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ABSTRACT 
 
The Fast Fourier Transform (FFT) plays a central role in 
OFDM systems, and for today's high-speed waveforms 
a parallel HW-implementation of it , either in ASICs or 
FPGAs,  is often imperative.  OFDM systems frequently 
employ so-called "Real-Valued FFTs" which exploit that the 
time-sequence is real-valued and the frequency-sequence is 
conjugate complex. In addition a parallel/serial conversion 
has to be performed to accommodate the discrepancy 
between serial sample streams and the block processing 
nature of the FFT. Pipeline architectures for the FFT 
perform the required parallel/serial conversion as a by-
product and lend themselves to efficient HW-
implementations. 
The Cooley Tukey FFT of length N=2ν, ν integer, is one of 
the most widespread FFT algorithms for OFDM systems 
and allows for an efficient pipeline implementation. In this 
paper it will be shown that a different algorithm, the Bruun-
FFT of length N=2ν, ν integer, also lends itself to a very 
efficient pipeline architecture that exhibits chip area savings 
of up to 50% over the Cooley Tukey FFT. 
 

1. INTRODUCTION 
 
OFDM systems use the IDFT/DFT transform pair to 
generate a multicarrier modulation signal with very high 
spectral efficiency [1].  
The N-point discrete Fourier Transform (DFT) is defined by 
the transform of the time sequence fn into the frequency 
domain FN,m via 
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Besides its spectral efficiency another asset of DFT-based 
OFDM is the simple equalization process which can be 
performed by a single complex multiplication per frequency 
bin. This type of equalization is possible if either the 

channel itself or the signal to be convolved with the channel 
is cyclic. While a cyclic channel does not exist in the RF-
domain a cyclic signal can be mimicked by prepending a 
cyclic prefix having the length of the linear channel impulse 
response minus one. Employing a cyclic prefix offers the 
capability to exploit multipath signal reflections rather than 
suffering from them. These benefits along with the 
possibility to compute the IDFT and DFT with fast and 
efficient algorithms, called FFT-algorithms, have made 
OFDM the modulation method of choice for many modern 
wireless communication systems, especially in urban 
environments where multipath reflections abound. Several of 
these communication systems are listed in Table 1 along 
with the number of tones, i.e. carriers, that are used. 
 
Table 1: No. of carriers for various wireless OFDM-
based standards [2], [3]. 

Standard No. of carriers 
DAB 192, 384, 768, 1536 
DRM 181, 203 
DVB-T 2048, 4096, 8192 
WLAN, HiperLAN 52 
WiMAX 256, 2048 

By approach the FFT/IFFT is a block oriented computation 
which, in the case of OFDM transmission, requires a serial 
data input stream to be parallelized before it can be 
transformed by the IFFT. Prior to transmission the parallel 
time samples rendered by the IFFT must be serialized again. 
The reverse is true for the FFT and signal reception. Fig. 1 
depicts a simplified OFDM system illustrating the 
parallelization, transformation and serialization of data for 
transmission and reception. 
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Figure 1: Simplified block diagram of the OFDM signal 
processing portion.

2. THE COOLEY-TUKEY-FFT AND ITS PIPELINE 
IMPLEMENTATION 

 
A class of very efficient FFT-algorithms have transform 
lengths of N=2ν, ν integer, with the Cooley-Tukey-FFT, or 
CT-FFT, representing one of its most often used 
implementation variants [4]. Besides its favourable 
complexity and numerical properties a pipeline architecture 
[4] for the CT-FFT exists which not only allows for a HW-
efficient implementation but also yields the required serial to 
parallel and parallel to serial data conversion as a by-
product. Fig. 2 shows the pipeline architecture for the CT-
FFT for N=2ν(left hand side) and its CT-IFFT counterpart 
(right hand side). The architecture consists of delay elements 
z–(N/n), twiddle-factor multipliers Wn

k, adders, and switches. 
For the FFT the switch S1 switches periodically between the 
upper and lower position. The transition from one switch 
position to the next occurs after N/2 time samples. The 

subsequent switches SW2, SW3, etc. change between 
straight through and crisscross positions with the switching 
frequency doubling from stage to stage. 

Figure 2: Cooley-Tukey-Pipeline for transform length 
N=2ν.

An important property of an OFDM-signal to be transmitted 
is that its samples are real-valued. To this end the frequency 
domain signal must be conjugate complex according to  

*
,, mNmNN FF =−

where the superscripted asterisk denotes complex 
conjugation. This symmetry property requires the IDFT 
transform length N to be twice the number of complex input 
data. 
Fortunately a group of FFT algorithms - called “Real-
Valued FFTs” [5] - exists which exploit the symmetry 
properties ensuing from the real-valued time signal and 
complex conjugate frequency domain signal. One of these 
algorithms – the Bruun-FFT [6] - also lends itself to a 
pipeline implementation. 
 



Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

3. BRUUN-FFT AND ITS PIPELINE 
IMPLEMENTATION 

 
The pipeline implementation of the Bruun-FFT algorithm, 
which has been introduced in [7], is depicted in Fig. 3. 
 

Figure 3: Bruun-pipeline for the transform length N=2ν.

Note that in contrast to the CT-pipeline, delay elements, 
twiddle-factor multipliers, adders, and switches, only have to 
deal with real-valued signals while most of its counterparts 
in the CT-FFT have to process complex values. The benefit 
is that a significantly lower number of HW-components are 
sufficient for the Bruun-FFT. The savings will be quantified 
in chapter 4. 
 

4. VLSI IMPLEMENTATION EFFORT 
 
The intent of this chapter is to estimate the chip area 
required for a full-fledged VLSI-implementation of both the 
CT- and Bruun-pipeline. In order to achieve this task four 
steps have to be taken: 

1. The number of processing elements has to be 
computed. 

2. An error analysis has to be performed so that the 
chip area estimation can be made on an equal basis 
in terms of computational accuracy. 

3. A VLSI model has to be defined for each 
processing element including the interconnections 
between them. 

4. The chip area for the entire pipeline has to be 
estimated by utilizing the information gained in the 
three previous steps.  

 
4.1 NUMBER OF PROCESSING ELEMENTS FOR 

THE CT- PIPELINE 
 
The counting of the processing elements is done by 
regarding the FFT-version of the pipeline. The IFFT-
pipeline is dual to the FFT and hence exhibits exactly the 
same number of processing elements. 
The number of real-valued non-trivial multipliers for the 
CT-pipeline amounts to  
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assuming that a complex multiplication requires 4 real 
multiplications and two additions. 
 
The number of real-valued non-trivial adders is 

( ) 216 +−⋅= νaddn
considering that the first stage has a real input signal and 
hence requires only two real adders while all the following 
stages require complex additions and an additional two 
additions from the complex multiplication. 
 
The number of real-valued delay elements sums up to 
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Note that the first N delay elements in the FFT are real-
valued. 
 
Finally, the number of real-valued non-trivial twiddle factor 
coefficients to be stored is  
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assuming that each twiddle factor multiplier has its own 
twiddle factor storage and considering all the symmetries of 
real and imaginary part of the coefficients. 
 

4.2 NUMBER OF PROCESSING ELEMENTS FOR 
THE BRUUN- PIPELINE 

 
As for the CT-pipeline the number of processing elements 
for the Bruun-pipeline is given in the following: 
the number of real-valued non-trivial multipliers amounts to  

ν=multn

The number of real-valued non-trivial adders is given by 
( ) ( )14424 −⋅=+−⋅= ννaddn

The number of real-valued delay elements, assuming ν ≥ 3, 
is 
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counting the series of the upper, the middle and the lower 
delay. 
 
Finally, the number of real-valued non-trivial twiddle factor 
coefficients to be stored is 
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4.3 ERROR ANALYSIS 
 
In an error analysis it is important that the model takes care 
of potential signal overflows. In general this is done by 
employing “safe scaling” [4], [5] which is applied at every 
stage of the FFT (or IFFT). Block floating point [4], [5] 
exhibits improved noise properties but unfortunately is not 
appropriate for a pipeline architecture since the latter starts 
computing the next stage before the previous one is finished. 
Block floating point, on the other hand, requires an FFT 
stage to be finished entirely before scaling can be applied. 
The error analysis of both the CT-FFT and Bruun-FFT using 
“safe scaling” can be taken from the literature [8]. By 
defining the so-called noise-to-signal ratio (NSR) as 
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where E[em]2 is the noise power at frequency bin F’N,m the 
ratio 
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can be computed which holds for both two’s complement 
and sign magnitude arithmetic . It can easily be seen that the 
error behaviour of the Bruun-FFT is inferior to the one of 
the CT-FFT so that in order to exhibit the same 
computational accuracy the number 
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of additional bits must be used for the Bruun-FFT. The 
result can be seen in Table 2 for various transform lengths 
 

Table 2: Number of additional bits ∆b required by the 
Bruun-FFT to exhibit the same accuracy as the CT-FFT.  

