

A SIMPLE, LIGHTWEIGHT COMMUNICATIONS ARCHITECTURE

FACILITATING SCA APPLICATION PORTABILITY

Charles A. Linn (Harris Corporation, Rochester, NY, USA clinn@harris.com)

ABSTRACT

While the Software Communications Architecture (SCA) is
a suitable framework for a broad-range of medium and
higher capability radio platforms, its use can be non-optimal
or precluded on smaller platforms, where software image
size, boot time performance or battery life and platform cost
become dominant. For these platforms, a lighter-weight
solution is desired. On the other hand, the component-
based framework and other concepts the SCA provides has
proven benefits, and it is desirable to be able to easily port
waveforms between an SCA and such lighter-weight
frameworks.

In this paper, the “Lightweight Communications
Architecture”, or LCA, is described. This framework is
appropriate for use on smaller commercial platforms, with
land-mobile radio (LMR) systems being a typical example.
From a formative standpoint, the design rationale and trade
decisions for LCA are detailed, followed by a description of
the framework itself. The paper concludes with a
discussion on scalability, patterns for facilitating application
portability between LCA and the SCA platforms, and
performance metrics.

1. INTRODUCTION

When the first version of the Software Communications
Architecture (SCA)[1] was released in 2000, a major
paradigm shift was made by the US military radio
community. Instead of a plethora of closed radio platforms
running customized waveform applications, for the first
time cross-industry standardized radio platforms running
highly portable applications (“waveforms”) started
becoming available. While the first platforms were
developed under programs funded by the US military,
commercially-funded radios also appeared (such as the
Harris Falcon™ III series of products), indicating the SCA
was a viable and competitive architecture. During the same
time, the SCA was breaking out of the military-only
community, appearing in applications such as cellular base
stations.

While prominent in its target community, the
application of the SCA is still relegated to two primary
market segments – the military / government market, where

use is essentially mandated, or large-scale radio systems,
where the field-upgradability, and often multiprocessor
expandability justify the “cost” of the SCA. The vast
majority of radio systems are much smaller and simpler,
with insufficient size, weight and power (SWAP) to support
a CORBA-based SCA. This was the quandary faced by
Harris Corporation when we started the design of our
Unity™ XG-100 Public Safety Radio product line. On such
a radio, battery mission life, fast (less than 3 second) boot
time and low cost precluded an SCA solution, but over the
past 8 years Harris had internalized the benefits of SCA-
based development, and we did not want to regress to the
previous “monolithic platform with integrated waveform”
second-generation approach that had characterized pre-SCA
radios. This same conflict was seen in several other
concurrent developments at Harris, making the need clear –
needed was a standardized framework for lightweight
platforms, much as the SCA has become our standard
solution for our military and more complex architectures.
This need eventually coalesced into the Lightweight
Communications Architecture, or LCA.

2. LCA DESIGN PHILOSOPHY

In creating the LCA, the solution space was narrowed based
on several key objectives:
1. Scale for small platforms: The SCA already provides a

good solution for multiprocessor solutions with
requirements for multiple address spaces. If a solution
was specialized towards single process / single
processor platforms, and by standardizing on C++ as a
development language, inter-component calls can be
accomplished with simple C++ method calls,
eliminating the need for CORBA middleware. This in
turn also greatly reduces the memory footprint of the
solution.

2. Maximize portability to / from the SCA at the
application level: To facilitate porting between an
LCA and an SCA platform, the structure / form of a
Resource-based component was maintained to the
extent possible. Additionally, the POSIX-AEP was
retained. Together, if a “ports by composition” pattern
is maintained in conjunction with a BaseResource as
part of a development kit, the core component

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

mailto:clinn@harris.com

Device

<<virtual>> ~Device()
<<virtual>> isAvai lable() : boolean

(from Lca)

<<Interface>>
ProvidesPort

<<virtual>> ~ProvidesPort()
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

Resource

<<virtual>> getProvidesPort(portName : const char*, portPtr : ProvidesPort**) : errorCode
<<virtual>> getUsesPort(portName : const char*, portPtr : UsesPort**) : errorCode
<<virtual>> ini tial ize() : errorCode
<<virtual>> start() : errorCode
<<virtual>> stop() : errorCode
<<virtual>> getVersion() : string
<<virtual>> ~Resource()
<<virtual>> prepareTeardown() : void
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

