
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Figure 1: Architecture of the Flexible Baseband Processing

AN EMBEDDED CONTROLLED FLEXIBLE BASEBAND PROCESSING

APPROACH

Thomas Loewel (Bell Labs, Alcatel-Lucent Deutschland AG, Berlin, Germany;
thomas.loewel@alcatel-lucent.de); Andreas Wich (Bell Labs, Alcatel-Lucent Deutschland
AG, Stuttgart, Germany; andreas.wich@alcatel-lucent.de); Wolfgang Koenig (Bell Labs,

Alcatel-Lucent Deutschland AG, Stuttgart, Germany; wolfgang.koenig@alcatel-
lucent.de); Ferenc Noack (Bell Labs, Alcatel-Lucent Deutschland AG, Berlin, Germany;

ferenc.noack@alcatel-lucent.de); Christian Lange (Bell Labs, Alcatel-Lucent Deutschland
AG, Berlin, Germany; christian.lange@alcatel-lucent.de)

ABSTRACT

A flexible base station (FBS) is an enabling element for the
realization of cognitive radio networks. It consists of a multi
standard transceiver and a flexible baseband processing
(FBP) unit. The key features of such a FBP unit are the
support of multiple radio standard processing chains (e. g.
Universal Mobile Telecommunications System (UMTS),
Long Term Evolution (LTE)), the dynamic load balancing
between these standards, the flexible assembly of radio
functional modules and the simple extension of radio
functional modules and thus the radio standards.
 The paper describes an experimental FBP design and
the necessary applications for the control of this design. The
described design will be mainly realized with field
programmable gate arrays (FPGA) and the partial
reconfiguration (PR) technology. For that, the FPGA area
will be divided into smaller variable reconfigurable areas
and an interconnection system between these variable areas
will be presented. The flexibility of the baseband processing
can be further increased by introducing parameterization of
the functional modules where appropriate.
 A framework is required to control the FBP. The
corresponding approach presented in this paper is the
introduction of an FPGA embedded framework. This
framework operates on an embedded processor and will be
controlled by higher layer applications. The corresponding
interface based on the Object Management Group (OMG)
software radio specification will be also briefly described in
this paper. Furthermore an application for the direct control
of the framework will be introduced. This application offers
a graphical user interface (GUI) and uses the OMG-based
interface mentioned above. The last topic inside this paper is
an approach on modeling and performance analysis for
verification of flexible baseband processing systems. This
topic discusses the exploration of the design space for
flexible reconfiguration architectures.

1. INTRODUCTION

A flexible base station supports more than one radio
technology, possibly future radio technologies and should be
reconfigurable according the requirements of management
modules interacting with the FBS [1]. The FBS itself
consists of two major elements, the radio frontend and the
baseband processing. There exist a lot of flexible solutions
(e. g. regarding frequencies, radio standards, bandwidths
etc.) for both elements. For the baseband processing the
flexibility can be reached by usage of FPGAs. Assembly and
reconfiguration of the FBP chains using of FPGA is a
complex and difficult procedure. Thus, a special architecture
is needed. A possible approach is described in this paper.
The architecture for the approach consists of three major
elements [1] (see also Figure 1):
• A control application, which establishes the

communication with management modules,
• An embedded control system on the FPGA, so-called

System on a Programmable Chip (SoPC), which
controls the reconfiguration,

• An element located near by the SoPC - the FBP.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

(2)

(1)

(3)

(4)
Figure 2: Control Application Overview

2. THE CONTROL APPLICATION

The first element of the envisaged architecture is the control
application [1], [2]. This application represents an interface
between different network management applications and the
FBS. One major task of this application is the translation of
reconfiguration commands from the different management
modules into well-known FBS statements. For that, a lot of
configuration commands between the application and the
management modules are specified. Every command will be
analyzed and a set of OMG-based commands [3], [4] will be
composed. These commands (Allocate Capacity, Initiate
Load, SendSegment, Execute, Initialize, GetProvidedPorts,
ConnectPort, ConnectExternalPort, Configure, Start, Stop,
Disconnect, Release, Terminate, Unload, DeAllocate) [1],
[2] are OMG compliant with some modification regarding
the applicability with FPGAs. The control application itself
offers a GUI for the direct control and monitoring of the
FBS, see Figure 2.

