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Figure 1: Architecture of the Flexible Baseband Processing 
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ABSTRACT 
 
A flexible base station (FBS) is an enabling element for the 
realization of cognitive radio networks. It consists of a multi 
standard transceiver and a flexible baseband processing 
(FBP) unit. The key features of such a FBP unit are the 
support of multiple radio standard processing chains (e. g. 
Universal Mobile Telecommunications System (UMTS), 
Long Term Evolution (LTE)), the dynamic load balancing 
between these standards, the flexible assembly of radio 
functional modules and the simple extension of radio 
functional modules and thus the radio standards. 
 The paper describes an experimental FBP design and 
the necessary applications for the control of this design. The 
described design will be mainly realized with field 
programmable gate arrays (FPGA) and the partial 
reconfiguration (PR) technology. For that, the FPGA area 
will be divided into smaller variable reconfigurable areas 
and an interconnection system between these variable areas 
will be presented. The flexibility of the baseband processing 
can be further increased by introducing parameterization of 
the functional modules where appropriate. 
 A framework is required to control the FBP. The 
corresponding approach presented in this paper is the 
introduction of an FPGA embedded framework. This 
framework operates on an embedded processor and will be 
controlled by higher layer applications. The corresponding 
interface based on the Object Management Group (OMG) 
software radio specification will be also briefly described in 
this paper. Furthermore an application for the direct control 
of the framework will be introduced. This application offers 
a graphical user interface (GUI) and uses the OMG-based 
interface mentioned above. The last topic inside this paper is 
an approach on modeling and performance analysis for 
verification of flexible baseband processing systems. This 
topic discusses the exploration of the design space for 
flexible reconfiguration architectures. 

1. INTRODUCTION 
 
A flexible base station supports more than one radio 
technology, possibly future radio technologies and should be 
reconfigurable according the requirements of management 
modules interacting with the FBS [1]. The FBS itself 
consists of two major elements, the radio frontend and the 
baseband processing. There exist a lot of flexible solutions 
(e. g. regarding frequencies, radio standards, bandwidths 
etc.) for both elements. For the baseband processing the 
flexibility can be reached by usage of FPGAs. Assembly and 
reconfiguration of the FBP chains using of FPGA is a 
complex and difficult procedure. Thus, a special architecture 
is needed. A possible approach is described in this paper. 
The architecture for the approach consists of three major 
elements [1] (see also Figure 1): 
• A control application, which establishes the 

communication with management modules, 
• An embedded control system on the FPGA, so-called 

System on a Programmable Chip (SoPC), which 
controls the reconfiguration, 

• An element located near by the SoPC - the FBP. 
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Figure 2: Control Application Overview 

2. THE CONTROL APPLICATION 
 
The first element of the envisaged architecture is the control 
application [1], [2]. This application represents an interface 
between different network management applications and the 
FBS. One major task of this application is the translation of 
reconfiguration commands from the different management 
modules into well-known FBS statements. For that, a lot of 
configuration commands between the application and the 
management modules are specified. Every command will be 
analyzed and a set of OMG-based commands [3], [4] will be 
composed. These commands (Allocate Capacity, Initiate 
Load, SendSegment, Execute, Initialize, GetProvidedPorts, 
ConnectPort, ConnectExternalPort, Configure, Start, Stop, 
Disconnect, Release, Terminate, Unload, DeAllocate) [1], 
[2] are OMG compliant with some modification regarding 
the applicability with FPGAs. The control application itself 
offers a GUI for the direct control and monitoring of the 
FBS, see Figure 2. 

 
 Window (1) gives an overview about all registered and 
working devices. These devices can be for example 
baseband processing or transmitter boards. Furthermore all 
running radio modules on each baseband device are shown. 
Window (2) gives a detailed overview about the current 
shown radio technology (selected in the window (4)). This 
overview includes the status of each module and the 
interconnections between the modules. Window (4) gives an 
overview over all available devices, the available radio 
access technologies (RATs) and the activated RATs. 
Furthermore detailed hardware information about all 
available devices are shown and a dedicated RAT for the 
detailed view in window (2) can be selected. Windows (1), 
(2) and (4) are of status and an informational character only. 
Window (3) provides direct control functionality for the 
FBS. Within this window all suitable OMG-based 
commands offer an easy and detailed setup of the baseband 
processing chain. 

