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ABSTRACT 
 
This paper addresses methodologies and applicable metrics 
that help achieve optimum performance for a Software 
Defined Radio (SDR) application.  Implementers must 
identify and examine the critical metrics of waveforms and 
the operating environment(OE) processes that enter into the 
overall radio communications path in order to successfully 
determine the performance of a waveform on a Software 
Communications Architecture (SCA)[1] Radio.   

Requirements analysis and functional decomposition 
yields key metrics which lead to a solid comprehension of 
the user to antenna data paths as well as waveform control.  
These key metrics are crucial to understanding performance 
as each individual radio processor and interface must be 
able to support the waveform performance requirements 
while also recognizing the unique attributes of that 
particular waveform. SCA optimization methodologies 
within the scope of these metrics can enhance SCA 
performance. 
 
 

1. INTRODUCTION 
 
With SCA becoming the defacto standard SDR architecture, 
especially in the military radio communications field, the 
portability that SCA implies brings into consideration the 
porting of new and existing waveforms to new and existing 
hardware.  New functionality or features brought to the 
radio by the respective waveform under consideration may 
also drive hardware revisions as well as software revisions 
to ensure a successful implementation.  Essential to this 
effort is ensuring that key elements of the Waveform and 
SCA environment are adequately characterized to make 
certain that any necessary hardware and software changes 
are captured. 

Understanding the importance of the underlying 
waveform requirements, this paper focuses primarily on the 
waveform to OE interaction along with any resulting impact 
on associated platform hardware. 
 
 

2. BACKGROUND 
 

SCA intentionally allows design flexibility by imposing 
constraints on the interfaces and software structure but not 
on the implementation of functions.  This flexibility offers 
the implementer many design choices and decisions.  If 
these design choices are not adequately researched with 
respect to the implementer’s particular application, the 
design may certainly be less than optimum. Less than 
optimum design choices prevent a design from achieving its 
intended potential; these, therefore, have led to a number of 
SCA myths[2] including the perception of SCA 
implementations as being heavy-weight both from a 
memory and processing standpoint.  This in turn suggests 
that SCA applications are inherently slow. 
 While the above myths are rooted in non-optimized 
SCA implementations, where there is risk, there is also 
opportunity.  The requirements analysis and functional 
decomposition, key metrics, and SCA optimization 
methodologies described in this paper seek to provide an 
overview for a successful design while also addressing 
some of the key underlying causes resulting in SCA 
performance deficiencies. 
 
3. REQUIREMENTS ANALYSIS AND FUNCTIONAL 

DECOMPOSITION 
 
Model-Driven Architecture (MDA) provides a process to 
analyze and decompose requirements.  Implementers can 
analyze waveforms individually or collectively as a 
composite waveform.  This process yields and further 
refines desired metrics via three primary models. 
 
3.1 Computationally Independent Model (CIM) 
 
The CIM describes a single waveform or a representative 
composite waveform with the most demanding 
attributes/requirements.  A CIM from a Radio Frequency 
(RF) frontend-to-user perspective includes radio parameters 
as well as signal processing and networking protocols. 

The modem level radio parameters involve the 
following: instantaneous dynamic range, selectivity, 
induced distortion, phase ripple/flatness, spur-free dynamic 
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range, AGC dynamics, channel skirt, linear and also non-
linear (constant envelope) transmissions and receptions.   

Another aspect of the frontend-to-user perspective is 
waveform signal processing. binary correlations, Galois-
field arithmetic, FFT, CIC, digital filtering, Viterbi, Trellis, 
BCH, generalized convolutional codes, binary-logic as well 
as decimal and binary mathematics are a few of the 
mathematical operations which describe waveform signal 
processing. 

The frontend-to-user facet of a CIM also can deal with 
network waveforms.[4]  If the network uses an internet 
protocol(IP) then RFCs may be implemented by IP stacks.  
Due to the layered nature of a network, the network 
waveform may invoke linking and crossbanding protocols.  
These waveforms also encompass subnetworking layers, 
particularly layers 2 & 3a, which include channel/media 
access (e.g. MAC addressing protocols), neighbor 
discovery, adaptive link control, acknowledgment, 
retransmissions, and routing.  Additionally network 
waveforms may also utilize multiple red enclaves,   black 
and red processing, red and black IP or red only IP,  ‘link 
level’ or ‘IP sec’ security. 
 The above radio attributes comprise an overview of the 
functionality that an implementer may encounter. 
 