 Window (1) gives an overview about all registered and
working devices. These devices can be for example
baseband processing or transmitter boards. Furthermore all
running radio modules on each baseband device are shown.
Window (2) gives a detailed overview about the current
shown radio technology (selected in the window (4)). This
overview includes the status of each module and the
interconnections between the modules. Window (4) gives an
overview over all available devices, the available radio
access technologies (RATs) and the activated RATs.
Furthermore detailed hardware information about all
available devices are shown and a dedicated RAT for the
detailed view in window (2) can be selected. Windows (1),
(2) and (4) are of status and an informational character only.
Window (3) provides direct control functionality for the
FBS. Within this window all suitable OMG-based
commands offer an easy and detailed setup of the baseband
processing chain.

3. THE SYSTEM ON A PROGRAMMABLE CHIP

The System on a Programmable Chip (Figure 3) is one
major element for the flexibility and serviceability of the
flexible baseband processing [1] and has physical interfaces
to the outside, e. g. to the control application. Currently,
especially the PCI Express and the Gigabit Ethernet
interfaces are supported by the SoPC. The master device of
the SoPC is a microprocessor (e. g. MicroBlaze or PowerPC
(PPC)). This microprocessor receives the control and
reconfiguration commands and performs measurements.
Furthermore, the microprocessor executes control and
reconfiguration commands and thus the setup and
management of the baseband processing. A special
POSIX-based Kernel, the Xilkernel [5], is running on this
system. Primarily a lot of threads are executed on this
Kernel. There are threads to communicate with higher layer
control modules, to perform load measurements, to execute
the partial reconfiguration [6], [7], to provide parameters
etc. All these threads enable the features of the whole system
and form the FPGA embedded framework.

 The Processor Local Bus (PLB) of the IBM
CoreConnect architecture [8] has been chosen as bus system
for the SoPC. Its performance is sufficient for the data
exchange between all SoPC components. This data includes
all kinds of control and measurements, but not the user data.
The user data will be processed within the baseband
processing chains and not in the SoPC. Nevertheless the
SoPC controls the baseband processing and thus indirectly
the processing of the user data.
 Besides the microprocessor a set of standard
components complete the SoPC [1]. The memory controller
for instance is needed to provide additional memory to the
system. Especially the microprocessor requires a lot of
additional memory and the SoPC internal memory is
sometimes insufficient. An important component is the
Internal Configuration Access Port (ICAP).

Figure 3: Architecture of the SoPC

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

This component performs the partial reconfiguration [6], [7]
and thus the setup of the baseband processing chains. A
special wrapper in the SoPC enables the access to this
hardware module. The System Advanced Configuration
Environment (System ACE) wrapper enables the access to
Compact Flash cards. These cards relate to local databases
and store all needed files for the normal and partial
reconfiguration. The Bus Bridge is a special intellectual
property (IP) Core for the communication between the SoPC
and the FBP chains. This communication includes, for
instance, commands for the controlled setup of radio
standard processing chains, for the reconfiguration of these
chains, for the reconfiguration of one or several radio
functional modules or for the provision of parameters.

4. THE FLEXIBLE BASEBAND PROCESSING

The baseband processing is one component for the
realization of the radio access technology. This processing
should be as flexible as possible for a FBS. A couple of
well-know architectures for the realization of the baseband
processing (see Figure 4 and Figure 5) can be considered.
 One architecture is a classical bus system, which is
good upgradeable and serviceable, but the throughput is
limited due to common bus for all radio functional modules.

 The second architecture is the classical signal
processing chain. This chain is less flexible, but the
throughput can be much higher compared to the bus system.

 One limitation of the signal processing chains is the
static assembly of the radio functional modules and thus the
fixing of a radio technology.

 One approach to bring more flexibility to this
architecture is introduction of parameterizeable radio
functional modules. Consequently some possible variations
of a radio access technology can be supported with only one
baseband processing chain.
 Another approach to bring more flexibility to the
baseband processing is the use of the partial reconfiguration
technology from Xilinx [6], [7]. For that, a static signal
processing chain will be designed. This chain has one or
more placeholders without any functionality, so-called
partial reconfiguration regions (PRRs). The embedded
microprocessor sets up a baseband processing via the ICAP
and initializes them via the Bus Bridge. All needed radio
functional modules will be placed in the PRRs. A good
design of the static chain is important to reach a maximum
of flexibility. Figure 6 shows a possible segmentation of an
FPGA into smaller PRRs.