3. THE SYSTEM ON A PROGRAMMABLE CHIP 
 
The System on a Programmable Chip (Figure 3) is one 
major element for the flexibility and serviceability of the 
flexible baseband processing [1] and has physical interfaces 
to the outside, e. g. to the control application. Currently, 
especially the PCI Express and the Gigabit Ethernet 
interfaces are supported by the SoPC. The master device of 
the SoPC is a microprocessor (e. g. MicroBlaze or PowerPC 
(PPC)). This microprocessor receives the control and 
reconfiguration commands and performs measurements. 
Furthermore, the microprocessor executes control and 
reconfiguration commands and thus the setup and 
management of the baseband processing. A special  
POSIX-based Kernel, the Xilkernel [5], is running on this 
system. Primarily a lot of threads are executed on this 
Kernel. There are threads to communicate with higher layer 
control modules, to perform load measurements, to execute 
the partial reconfiguration [6], [7], to provide parameters 
etc. All these threads enable the features of the whole system 
and form the FPGA embedded framework. 

 
 The Processor Local Bus (PLB) of the IBM 
CoreConnect architecture [8] has been chosen as bus system 
for the SoPC. Its performance is sufficient for the data 
exchange between all SoPC components. This data includes 
all kinds of control and measurements, but not the user data. 
The user data will be processed within the baseband 
processing chains and not in the SoPC. Nevertheless the 
SoPC controls the baseband processing and thus indirectly 
the processing of the user data.  
 Besides the microprocessor a set of standard 
components complete the SoPC [1]. The memory controller 
for instance is needed to provide additional memory to the 
system. Especially the microprocessor requires a lot of 
additional memory and the SoPC internal memory is 
sometimes insufficient. An important component is the 
Internal Configuration Access Port (ICAP). 

Figure 3: Architecture of the SoPC 



Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

This component performs the partial reconfiguration [6], [7] 
and thus the setup of the baseband processing chains. A 
special wrapper in the SoPC enables the access to this 
hardware module. The System Advanced Configuration 
Environment (System ACE) wrapper enables the access to 
Compact Flash cards. These cards relate to local databases 
and store all needed files for the normal and partial 
reconfiguration. The Bus Bridge is a special intellectual 
property (IP) Core for the communication between the SoPC 
and the FBP chains. This communication includes, for 
instance, commands for the controlled setup of radio 
standard processing chains, for the reconfiguration of these 
chains, for the reconfiguration of one or several radio 
functional modules or for the provision of parameters. 
 

4. THE FLEXIBLE BASEBAND PROCESSING 
 
The baseband processing is one component for the 
realization of the radio access technology. This processing 
should be as flexible as possible for a FBS. A couple of  
well-know architectures for the realization of the baseband 
processing (see Figure 4 and Figure 5) can be considered.  
 One architecture is a classical bus system, which is 
good upgradeable and serviceable, but the throughput is 
limited due to common bus for all radio functional modules. 

 
 The second architecture is the classical signal 
processing chain. This chain is less flexible, but the 
throughput can be much higher compared to the bus system. 

 
 One limitation of the signal processing chains is the 
static assembly of the radio functional modules and thus the 
fixing of a radio technology. 

 One approach to bring more flexibility to this 
architecture is introduction of parameterizeable radio 
functional modules. Consequently some possible variations 
of a radio access technology can be supported with only one 
baseband processing chain. 
 Another approach to bring more flexibility to the 
baseband processing is the use of the partial reconfiguration 
technology from Xilinx [6], [7]. For that, a static signal 
processing chain will be designed. This chain has one or 
more placeholders without any functionality, so-called 
partial reconfiguration regions (PRRs). The embedded 
microprocessor sets up a baseband processing via the ICAP 
and initializes them via the Bus Bridge. All needed radio 
functional modules will be placed in the PRRs. A good 
design of the static chain is important to reach a maximum 
of flexibility. Figure 6 shows a possible segmentation of an 
FPGA into smaller PRRs.  

 

Figure 4: Bus System 

Figure 5: Signal Processing Chains 

Figure 6: FPGA with PRR 
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 The Segmentation considers the resources of an FPGA. 
Thus there exist regions with Block RAMs (BRAMs) and 
DSP48E elements, regions without DSP48E elements, 
regions with needed resources regarding the PCI Express 
and the Gigabit Ethernet interfaces, regions with no special 
resources (logic only) etc. 
 The combination of the parameterizability and the 
partial reconfiguration is one key enabler of the flexible 
baseband processing. These two approaches offer the 
following options to setup or reconfigure a baseband 
processing chain of a FBS [1], [2]: 
• Setup a radio standard processing chain, 
• Replace a radio standard processing chain by another, 
• Change functionalities of a processing chain by 

replacing several modules, 
• Change parameters of a radio technology module. 
 