UsesPort

<<virtual>> ~UsesPort()
<<virtual>> connectPort(targetPort : ProvidesPort*) : errorCode
<<virtual>> disconnectPort(port : ProvidesPort*) : errorCode

(from Lca)

<<Interface>>
LoadableDevice

<<virtual>> load(filename : const char*) : errorCode
<<virtual>> unload(filename : const char*) : errorCode
<<virtual>> loadImage(dataPtr : UNIT16*, dataCount : long unsigned) : errorCode
<<virtual>> unloadImage() : errorCode

(from Lca)

<<Interface>>

<<virtual>>

Figure 1: LCA Component and port interfaces

implementation can be substantially ported by
substituting LCA port classes and base classes for the
SCA equivalents. This is discussed further in section 5.

3. Pattern after SCA when you can: The essential SCA
architecture at the interface level is well validated, and
many organizations are well versed in it. Furthermore,
many radio developers are likely to move between LCA
and SCA projects. For these reasons, SCA form, names
and responsibilities were maintained to the extent
practical. Examples of this can be seen in the following
sections detailing the architecture.

4. Maximize implementation flexibility: Like the SCA, the
LCA is specified primarily at the interface level, which
allows for variations in implementation including static
or dynamic application launch, and pre-linked or
separately installable applications.

3. LCA ARCHITECTURE

Like the SCA, the LCA is specified with pure interface
classes with specified behaviors and interactions, not
modules of executable code. Instead of IDL, C++ pure
abstract base classes are used to represent interfaces.

3.1 Component and port interfaces
LCA waveforms and platform software are constructed of
components which are interconnected using ports. Each
component inherits from a LCA::Resource, LCA::Device, or
LCA::LoadableDevice interface supports its operations.

The Resource interface, shown in Figure 1 is modeled
after its SCA cousin, with similar semantics for initialize(),
start() and stop() operations. The CF release() operation
was replaced with a prepareTeardown(), and supplied with
different behavior -- LCA components don’t destroy
themselves (this is done by the LCA::ApplicationFactory),
but merely put themselves into a state consistent with
teardown. The SCA getPort() operation was replaced with
a pair of operations, LCA::getProvidesPort() and
LCA::getUsesPort(), to better utilize C++ static type
checking. Finally, an LCA:: getVersion() operation is added
to enable standardized queries of component versions.

Notably lacking in the LCA::Resource interface is a
standardized configure interface. In the SCA this was
provided using the CORBA “any” facility to pass name /
value pairs to a resource or application
“assemblycontroller” component. This centrally-managed
interface allowed for the core framework to supply XML-
based initial configuration values, as well as providing the
theoretical ability for a “generic” user interface to provide
XML-driven configuration of an application. As C++ does

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

not provide a simple, type-safe mechanism for generic
typing, and since customized port-based configuration is
viable alternative (indeed, this is the de-facto way of
configuring SCA platform devices), this mechanism was not
included in LCA. Instead, any component may provide a
configuration port supporting whatever custom interface it
requires.

Separate “uses” and “provides” ports interfaces were
defined to match their intended functions, and to provide a
lightweight real-time type checking mechanism.
ProvidesPorts are connected to UsesPorts by pointer, but it
is prudent for a UsesPort to ensure it has indeed been
connected with the correct subclass of ProvidesPort. This
is done through the polymorphic operation
isTypeCompatible(), which allows the target port to verify
that it is indeed compatible with the type supplied by the
caller1. This mechanism also supports type checking when
subclassing of ProvidesPorts is employed, allowing use of
extension patterns. In this case, a more derived
(specialized) port could indicate if they were able to also
function as one of the more general interfaces, or if this is to
be precluded.

LCA Devices are considerably simpler than SCA
Devices, as LCA does not support the dynamic, runtime
deployment determination. As a result, allocation property
concepts, usageState and adminState can be eliminated.
The only specialized operation present is
Device::isAvailable(), which allows a Device to state if it is
operational and hence available for connection to a
waveform. This mechanism accommodates the most
common cases of cable-sensing devices, missing underlying
hardware, offline status, et-cetera. LoadableDevices, like in
the SCA do not create LCA components (i.e. handle
deployment), but are used to load external devices such as
DSPs, FPGAs etc. Two standardized methods are available,
Load(), which loads from a file, and LoadImage(), which
loads images directly from memory (useful when file-
services are limited or slow, with the image data being
stored in a C++ header file instead).