Figure 4: Bus System

Figure 5: Signal Processing Chains

Figure 6: FPGA with PRR

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 The Segmentation considers the resources of an FPGA.
Thus there exist regions with Block RAMs (BRAMs) and
DSP48E elements, regions without DSP48E elements,
regions with needed resources regarding the PCI Express
and the Gigabit Ethernet interfaces, regions with no special
resources (logic only) etc.
 The combination of the parameterizability and the
partial reconfiguration is one key enabler of the flexible
baseband processing. These two approaches offer the
following options to setup or reconfigure a baseband
processing chain of a FBS [1], [2]:
• Setup a radio standard processing chain,
• Replace a radio standard processing chain by another,
• Change functionalities of a processing chain by

replacing several modules,
• Change parameters of a radio technology module.

 For replacement, setup or change of functionalities of a
radio standard processing chain a lot of radio modules must
be arranged and configured. Three major independent cases
can be separated [1], [2].
 The first case is related to completely different radio
modules when switching to a different radio technology. In
this case all radio modules of a chain must be changed. This
process can be done via partial reconfiguration. Thus all
other processing chains keep alive and only the addressed
processing chain has an outage period. All needed radio
modules are stored in the local module database or can be
downloaded via the control application.
 The second case is related to very common and good
customizable radio modules among different technologies.
In this case the reconfiguration can be done by changing
parameters only. The parameters will be provided by the
control application and the SoPC. The outage time in this
case is very small compared to first case. In analogy to the
first case all other processing chains will be not affected.
 The third case is a mix between the first and the second
case. One example for this case is the multiplexing in
current and future radio technologies. In UMTS the
multiplexing will be realized via Code Division Multiple
Access (CDMA). The multiplexing in Worldwide
Interoperability for Microwave Access (WiMAX) is
completely different and will be realized via the Inverse Fast
Fourier Transform (IFFT). Thus, the complete multiplexing
module must be exchanged (via partial reconfiguration, first
case) during the reconfiguration from UMTS to WiMAX. In
the same context (regarding the multiplexing module) only
the IFFT size must be configured during the reconfiguration
from WiMAX to LTE. This can be done via parameters
(second case). Figure 7 summarizes all cases and
approaches.

5. SYSTEM MODELING AND PERFORMANCE

ANALYSIS FOR VERIFICATION

5.1. System Modeling

A crucial aspect in a flexible multiple radio standard
approach is the flawless functional performance of the radio
standards. This includes the proper functionality of single
modules and the overall processing flow as well as the
meeting of real time constraints inherent to the standards.
Together with dynamic reconfiguration and a considered
hardware-based load management, this poses new challenges
to the design, verification, simulation, test and debugging of
such flexible, heterogeneous hardware systems. The
question arises how to introduce these aspects early into the
system design process and how to keep they streamlined
throughout the process. Several methodologies and
approaches exist which could be utilized to achieve this.
Most of them are utilized in the upcoming system level
design (SLD). An overview of SLD methodologies and tools
is given in [9] and a thorough consideration of the approach
is presented in [10]. In short, a good modeling approach
must guide us through most of the design process, must be
able to support different abstraction levels within one model
and allows for successive model refinement, must include
functional, functional timing and if necessary hardware
timing aspects, includes the separation of
functionality/computation and communication and should
allow us to automatically verify the design against specified
properties and constraints. Finally, generation of code for a
given hardware platform, with the possibility of exploiting
different architectural options (“design space exploration”
(DSE)) would complete the “perfect” modeling approach.
 As for today, no single modeling methodology or tool is
known that supports this. Still many commercial and
academic tools and languages exist that cover this or parts of
this approach, e. g. Berkeley’s Ptolemy [11], which includes
modeling and model execution of concurrent real-time
embedded systems.
 In a pragmatic approach, existing languages like
SystemC, VHDL or SystemVerilog [12] could be used for
this purpose, since they allow for abstracted modeling even
of analog and mixed signal components (VHDL-AMS).