 For replacement, setup or change of functionalities of a 
radio standard processing chain a lot of radio modules must 
be arranged and configured. Three major independent cases 
can be separated [1], [2]. 
 The first case is related to completely different radio 
modules when switching to a different radio technology. In 
this case all radio modules of a chain must be changed. This 
process can be done via partial reconfiguration. Thus all 
other processing chains keep alive and only the addressed 
processing chain has an outage period. All needed radio 
modules are stored in the local module database or can be 
downloaded via the control application.  
 The second case is related to very common and good 
customizable radio modules among different technologies. 
In this case the reconfiguration can be done by changing 
parameters only. The parameters will be provided by the 
control application and the SoPC. The outage time in this 
case is very small compared to first case. In analogy to the 
first case all other processing chains will be not affected. 
 The third case is a mix between the first and the second 
case. One example for this case is the multiplexing in 
current and future radio technologies. In UMTS the 
multiplexing will be realized via Code Division Multiple 
Access (CDMA). The multiplexing in Worldwide 
Interoperability for Microwave Access (WiMAX) is 
completely different and will be realized via the Inverse Fast 
Fourier Transform (IFFT). Thus, the complete multiplexing 
module must be exchanged (via partial reconfiguration, first 
case) during the reconfiguration from UMTS to WiMAX. In 
the same context (regarding the multiplexing module) only 
the IFFT size must be configured during the reconfiguration 
from WiMAX to LTE. This can be done via parameters 
(second case). Figure 7 summarizes all cases and 
approaches. 
 
 
 

 
5. SYSTEM MODELING AND PERFORMANCE 

ANALYSIS FOR VERIFICATION 
 
5.1. System Modeling 
 
A crucial aspect in a flexible multiple radio standard 
approach is the flawless functional performance of the radio 
standards. This includes the proper functionality of single 
modules and the overall processing flow as well as the 
meeting of real time constraints inherent to the standards. 
Together with dynamic reconfiguration and a considered 
hardware-based load management, this poses new challenges 
to the design, verification, simulation, test and debugging of 
such flexible, heterogeneous hardware systems. The 
question arises how to introduce these aspects early into the 
system design process and how to keep they streamlined 
throughout the process. Several methodologies and 
approaches exist which could be utilized to achieve this. 
Most of them are utilized in the upcoming system level 
design (SLD). An overview of SLD methodologies and tools 
is given in [9] and a thorough consideration of the approach 
is presented in [10]. In short, a good modeling approach 
must guide us through most of the design process, must be 
able to support different abstraction levels within one model 
and allows for successive model refinement, must include 
functional, functional timing and if necessary hardware 
timing aspects, includes the separation of 
functionality/computation and communication and should 
allow us to automatically verify the design against specified 
properties and constraints. Finally, generation of code for a 
given hardware platform, with the possibility of exploiting 
different architectural options (“design space exploration” 
(DSE)) would complete the “perfect” modeling approach. 
 As for today, no single modeling methodology or tool is 
known that supports this. Still many commercial and 
academic tools and languages exist that cover this or parts of 
this approach, e. g. Berkeley’s Ptolemy [11], which includes 
modeling and model execution of concurrent real-time 
embedded systems. 
 In a pragmatic approach, existing languages like 
SystemC, VHDL or SystemVerilog [12] could be used for 
this purpose, since they allow for abstracted modeling even 
of analog and mixed signal components (VHDL-AMS).  

Figure 7: Flexible Baseband Processing Chain 
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Still there is a strong focus on (hardware-)implementation of 
those languages which makes it difficult and  
time-consuming to use them on system level and for 
abstracted multi-level designs. 
 So in general, working with a system level model leaves 
us with nothing executable but has the “little-change-big-
impact” potential. Also, good performance estimation is 
difficult to achieve since most of the system’s performance 
is determined by the translation to architecture, both 
software and hardware, with potentially many possible 
implementation tradeoffs options like complexity vs. 
throughput. Once we have an implementation on a platform, 
changes are tedious, time consuming and error prone. Our 
requirement on system modeling and verification, especially 
in terms of performance analysis, thus is to include 
architectural aspects in a functional model. 
 A language which is capable of modeling structure and 
behavior, is extensible (profiles), well supported and easy 
enough to use is Unified Modeling Language (UML) 2.0 
[13]. Various profiles for UML exist (e. g. for Scheduling, 
Time, and Synchronization) and even a profile for platform 
independent executable UML models has been defined. 
Since many UML tools support the XML Metadata 
Interchange (XMI) exchange standard (which is Extensible 
Markup Language (XML)), processing of models generated 
from different tools is possible. It has been proposed [14] to 
use UML and executable UML for System on Chip 
hardware-software-co-design and early behavioral modeling. 
 
