
13-Nov-09LCA1 assured communications™

A Simple, Lightweight Communications 
Architecture facilitating SCA application 
portability

Charles Linn
Harris Corporation

Charles.linn@harris.com



13-Nov-09LCA2 assured communications™

Enter stage right… the SCA

• In early 2000 the Software Communications 
Architecture (SCA) is introduced to the US military 
market.  This caused a paradigm shift in how radios 
were designed and structured.

• The SCA formalized waveform / platform separation, 
component-based design, and waveform portability
– Military radio SW design “sea change”
– Once platform APIs standardized, allows waveforms 

to move between platforms with minimum effort
– Installable waveforms follow the “PC” model instead 

of the “Wang word processor model”
• All these things were good for industry…..



13-Nov-09LCA3 assured communications™

SCA Challenges

• Despite advantages, the SCA is often too 
heavyweight a solution for low-SWAP platforms
– SCA pretty much assumes multi-process, 

multiprocessor architectures are required
– Platform sizes measured in “dozens” of MB, boot 

times below 10 seconds very hard to achieve
• Desire to keep the good, but devise a lighter weight 

solution
• Needed – a lighter weight architecture that keeps 

the advantages of SCA, and fosters application 
portability to/from SCA frameworks



13-Nov-09LCA4 assured communications™

Enter stage left… the LCA

• With this, the Lightweight Communications 
Architecture (LCA) was born

• Target architecture – small, SWAP-limited platforms 
employing single-process space, single processor 
(plus DSP or FPGA) environments
– This allowed CORBA to be replaced by C++ calls
– In limited cases multiple processors and address 

space could be employed by using proxies
• Fostering of waveform portability between SCA and 

LCA was a primary goal
• Foster developer movement across SCA and LCA 

projects



13-Nov-09LCA5 assured communications™

LCA design philosophy

• Keep overall SCA structure, and where possible, 
responsibilities

• Replace CORBA with C++ calls
– CORBA object references change to C++ pointers

• Standardize on C++ (SCA language porting little used)
• Keep a component model (with ports)
• Keep waveform (Resource) interfaces as similar as practical
• Also create a DevKit to further abstract our SCA / LCA 

differences
• Specify at interface and postcondition level only

– Leave implementation choices free



13-Nov-09LCA6 assured communications™

LCA Component port interfaces

Device

<<virtual>> ~Device()
<<virtual>> isAvai lable() : boolean

(from Lca)

<<Interface>>
ProvidesPort

<<virtual>> ~ProvidesPort()
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

Resource

<<virtual>> getProvidesPort(portName : const char*, portPtr : ProvidesPort**) : errorCode
<<virtual>> getUsesPort(portName : const char*, portPtr : UsesPort**) : errorCode
<<virtual>> ini tial ize() : errorCode
<<virtual>> start() : errorCode
<<virtual>> stop() : errorCode
<<virtual>> getVersion() : string
<<virtual>> ~Resource()
<<virtual>> prepareTeardown() : void
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

UsesPort

<<virtual>> ~UsesPort()
<<virtual>> connectPort(targetPort : ProvidesPort*) : errorCode
<<virtual>> disconnectPort(port : ProvidesPort*) : errorCode

(from Lca)

<<Interface>>
LoadableDevice

<<virtual>> load(filename : const char*) : errorCode
<<virtual>> unload(filename : const char*) : errorCode
<<virtual>> loadImage(dataPtr : UNIT16*, dataCount : long unsigned) : errorCode
<<virtual>> unloadImage() : errorCode

(from Lca)

<<Interface>>

<<virtual>>



13-Nov-09LCA7 assured communications™

Design rationale - Resource

• The SCA Port class was split into ProvidesPort and UsesPort, 
and explicit type checking was added
– Maximize strong type checking where possible
– C++ RTI was not used, as embedded systems 
– A derived port can choose to support the generalized port 

protocol or not.  This supports extension patterns.
• Resource interface maintained, except:

– Properties were deleted
• No CORBA any in C++, need lightweight
• An application assembly controller can add custom configure 

operations by inheriting from Resource or adding a control 
ProvidesPort

– SCA Release operation was changed to a prepareTeardown() 
(ApplicationFactory does deletion)



13-Nov-09LCA8 assured communications™

Component rationale - Devices

• LCA Devices are analogous to SCA devices, but…
– Don’t support allocateCapacity or usageSate

• Allocation is done statically in LCA, so no need
– Don’t support adminState – since you can’t shutdown 

a node, need disappears
– The operationalState attribute moved to the 

isAvailable() operation
• No ExecutableDevice – LCA does not “deploy”

components on a Device.  Since only one node, 
they are run by the NodeManager itself.

• No AggregateDevice
• Services, which are non-HW accessing components 

launched as part of the platform, use Resource.