3.2 Platform Independent Model (PIM) 
 
The PIM[3] involves performing a functional analysis and 
decomposition of the waveform to determine its anticipated 
target radio architecture.  This characterizes the data flow, 
bandwidth, information assurance, and latency requirements 
in terms of required memory, processing power, encrypted 
overhead traffic, baseband throughput, IF processing, and 
RF front-end requirements which yields a representative 
hardware platform. 
 
3.3 Platform Specific Model (PSM) 
 
The PSM[3] further maps the PIM’s waveform functionality 
onto a specific hardware design.  Allocating functionality to 
appropriate respective hardware maximizes portability as 
well as efficiency.  Functionality is typically allocated by 
available processing time.  The GPP generally executes the 
most time intensive and complex operations with relatively 
low bandwidth.  A DSP, if used, generally handles less 
complex computations requiring faster processing or higher 
bandwidth while the FPGA is best suited for simple-time 
critical and bitwise type operations.  
 

4. KEY WAVEFORM METRICS 
 
The above requirements analysis and functional 
decomposition presents a process by which the design can 
be implemented successfully.  This method can also provide 

several key metrics or Most Important Requirements 
(MIRs) necessary to optimize the design in an SCA 
environment.  The next sections further describe these key 
metrics. 
 
4.1 Memory Footprint 
 
The waveform’s Static and Dynamic Component Memory 
Footprints provide basic metrics for determining the size of 
non-volatile flash and random access memory (RAM) 
respectively.  The Static Memory Footprint dictates the 
amount of flash memory required to store the waveform 
while the Dynamic Memory Footprint is the approximate 
waveform RAM required to support the waveform once it is 
loaded as follows:   
1. Static Memory Footprint ≅  static uncompressed 

waveform image size.   
2. Dynamic Memory Footprint ≅  (Static Memory 

Footprint + dynamically created directories + 
dynamically created files + heap space). 

 
4.2 SLOCs, Classes, and Threads 
 
Counts of software lines of code (SLOCs), classes, and 
threads by component give developers insight into porting, 
integration, and testing efforts via code size, complexity, 
and concurrency.  Concurrency and threading are discussed 
further in section 5.5 Concurrency and Threading Priorities. 
 
4.3 Processor Resource Utilization 
 
Special attention must be directed toward waveforms that 
utilize computationally intensive algorithms to ensure that 
respective processors are chosen properly and sized 
correctly.  For instance, HF waveforms, with relatively low 
datarates, execute extensive floating-point based decoding 
on baseband signals within the DSP to extract data from 
noise. 
 The Million of Instructions per Second (MIPS) metric 
may be one of the most difficult metrics involved with SDR 
as MIPS means different things to different audiences.  A 
relevant question is, “How many MIPs does the OE and 
waveform use at normal vs. at peak demand?”  Time 
Division Multiplexed Access (TDMA) waveforms with 
more constant data flow naturally pose a more straight-
forward approach to this metric than IP based waveforms. 
 The implementer should verify the metrics against a 
given platform as specifications may appear valid merely as 
a result of their presentation – ‘window dressing’.  For 
example, a team may find that hardware vendor 
specifications are consistently low or high.  To validate a 
performance specification, run a benchmark profile based 
on activities that the application is required to implement.  
Another example might be benchmarking a 
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Communications Entity (CE) only to find that it transfers 
data well unidirectionally but cannot turn its interfaces 
around quickly enough to effectively work with 
bidirectional data. 
 
4.4 Security 
 
Security plays a vital role especially in Military SDRs.  It 
complicates SCA implementation by placing additional 
constraints on data and control such that many typical SCA 
optimizations cannot be implemented.  Security in this 
regard, while important, is beyond the scope of this paper.   
 
4.5 Encrypted Traffic Overhead 
 
Encrypted overhead traffic[5] is tied into the military 
waveform domain.  It is further decomposed into 
Communications Security (COMSEC) and Transmission 
Security (TRANSEC) traffic.  This traffic is in addition to 
regular data throughput and decreases the amount of usable 
baseband throughput available to the waveform.  Data 
throughput ≅  baseband throughput – encrypted traffic 
overhead.  Including this metric in the design ensures 
adequate baseband throughput is accounted for and 
available to support the waveform’s bandwidth 
requirements. 
 Additional processing resources above and beyond the 
predicted waveform traffic may be required to perform both 
COMSEC and TRANSEC security functions. 
 