Exponent ν Transform 
Length N=2ν

∆b

3 8 0
4 16 1 
5 32 2 
6 64 3 
7 128 4 
8 256 5 
9 512 6 
10 1024 7 
11 2048 8 
12 4096 9 

4.4 FULL CUSTOM CHIP AREA ESTIMATION 
 
In order to estimate the chip area consumed by a fully 
integrated FFT-pipeline, the SIEMENS VENUS-S VLSI-
process [9] shrunk to 65nm has been employed. The 
estimated chip areas of some basic logic elements are listed 
in Table 3. Multipliers of b x b bits are some of the largest 
building blocks in an FFT-pipeline and consist of the basic 
elements given in Table 3.  The area of a real-valued b x b 
multiplier can be approximated by 
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where the first term represents the carry-save array and the 
second term the ripple-carry stage.  Factor kBooth scales the 
formula to represent the area of a Booth-Code multiplier 
including the wiring between the basic elements and equals 
roughly 1.3 [10].  
Memory constitutes another complex element in an FFT-
pipeline. According to [10] the area for RAM storage may 
be computed by 

R
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if R is the number of 1-bit storage elements in the RAM and 
a quadratic chip-layout is assumed. 

Table 3: Chip areas for various computational elements 
and some constants in µm2 assuming a 65nm process. 

Element Chip area 
1-bit adder Afa = 429.53 µm2

1-bit shifter Ash = 51.00 µm2

AND-gate Ag = 107.13 µm2

constants in µm2

k1,RAM 29.97 µm2

k2,RAM 398.44 µm2

k1,ROM 2.75 µm2

k2,ROM 287.11 µm2

The area for ROM storage basically follows the same 
equation with just the constants k1 and k2 changed as shown 
in Table 3. 
 
Now all information is available to estimate the total chip 
area for an FFT- or IFFT-pipeline. Figure 4 shows the 
estimated chip area ACT for the CT-pipeline (connected 
rectangles) and ABruun for the Bruun-pipeline (connected 
diamonds). A wordlength of b=16 for both data and 
coefficients is assumed and constitutes a reasonable value 
for fixed scaling FFT-pipelines in an OFDM context [11]. 
Figure 4 reveals that the Bruun-pipeline exhibits a lower 
chip area consumption for a large span of transform lengths 
N=2n.
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Figure 4: Estimated chip area of the Cooley-Tukey- and 
the Bruun-Pipeline for a 65nm-process, 16-bit 
wordlength equivalent.

Figure 5 depicts the relative chip area savings r calculated 
by 

CT

BruunCT

A
AAr −

=

and shows a relative savings of almost 50% for N=26=64 
and b=16. The contribution of the various pipeline elements 
for this transform length is summarized in Figure 6 
exhibiting that most of the chip area is required for the 
multipliers. As the number of multipliers is significantly 
lower in the Bruun-pipeline compared to the CT-pipeline the 
reduction of the rquired chip area is substantial. For larger 
transform lengths the advantage of the Bruun pipeline 
concerning multiplier count looses impact since the area of 
the delay elements becomes more influential as depicted in 
Figure 7. Yet, for the example of b=16 the Bruun-pipeline is 
still advantageous in terms of chip area until N reaches the 
value 212=4096. 
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Figure 5: Area savings of Bruun-Pipeline over Cooley-
Tukey-Pipeline depending on the FFT-size, and 
wordlength b.
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delay-elements
twiddle-factors

Relative Areas for Bruun-Pipeline of Length 64

 
Figure 6: Relative Areas for Bruun-Pipeline of Length 
N=64, b=16.
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Figure 7: Relative Areas for Bruun-Pipeline of Length 
N=1024, b=16.

4.5 FPGA IMPLEMENTATION OF FFT-PIPELINES 
 
The area advantage of the Bruun-pipeline is even larger if 
the pipeline is implemented on modern FPGAs like the 
Virtex 6 ® family manufactured by Xilinx ®. In the Virtex 6 
® family the mulipliers in a so-called DSP slice are 25x18-
bit devices and hence the CT-pipeline cannot fully play off 
its reduced wordlength requirement. Figure 8 shows the 
result of the area savings calculation assuming that the 
multipliers have a fixed size of 25x18 bits while the data 
wordlength stays at 16 bits. For N=27=128 the area savings 
amount to almost 60%. 

3 4 5 6 7 8 9 10 11 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Exponent n

B
ru

un
-F

FT
A

re
a

S
av

in
gs

Figure 8: Area savings of Bruun-Pipeline over Cooley-
Tukey-Pipeline depending on the FFT-size, assuming a 
fixed size 25x18-bit multiplier.

5. CONCLUSION 
 
It has been demonstrated that OFDM systems call for a so-
called “real-valued” FFT/IFFT which can efficiently be 
implemented by means of a pipeline architecture employing 
the Bruun-FFT algorithm. Compared to the commonly used 

Cooley-Tukey-Pipeline the Bruun-FFT-Pipeline offers a 
significant reduction in required chip area. For a full custom 
design this reduction can be up to 50% for a general 
wordlength of b=16 bit, depending on the transform length 
N. For FPGA-implementations where the multipliers 
generally come in fixed size slices the area advantage for the 
Bruun-FFT is potentially even greater reaching up to almost 
60% in the given example. 
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