Figure 7: Flexible Baseband Processing Chain

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Still there is a strong focus on (hardware-)implementation of
those languages which makes it difficult and
time-consuming to use them on system level and for
abstracted multi-level designs.
 So in general, working with a system level model leaves
us with nothing executable but has the “little-change-big-
impact” potential. Also, good performance estimation is
difficult to achieve since most of the system’s performance
is determined by the translation to architecture, both
software and hardware, with potentially many possible
implementation tradeoffs options like complexity vs.
throughput. Once we have an implementation on a platform,
changes are tedious, time consuming and error prone. Our
requirement on system modeling and verification, especially
in terms of performance analysis, thus is to include
architectural aspects in a functional model.
 A language which is capable of modeling structure and
behavior, is extensible (profiles), well supported and easy
enough to use is Unified Modeling Language (UML) 2.0
[13]. Various profiles for UML exist (e. g. for Scheduling,
Time, and Synchronization) and even a profile for platform
independent executable UML models has been defined.
Since many UML tools support the XML Metadata
Interchange (XMI) exchange standard (which is Extensible
Markup Language (XML)), processing of models generated
from different tools is possible. It has been proposed [14] to
use UML and executable UML for System on Chip
hardware-software-co-design and early behavioral modeling.

5.2. Performance Analysis

Our reconfiguration methodology is based on the unification
of the replacement of a processing functionality within a
processing flow (e. g. a chain with streaming processing).
The two considered main aspects in our work were the
parameterization of radio modules and the partial
reconfiguration of an FPGA area with a partial bit stream.
Analog to the well known task manager/scheduler in
operating systems, we define states and a flow in such a
system reconfiguration process, see Figure 8.

 Also, for modeling the interface of the processing and
eventually the processing itself activity diagrams can be
used. Figure 9 shows the control flow model of an input
interface which is able to exhibit the behavior of several
interface varieties, e. g. single token input, streaming input
and even double buffered/multiple data input.

 A similar model can be used for the output of the
function. Processing is triggered as soon as an appropriate
data element was received. Note that buffers have to be
modeled separately as processing elements. Annotating
these models with time aspects and constraints, e. g.
processing time, interface data rate, reconfiguration, and
parameterization and initialization time allows for static and
dynamic performance analysis, either by using tools for
converting UML models to executable models or by
transforming the models (semi-)manually to e. g. SystemC.
 We have to explore and analyze the processing flow
including dynamic reconfiguration by partial reconfiguration
or parameterization, and evaluate different architectural
realizations of modules. The processing time of a module
can very often be estimated quite well, even for different
module architectures, or the designs already exist (in
different variations e. g. IP Cores) and their performance
numbers are known. That leaves us with the reconfiguration
or parameterization times and the respective initialization
times as unknown factors. Initialization in the case of partial
reconfiguration is an important factor for a safety-aware
design. Ensuring that the module has been deployed
correctly and is ready for processing is a vital part of the
PR-concept. Many different approaches exist to this, from
the processing of test data an its comparison to the known
correct result to simply employing a small shift register with
a known sequence that has to be sampled correctly after
module loading. When setting parameters of a
parameterizeable module, it’s possible that the module has
to do some calculations, e. g. of matrices, which may take
several cycles. Note that it’s possible that a PR module also
has to be parameterized before it becomes functional.
 For analysis we assume the following parameters: the
FPGAs partial reconfiguration bus is 32 bit wide and runs at
100 MHz, giving 3.2 Gbps reconfiguration rate.

Figure 8: Configuration States of a Reconfigurable Module

Figure 9: Activity Model of a Flexible Input Interface

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

In order to estimate the partial bit stream size for an FPGA
we first have to estimate the resources needed for the
intended functionality. A major role plays the required
number of lookup tables, flip-flops but most of all DSP48E
elements and BRAMs. Usually, these numbers can be
estimated quite well even for different implementation
solutions. Once those estimates exist, the actual partial bit
stream length for the estimation can be obtained by using the
PR-toolset, which allows for defining an area containing the
estimated resources and returns the matching partial bit
stream length. A rough estimate is also possible by taking
into account the FPGAs configuration architecture, an
approach which we will omit here.
 Our proposed parameterization bus is an 8 bit wide bus
running at 100 MHz for minimum resource usage. This
results in a data rate of 800 Mbps. It is sensible to have one
bus for each functional complex which has to be
parameterized, but of course it could also be used for all
chains and modules commonly. Overhead is introduced on
the bus for addressing and verification flows. For now we
assume that we need 2 bytes per transfer for addressing, one
byte length field and a “turnaround” byte that flows from the
parameterized module to the control and marks the end of
the transmission. In total that gives 4 bytes + data length per
transfer. The equivalent net message rate, assuming four 32
bit registers will be configured per message, then is 5
million messages per second or a message every 200 ns. In a
timeframe of 0.1 ms this translates to 500 configuration
messages. With these numbers introduced into our models
we achieve an early system verification and performance
analysis.