4.6 Interprocessor Interface Bandwidth 
 
Intrinsically, SCA describes a distributed system with many 
computational elements which may include one or more 
General Purpose Processors (GPPs), Digital Signal 
Processors (DSPs), Field Programmable Gate Arrays 
(FPGAs) and Embedded Cryptographic Subsystems (CSS).  
As with all distributed systems the inter-element 
communication bandwidth must be considered within the 
waveform and system design.   These metrics include the 
traditional bus speeds of the interfaces between computation 
elements (e.g. Ethernet, PCI) as well as any overhead 
associated with communication transport over the bus (e.g. 
IP header).   
 Memory speed in particular plays a critical role with 
many processors having the ability to execute code faster 
than instructions and data can be fed to them.  This can 
trump processor speed as a critical metric; thereby, assuring 
its place in system design[6,7]. 
 Understanding the impact of interface and transport 
selection for interelement (or interprocessor) 
communication is instrumental in determining the overall 
throughput of an SCA system.   
 

4.7 Timing Methodology 
 
Correct time-sourcing within a distributed architecture 
ensures that all waveform components and processes are 
synchronized.  Smith, Demirbilek, and Bicer[8] divide 
multiprocessing waveform timing issues into three classes: 
Waveform Synchronization, Intercomponent/Interprocessor 
Communication Timing, and Security-Related Timing.  
 Waveform Synchronization ensures system clocks 
synchronization to involve both timing and carrier recovery.  
This allows multiple components working on different 
aspects of the same data to accurately merge their outputs. 
 Intercomponent/Interprocessor Communication Timing 
issues result from buffering, processor multiplexing rate, 
processor multiplexing overhead, context switching 
overhead and synchronization of multiple task completion 
threads. 
 Security-Related Timing issues involve suppressing 
covert channels.  These covert channels result from timing 
leaks resulting in the potential of data with different 
classification levels being on the same bus simultaneously.  
A Multiple Independent Levels of Security (MILS) 
architecture suppresses covert timing channels through 
careful management of processor time allocation in fixed 
increments. 
 
4.8 Baseband Throughput 
 
Waveforms have a data throughput requirement.  A radio’s 
data traffic throughput potential can be determined via the 
baseband processing speed.  All SCA application data and 
control traffic is eventually converted to and from baseband.  
The radio’s theoretical throughput potential is further 
tempered by the RF hardware’s designed transmit duty 
cycle. Baseband Throughput ≅  (Encrypted control traffic 
overhead + data traffic).  The radio’s data traffic with 
respect to Baseband Throughput also includes message 
header and framing overhead and forward error correction if 
applicable. 
 
4.9 Multichannel 
 
Multichannel Radios are essentially two or more Single 
Channel radios with a single Human Machine Interface 
(HMI).  However, unlike two separate radios, a 
Multichannel Radio has additional complexity due to inter-
channel communication, and control.  The decomposition of 
any additional functionality as a result of this channel-to-
channel interaction and control early in the design cycle 
ensures any required hardware support as well as timely 
incorporation. 
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4.10 Multiple Waveforms per Channel 
 
Supporting multiple waveforms can present several 
challenges in addition to just their basic operation.  The 
radio may require the ability to dynamically switch between 
waveforms ‘on the fly’ after power-up.  The SCA does not 
provide a convenient method of switching waveforms 
efficiently given some implementations can take relatively 
considerable amounts of time to release application 
resources and instantiate new ones as the defacto SCA 
Method of Operation implies.  This capability to switch 
waveforms is platform specific at present so waveforms 
may have to implement specific functionality as a result.  
User perception typically drives how quickly a new 
waveform must be instantiated and operational which is 
similar to the reasoning leading to maximum waveform 
instantiation time as described in section 4.11. 
 
4.11 Maximum Waveform Instantiation Time 
 
The user’s anticipated performance perception typically 
drives maximum waveform load and instantiation times 
with handheld and non-console radios receiving the most 
scrutiny[9].  To this end, waveform instantiation time key 
‘players’ include the RTOS/Board Support Package (BSP), 
CSS, Operating Environment (OE), and waveform.  
Whether the OE and waveform application are copied and 
instantiated simultaneously or separately depends on the 
design. 
 Application loading and instantiation time depends 
largely on the static memory footprint and the number of 
SCA connection and configuration in the Software 
Assembly Descriptor profile of the application.  The 
application execution is directly impacted by the bus, 
memory, processor, and CSS (if involved) speed.  All 
collectively determine how quickly the application can be 
copied from flash into RAM.  The waveform instantiation 
time is directly related to the amount of dynamic 
connections and configuration specified in the waveform 
software assembly descriptor profile and the capabilities of 
the SCA implementation to process the dynamic nature of 
application deployment. 
 