13-Nov-09LCA9 assured communications™

NodeManager Interface

NodeManager

<<virtual>> ~NodeManager()
<<virtual>> initialize() : errorCode
<<virtual>> getResourceReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getDeviceReference(name : const char*, componentPtr : Device**) : errorCode
<<virtual>> getApplicationFactory(name : const char*, factoryPtr : ApplicationFactory**) : errorCode
<<virtual>> installApplication(appName : const char*, loadFilePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstallApplicationFactory(appName : const char*) : void

(from Lca)

<<Interface>>

Platform devices and 
services

Re source
(from Lca)

<<Interface>>

Device

<<vi rtual>> ~De vi ce()
<<vi rtual>> i sAvailable() : b ool ean

(from Lca)

<<Interface>>

ConcreteNod eManag er

<<virtual>> initialize() : errorCode
<<virtual>> getComponentReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getApplicationFactory(name : const char*) : ApplicationFactory*
<<virtual>> installApplication(appName : const char*, loadFilePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstallApplication(appName : const char*) : void

0.. *

creates, connects
0.. *

0..*

creates, connects
0..*



13-Nov-09LCA10 assured communications™

Rationale – NodeManager

• The NodeManager serves as a combination of a 
DeviceManager, DomainManager, and naming service
– Since LCA scoped to one processing node (plus slaves), 

multiple DeviceManagers merged, and this in turn merged into 
the DomainManager.

– This merging does not significantly affect applications
• NodeManager Responsibilities:

– Creates all platform Devices and services (Resources)
– Creates all ApplicationFactory instances
– Registry of all created resources and app factories
– Install point for applications (optional)

• HOW the platform components and app factories are created 
is left up to the implementation
– Hard-coded C++, XML or other based scripts, etc.



13-Nov-09LCA11 assured communications™

ApplicationFactory Interface

ConcreteNodeManager

Appl ication Factory

<<virtual>> ~ApplicationFactory()
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyController : Resource**) : errorCode

(from Lca)

<<Interface>>

Sample AppFa ctory

SampleAppFactory(myNodeManager : const NodeManager&)
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyController : Resource**) : errorCode

Re source
(from Lca)

<<Interface>> Application 
components

NodeManager
(from Lca)

<<Interface>>

1.. *
creates, connects

1.. *

obtains component references



13-Nov-09LCA12 assured communications™

ApplicationFactory Rationale

• ApplicationFactory at the interface level is very similar to its 
SCA cousin, but implementation can be quite different
– Creates applications
– Reference counts applications
– Releases applications (there is no Application class) – in this 

case, only guaranteed behavior is that app. is prepared for 
teardown and ports disconnected.  App. Components may 
remain instantiated.

• Application is created, and a reference to the Resource
proxying as the “assembly controller” is returned to caller.
– Caller should not call prepareTeardown(), leave this to app 

factory.
• Implementations can vary:

– Application creation can be static or dynamic
– Application creation can be hard-coded, or script based



13-Nov-09LCA13 assured communications™

Application portability LCA SCA

• As the Resource interface was kept rather similar, designing 
easily-portable applications is straightforward.  To do this, use 
the following techniques:
– Use a “DevKit” to provide (and abstract out) common behavior, 

such as port handling, state handling, and CORBA particulars in 
SCA

– Use explicit Port classes (by composition) to convert between 
(for SCA) C++ and CORBA.

– This leaves the main component class reasonably free from SCA 
and CORBA details.

– Pay attention to threading – try to design application to use 2-
way conventions, or use one-way and provide an explicit thread 
in server. (Even pure SCA has this challenge with co-location)

• Some “CORBAism” is hard to abstract out:
– Container classes (OctetSequence) – could be abstracted by 

port classes, at cost of extra copies
– CORBA object references vs. C++ pointers



13-Nov-09LCA14 assured communications™

Pattern for LCA SCA portability

Resource
(from Lca)

<<Interface>>

BaseResource
(from LcaDevkit)

<<vi rtu al>>

UsesPort
(from Lca)

<<Interface>>Provide sPort
(from Lca)

<<Inte rface>>

ProvidesPort1

ProvidesPort2

UsesPort1

UsesPort2

PortableComponent



13-Nov-09LCA15 assured communications™

Conclusions

• LCA is not profound, but earns its value by getting 
the details right, and hitting a needs “sweet spot”
– Serves as a common “SCA alternative” framework, 

such that everyone does not develop their own 
variants.

– Keeps a common community with SCA developers
• Application cross-portability can be easily achieved
• Differing implementations can widen range of target 

platforms.
• The SCA should continue to be used in complex, 

multiprocessor, or security-centric designs
– But now we have an alternative…



13-Nov-09LCA16 assured communications™

Questions?

Contact:
Chuck Linn

Harris Corporation
Charles.Linn@harris.com


	Home
	Presentations - Home
	Presentations - Track B