6. CONCLUSION

In this paper an approach for a flexible base station,
especially for the flexible baseband processing was
presented. The introduced architecture consists mainly of
three elements. The combination of these elements paired
with additional approaches inside these elements offers the
possibility for a dynamic load balancing between radio
standards, for the flexible assembly of radio functional
modules and the simple extension of radio functional
modules and thus the radio standards.
 Furthermore a systematic approach to modeling and
performance analysis of a flexibly reconfigurable baseband
processing was derived. Possible modeling solutions have
been evaluated and an approach to modeling of partial
reconfiguration, parameterization and processing flow,
including timing aspects and using UML, was proposed.
Timing aspects for reconfiguration were discussed and
realistic parameters have been given.

7. ACKNOWLEDGMENT

This work was partly performed in the MxMobile project,
which has received research funding from the Federal
Ministry of Education and Research, respectively. This
paper reflects only the authors' views and the Community is
not liable for any use that may be made of the information
contained therein. The contributions of colleagues from the
project consortia are hereby acknowledged.

8. REFERENCES

[1] T. Loewel, F. Noack, C. Lange, V. Mérat, A. Sanchez, P.

Magdalinos, D. Makris, C. Tsilopoulos, N. Koutsouris, J.
Pérez-Romero, “E3 White Paper: FBS and SDR platforms for
integration in the E3 prototyping environment,” May 2009.

[2] P. Magdalinos, S. Panagiotis, N. Koutsouris, P. Demestichas,
A. Saatsakis, D. Petromanolakis, J. Pérez-Romero, O. Sallent,
V. Mérat, T. Loewel, F. Noack, C. Lange, J. Gebert, A.
Sanchez, Z. Feng, Q. Zhang, B. Mouhouche, “E3 Deliverable
D6.2: First version of E3 Prototyping environment; Scenarios,
interfaces for integration of cognitive systems,” December
2008.

[3] “Component Document Type Definitions Specification, v1.0,
OMG Available Specification,” March 2007;
http://www.omg.org/docs/formal/07-03-03.pdf

[4] “Component Framework Specification, OMG Available
Specification,” March 2007;
http://www.omg.org/docs/formal/07-03-04.pdf

[5] XILINX, “OS and Libraries Document Collection,” June
2009, http://www.xilinx.com/support/documentation/
sw_manuals/xilinx11/oslib_rm.pdf

[6] M. Goosman, N. Doraiaj, E. Shiflet, “How to take advantage
of partial reconfiguration in FPGA designs,”
http://www.pldesignline.com/showArticle.jhtml;jsessionid=Y
2RD52UELAFRWQSNDLPCKH0CJUNN2JVN?articleID=1
79100555&queryText=partial+reconfiguration

[7] E. Shiflet, L. Hansen, “Using FPGA partial reconfiguration
capability to mitigate design variability,”
http://www.pldesignline.com/showArticle.jhtml;jsessionid=Y
2RD52UELAFRWQSNDLPCKH0CJUNN2JVN?articleID=1
84428547&queryText=partial+reconfiguration

[8] Rudolf Usselmann, “OpenCores SoC Bus Review,” Rev. 1.0,
January 2001.

[9] D. Densmore, A. Sangiovanni-Vincentelli, R. Passerone, “A
Platform-Based Taxonomy for ESL Design,” IEEE Design &
Test of Computers, pp. 359-374, Oct. 2006.

[10] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning
About the Trends and Challenges of System Level Design,”
Proceedings of the IEEE, Vol. 95, No. 3, pp. 467-506, March
2007.

[11] The Ptolemy Project, http://ptolemy.eecs.berkeley.edu/
[12] http://www.systemverilog.org/
[13] http://www.uml.org/
[14] S.J. Mellor, J.R. Wolfe, C. McCausland, “Why systems-on-

chip needs more UML like a hole in the head,” Proceedings of
the Design, Automation and Test in Europe, Vol. 2, pp. 834 -
835, 2005.

	Home
	Papers by Author
	Papers by Session

