

3.2. SIMD Sin/Cosine Generation

The sin/cosine generation routines must produce the
sequence e—jθn for n=0…16383 and |θ| < 0.0123 radians. To
do this efficiently, we need to be able to use the SIMD unit.
The SIMD unit uses 16 element vectors of 16-bit fixed point
numbers. These 16 element vectors can also be treated as 8
element vectors of 16-bit complex fixed point numbers.
Among other operations, the SIMD unit supports point-wise
multiplication of 2 vectors of fixed-point complex numbers,
yielding a vector of fixed-point complex numbers
The sin/cosine generation routine can be vectorized by
initially computing the vectors v0=[e-jθ0,…,e-jθ7] and m=[e-

jθ8,…,e-jθ8]. Then by repeatedly point-wise multiplying v by
m, we can compute the necessary sequence. Specifically,
after the first multiplication v8=[e-jθ8,…,e-jθ15], after the
second v16=[e-jθ16,…,e-jθ23], and so on.
One problem that arises is that for larger n, the accumulated
error from the repeated multiplications starts becoming
significant. To compensate for this, we initially compute
M=[e-jθ256,…,e-jθ256]. Instead of computing v256 as m*v248,
we compute v256 = M*v0. Similarly, we use M to compute
all vk*256.

When 4 threads co-operate to perform sin-cosine generation,
each thread is used to compute ¼ of the sequence. For

instance, to compute a sequence of length 1024, thread 0
computes e—jθn for n=0..255, thread 1 for n=256..511 and so
on. There is an small non-parallel component where the
starting vector for each thread is computed (in this case, v0,
v256, v512, and v768). After that each thread proceeds
independently to produce the 256 elements in its sub-
sequence. They finish the sequence generation by
synchronizing at a barrier.

3.3. 3rd State Implementation

In the implementation of the 3rd state, one thread does the
ephemeris calculation while the other 3 threads are used to
do the despread/satellite tracking/DLL-lock. Each of the 3
tracking threads indpendently process 1/3rd of the satellites
detected after states 1 & 2.
The DLL-lock process requires 2 additional despreading
steps for early and late. In practice it is not necessary to do
the DLL-lock process for every sampling position.
Consequently, to save compute, at each sampling position
each thread will only do the DLL-lock process for one of the
satellites it is tracking.
The thread that is doing the ephemeris computation uses
floating point so as to obtain the high accuracy needed for
the position computations. Since the SB3500 DSP has no
hardware floating point, this is done using software
emulation of floating point arithmetic.

The GPS receiver was tested in the lab using the 12-channel
Spirent 4500 as well as in the field. It can do a full sky-
search in under 2s, locating upto 12 satellites. It can further
decode the ephemeris and get a first fix in a worst case of
36s. The positioning precision of less then 10 meters with
the decoded ephemeris data and less then 3 meeters with
precise ephemeris. The total receiver sensitivity with an
18dBi active antenna is -147dBm.

In this paper, we have shown how a software defined GPS
receiver has been implemented on the SB3500 platform.
Experiments have shown that this receiver is competitive
with custom hardware solutions in terms of time-to-first-fix,
performance under adverse noise conditions and in terms of
accuracy.

6.1. GPS Signal

For one satellite, the L1 BPSK modulated signal described in
[1],[2] can be written as:

4. PERFORMANCE

5. CONCLUSIONS

6. APPENDIX

)2sin()]()([
2

1

)2cos()]()([)(

1

11

tftDtYA

tftDtPAtL

ii

ii
i

π

π

⊕+

+⊕=
 (A1)

Where: A is the amplitude, Pi is the C/A code, 1023 long,
for satellite i, f1 is the L1 carrier frequency (1.57542 MHz),
Di is the data associated with the satellite i, Yi is the P(Y)
code 10230 long and ⊕ means XOR operation.
In the time domain, for the C/A code, the composite signal
received from Ns visible satellites can be modeled using the
pulse function for windowing the chips. One full code
length has 1023 chips:

[[]

[])2()(Im][
2

1

Re])%[(
1

][)(

2

2'

1

0

AtenY

eNnnP
f

ntg

kdA
f

N
ktgts

ii

ii

s

tfj

tfj

n
pii

i

N

i
ii

k i

p

ηϕπ

ϕπ

+













⋅+

+






+







−×







×







−=

+

+
∞+

−∞=

−

=

+∞

−∞=

∑

∑ ∑

Where: g(t-mTi)=σ(t-mTi) σ[(m+1)Ti-t)], fi=1/Ti is the
carrier frequency,





<

≥
=

00

01
)(

tfor

tfor
tσ is the unit step function, d[k] is the

data in the kth millisecond, Pi[n]is the nth chip in the kth
millisecond, Ai is the amplitude for the ith satellite, % means
modulus operation and, η(t) is the thermal noise.
Equation (A2) can be rewritten as:

[][
[])3()(Im][

2

1

Re])%[(

1
][)(

2

2'

1

0

AtenY

eNnnP

f
ntg

f

N
ktgkdts

ii

ii

s

tfj

tfj
pii

N

i n ik i

p
i

ηϕπ

ϕπ

+



⋅+

+⋅++

+







−










−=

+

+

−

=

+∞

−∞=

+∞

−∞=
∑∑∑

Since we are interested only in the C/A code we assume that
the P[Y] code contribution will act as random noise and it
will be incorporated in the noise term. For the C/A code
only, (A3) will become:

[1] Elliot D. Kaplan, “Understanding GPS Principles and
Applications”, Artech House Inc. 1996.

[2] Global Positioning System Standard Positioning Service
Signal Specification, GPS NAVSTAR 2nd Edition, June 2,
1995

[3] E. O. Bringham, “The Fast Fourier Transform And Its
Applications”, Prentice-Hall Inc. 1988.

[4] M. Moudgill, J. Glossner, S. Agrawal, and G. Nacer, “The
Sandblaster 2.0 Architecture and SB3500 Implementation”,
in Proceedings of the Software Defined Radio Technical
Forum (SDR Forum '08), Washington DC, October, 2008.

[5] Steven M. Kay, “Fundamentals of Statistical Signal
Processing Estimation Theory”, PTR Prentice-Hall, Inc.,
1993

[6] Kai Borre, Dennis M. Akos, Nicolay Bertelsen, Peter
Rinder, Soren Holdt Jensen, “A Software-Defined GPS and
Galileo Receiver”, Birkhauser, Boston 2007.

)4()()2cos(])%[(

1
][)(

'

1

0

AttfNnnP

f
ntg

f

N
ktgkdts

iipii

N

i n ik i

p
i

s

ηϕπ ++⋅+×

×







−










−=∑∑∑

−

=

+∞

−∞=

+∞

−∞=

7. REFFERENCIES

	Home
	Papers by Author
	Papers by Session