5. SCA OPTIMIZATION METHODOLOGIES 
 
The flexibility of the SCA allows a number of optimizations 
to be considered. Linn[9] recommends several including the 
following: 
1. Partially linking multiple components such as 

DomainManager, ApplicationFactory, Application, 
DeviceManager, Log and various file components into 
a single partially linked shared library or executable 
that is loaded on power-up. 

2. Speeding up local file access by extending the core 
framework interface via IDL inheritance to add 
getNativeFilename(), with a processor ID passed as a 
parameter.  This allows the application to perform file 
operations efficiently without the CORBA overhead. 

3. Minimize use of device capacities by components that 
are always deployed on the same device by using of a 
non-external allocation property which does not 
involve performing an allocateCapacity() operation on 
the device.  This speeds up the application’s launch. 

 
5.1 Optimize XML Parsing 
 
XML parsing performance will have a relatively large 
impact on how quickly the core framework is loaded as it 
has to parse the many XML files required for the core 
framework and Waveform Application loading.  Rockwell 
Collins Inc. (RCI) tests reveal this to be as much as 10% of 
the total boot-up time.  There are several ways that this 
parsing time can be addressed to minimize impact: 
 Test parsers against the implemented files to 
benchmark which will accomplish the most with the least 
overhead in both memory footprint and parsing time. 
 Require XML files to be validated prior to installation 
with in an SCA system.   Including a validating XML parser 
in an SCA implementation significantly increases the 
processor resources and memory utilization.  Invalid XML 
can cause significant parsing delays.  For example, tests of a 
representative XML file with invalid syntax required 400ms 
to parse while its equivalent clean example took 50ms. 
 This optimization improves the system startup and 
waveform initialization metrics. 
 
5.2 Offline XML Parsing 
 
Consider making the XML parsing a part of the software 
installation process[9] since the SCA does not specify when 
it must take place.  This method results in a one-time 
increase in boot time that could be done at software 
installation.  This parsed information is then stored in a non-
XML file for use in future boots effectively eliminating this 
parsing activity. 
 Gonzalez, Portelinha, and Reed[10] propose a two step 
offline domain profile XML installation method which 
consists of translating XML files into a simplified text 
format which only incorporates the most important 
information related to framework functionality. 
 This optimization improves the system startup and 
waveform initialization metrics. 
 
5.3 CORBA and Interprocess Communications (IPC) 
 
Lind and Littke [11] demonstrated that even for Military 
Satellite Communication waveforms the CORBA ORB is 
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not the major factor in waveform performance; however, 
CORBA does offer ample opportunity for optimization and 
therefore deserves a closer look.   
 CORBA takes on many shapes.  Real-Time (RT)-
CORBA has been designed with embedded systems needs 
in-mind.  Still, several CORBA Optimizing techniques can 
provide real benefits to your application.  TCP/IP Internet 
Inter-Orb Protocol (IIOP) transport has too much overhead 
for many embedded applications.  A faster transport such as 
UDP, Multicast or Shared-Memory in some cases can yield 
an order of magnitude[2] improvement.   
 Also consider augmenting CORBA with Non-CORBA 
IPC message passing for additional performance.  SCA 
Implementers must evaluate the CORBA interfaces which 
carry most of the baseband data where the benefits of 
CORBA data marshalling are outweighed by the need for 
performance.   Those interfaces, which are known for 
passing sequences of octets or characters, are examples 
where a Non-CORBA IPC Message passing provides 
significant performance improvement over the CORBA 
interface. 
 