5.2. Performance Analysis 
 
Our reconfiguration methodology is based on the unification 
of the replacement of a processing functionality within a 
processing flow (e. g. a chain with streaming processing). 
The two considered main aspects in our work were the 
parameterization of radio modules and the partial 
reconfiguration of an FPGA area with a partial bit stream. 
Analog to the well known task manager/scheduler in 
operating systems, we define states and a flow in such a 
system reconfiguration process, see Figure 8. 

 Also, for modeling the interface of the processing and 
eventually the processing itself activity diagrams can be 
used. Figure 9 shows the control flow model of an input 
interface which is able to exhibit the behavior of several 
interface varieties, e. g. single token input, streaming input 
and even double buffered/multiple data input. 

 
 A similar model can be used for the output of the 
function. Processing is triggered as soon as an appropriate 
data element was received. Note that buffers have to be 
modeled separately as processing elements. Annotating 
these models with time aspects and constraints, e. g. 
processing time, interface data rate, reconfiguration, and 
parameterization and initialization time allows for static and 
dynamic performance analysis, either by using tools for 
converting UML models to executable models or by 
transforming the models (semi-)manually to e. g. SystemC. 
 We have to explore and analyze the processing flow 
including dynamic reconfiguration by partial reconfiguration 
or parameterization, and evaluate different architectural 
realizations of modules. The processing time of a module 
can very often be estimated quite well, even for different 
module architectures, or the designs already exist (in 
different variations e. g. IP Cores) and their performance 
numbers are known. That leaves us with the reconfiguration 
or parameterization times and the respective initialization 
times as unknown factors. Initialization in the case of partial 
reconfiguration is an important factor for a safety-aware 
design. Ensuring that the module has been deployed 
correctly and is ready for processing is a vital part of the  
PR-concept. Many different approaches exist to this, from 
the processing of test data an its comparison to the known 
correct result to simply employing a small shift register with 
a known sequence that has to be sampled correctly after 
module loading. When setting parameters of a 
parameterizeable module, it’s possible that the module has 
to do some calculations, e. g. of matrices, which may take 
several cycles. Note that it’s possible that a PR module also 
has to be parameterized before it becomes functional. 
 For analysis we assume the following parameters: the 
FPGAs partial reconfiguration bus is 32 bit wide and runs at 
100 MHz, giving 3.2 Gbps reconfiguration rate.  

Figure 8: Configuration States of a Reconfigurable Module 

Figure 9: Activity Model of a Flexible Input Interface 
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In order to estimate the partial bit stream size for an FPGA 
we first have to estimate the resources needed for the 
intended functionality. A major role plays the required 
number of lookup tables, flip-flops but most of all DSP48E 
elements and BRAMs. Usually, these numbers can be 
estimated quite well even for different implementation 
solutions. Once those estimates exist, the actual partial bit 
stream length for the estimation can be obtained by using the 
PR-toolset, which allows for defining an area containing the 
estimated resources and returns the matching partial bit 
stream length. A rough estimate is also possible by taking 
into account the FPGAs configuration architecture, an 
approach which we will omit here. 
 Our proposed parameterization bus is an 8 bit wide bus 
running at 100 MHz for minimum resource usage. This 
results in a data rate of 800 Mbps. It is sensible to have one 
bus for each functional complex which has to be 
parameterized, but of course it could also be used for all 
chains and modules commonly. Overhead is introduced on 
the bus for addressing and verification flows. For now we 
assume that we need 2 bytes per transfer for addressing, one 
byte length field and a “turnaround” byte that flows from the 
parameterized module to the control and marks the end of 
the transmission. In total that gives 4 bytes + data length per 
transfer. The equivalent net message rate, assuming four 32 
bit registers will be configured per message, then is 5 
million messages per second or a message every 200 ns. In a 
timeframe of 0.1 ms this translates to 500 configuration 
messages. With these numbers introduced into our models 
we achieve an early system verification and performance 
analysis. 
 

6. CONCLUSION 
 
In this paper an approach for a flexible base station, 
especially for the flexible baseband processing was 
presented. The introduced architecture consists mainly of 
three elements. The combination of these elements paired 
with additional approaches inside these elements offers the 
possibility for a dynamic load balancing between radio 
standards, for the flexible assembly of radio functional 
modules and the simple extension of radio functional 
modules and thus the radio standards.  
 Furthermore a systematic approach to modeling and 
performance analysis of a flexibly reconfigurable baseband 
processing was derived. Possible modeling solutions have 
been evaluated and an approach to modeling of partial 
reconfiguration, parameterization and processing flow, 
including timing aspects and using UML, was proposed. 
Timing aspects for reconfiguration were discussed and 
realistic parameters have been given. 
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