5.4 Non-CORBA IPC 
 
IPC is used to move information between processes or 
threads running on an OS.  Linn[9] describes IPC between 
threads within the same GPP and address space as being as 
much as 2000x faster than identical IPC between separate 
address spaces (i.e. processes).  IPC within the same address 
space leads to more portability, additional deployment 
options and enhanced load balancing.  Additionally, 
collocating components within the same address space 
provides the opportunity to use non-CORBA methods to 
further enhance throughput. 
 Common same-address space IPC mechanisms include 
pipes, files, shared memory, and message queues.  These 
non-CORBA IPC methods leave data formatting including 
Endianness (e.g. High Byte, Low Byte), Data/Packet 
Structures as well as alignment and padding to the 
implementation.  Likewise, two way messaging such as 
return values, flow control, and data synchronization is also 
left to the implementation. 
 SCA 2.2.2 Application Environment Profile[1] supports 
POSIX message passing (_POSIX_MESSAGE_PASSING).  
Given that SCA POSIX[12] is based on IEEE Std 1003.13-
2003, it also implies support of POSIX Message queues 
and, thereby, mqueue.  This method provides more CORBA 
like behavior without the overhead providing an order of 
magnitude higher throughput over CORBA based on RCI 
tests.  POSIX messaging enforces file permissions via the 
OS; moreover, its syntax requires a name similar to a file. 
 POSIX message passing provides the SCA developer 
with the ability to open, read, or write SCA resources (e.g. 
modem device) as a file.  Additionally, POSIX IPC message 

passing can transfer raw bytes while supporting basic flow 
control and priorities.  This method could work well for IPC 
within co-located waveform components on the same GPP 
and address space and be could be used in addition to 
CORBA on devices (e.g. Modem Hardware Abstraction 
Layer - MHAL) to allow lower latency as well as improved 
throughput.  Its drawbacks include not supporting 
interprocessor communication and not being a good 
medium for one to many, or many to many messages. 
 
5.5 Concurrency and Threading Priorities 
 
SDR applications use multi-threading to support diverse 
tasks such as reading a file, processing an algorithm, and 
monitoring I/O operations which in-turn provide timely 
operations and services.  These threads often support larger 
functional tasks that must in-turn be prioritized to support 
critical operations relating to the communications chain 
involved with sending or receiving and processing the 
radio’s messages.  Additionally, to avoid unbounded 
priority inversion and deadlock, the SDR applications 
involving these functional tasks often require some form of 
pre-emptive multi-threading. 
 These larger functional tasks along with any supporting 
tasks must preserve their priorities across components and 
even across processors to provide the most optimum 
message processing and predictability.  Processor loading 
and task priorities[11] with respect to these tasks can be the 
primary timing concerns when working with CORBA 
messaging. 
 To ensure that messages are given proper priority from 
creation until their task is completed, the Waveform, 
Platform, and CSS should ideally use similar priorities.  RT-
CORBA’s support of thread-pools provides a method of 
achieving this.  Pyarali, Spivak, Cytron, and Schmidt[13] 
describe a leader-follower pattern for thread priority pools 
that can be implemented in RT-CORBA. 
 Thread pooling allows threads to be reused without 
being invoked again, thereby, reducing the overhead of 
threading.  Their empirical benchmarks showed this pattern 
to outperform its rival Half-Sync/Half-Async pattern in 
practice by as much as 2800% with the improvement 
reducing to ~8% as the number of threads increased and 
amount of work per request increased. 
 Thread banding allows the ORB to bound and minimize 
priority inversion by setting up persistent dedicated 
connections to a given pool of thread priorities with one per 
address space. 
 
5.6 Messaging 
 
Waveform implementers can dramatically influence SCA 
performance with a thorough understanding of the key 
metrics and optimizations.  The messaging strategy should 
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include messaging needs coupled with appropriate interface 
and transport selection for interelement (or interprocessor) 
communication and consider the traditional bus speeds of 
the interfaces between computation elements (e.g. Ethernet, 
PCI) as well as any overhead associated with 
communication transport over the bus (e.g. IP header).    
 To maximize data throughput use low overhead 
transports such as Non-CORBA IPC for small messages and 
messages not requiring data marshalling and tailor message 
traffic.  For instance, MHAL data by nature is already 
marshaled as a self contained on-the-wire format; therefore, 
CORBA messaging is not explicitly required for these 
messages.   
 Additionally, the size of the data message significantly 
impacts CORBA throughput more than the number of 
messages due to CORBA overhead. Thereby, taking 
advantage of larger CORBA message sizes even with other 
optimizations will be instrumental in optimizing throughput.   
 

6. SUMMARY 
 
SDR describes a distributed system in which throughput and 
overall performance are the result of many hardware and 
software components and interfaces collectively functioning 
as a radio.    
 Requirements analysis and functional decomposition 
provides a process to identify and examine key metrics that 
are captured and incorporated in the overall design.  These 
key metrics serve to enhance comprehension of the user to 
antenna data path in additional to waveform control. 
 Applicable SCA optimization methodologies when 
coupled with an understanding of system throughput via 
these key metrics team up to optimize overall radio and 
application performance.   
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