LCA does not have an analogy to a
CF::ExecutableDevice, as it does not support deployment of
components on Devices. In most cases, the LCA “domain”
is on a single processor, and so Devices and service
components (in LCA a service is simply an LCA::Resource)
are created by the NodeManager, and application Resources
are created directly by the ApplicationFactory components.

1 C++ RTTI was not used for this purpose as many platforms
choose to disable this feature.

3.2 Management interfaces

Figure 2 shows the NodeManager and ApplicationFactory
interfaces, and their relationships to the component classes.

In the LCA, the NodeManager is roughly equivalent to
a combination of the SCA DeviceManager,
DomainManager and CORBA naming service. Since the
LCA does not support multiple processors within a domain
(LoadableDevices such as DSPs and FPGAs put aside), the
need for independently-registering DeviceManagers was
lost, and as a result the design could be simplified. The
NodeManager has the following major responsibilities:
1. Creation and interconnection of the platform Devices

and services, typically at platform boot. As each Device
/ Resource is created, its name and pointer is added to
an internal lookup table (the equivalent of the SCA
Device registration process).

2. Resolving Device instance names (each Device instance
is given a name at creation, and this name is used by the
ApplicationFactory to connect interested application
components) into a Resource pointer.

3. Creation of ApplicationFactory instances.
4. If supported (optional capability), accept installations

of applications, adding the new application to the
“create application on NodeManager boot” list.

ApplicationFactory components are responsible for the

creation of application instances. Unlike in the SCA, where
a CF::Application instance is used to manage the created
application, in the LCA the ApplicationFactory itself is
responsible for waveform creation, reference counting and
teardown. Multiple creation of the same application using
unique names is supported, and the ApplicationFactory may
also be queried to provide pointers to the specified instance.

The created “application” in actuality consists of one or
more components (LCA::Resource), with a designated
assembly controller. These components are connected to
each other as well as the platform Devices and platform
Resources, with a pointer to the designated assembly
controller being returned to the caller. Each application’s
assembly controller is responsible for delegating overall
application configuration and control to the individual
application’s components, in a manner similar to the SCA.

4. LCA VARIATIONS

As befits a framework targeted for minimalist platforms,
considerable versatility is allowed to LCA implementations
to accommodate varying requirements and SWAP
considerations. This section details some of the more
common variations.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Resource
(from Lca)

<<Interface>>

NodeManager

<<virtual>> ~NodeManager()
<<virtual>> ini tialize() : errorCode
<<virtual>> getResourceReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getDeviceReference(name : const char*, componentPtr : Device**) : errorCode
<<virtual>> getAppl icationFactory(name : const char*, factoryPtr : ApplicationFactory**) : errorCode
<<virtual>> installApplication(appName : const char*, loadFi lePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstal lAppl icationFactory(appName : const char*) : void

(from Lca)

<<Interface>>

SampleAppFactory

SampleAppFactory(myNodeManager : const NodeManager&)
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyControl ler : Resource**) : errorCode

1..*1..*

creates, connects

obtains component
references

Platform devices and
services

Application
components

Resource
(from Lca)

<<Interface>>
Device

<<virtual>> ~Device()
<<virtual>> isAvai lable() : boolean

(from Lca)

<<Interface>>

Appl icationFactory

<<virtual>> ~Appl icationFactory()
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyControl ler : Resource**) : errorCode

(from Lca)

<<Interface>>

ConcreteNodeManager

<<virtual>> ini tialize() : errorCode
<<virtual>> getComponentReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getAppl icationFactory(name : const char*) : Appl icationFactory*
<<virtual>> installApplication(appName : const char*, loadFi lePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstal lAppl ication(appName : const char*) : void

0..*0..*

creates, connects

0..*0..*

creates, connects

Figure 2: LCA Management Interfaces

4.1 Pre-installed or dynamically installed applications

While the NodeManager is responsible for ensuring that an
ApplicationFactory instance be created for each application,
installation of individual applications is an optional
capability. In a minimal LCA, if all applications are known
in advance, a NodeManager implementation may be used
that is essentially hard-coded to create the required
ApplicationFactory instances. This is not only simple, but
allows application code to be pre-linked into the platform
executable for fast loading.

Alternatively, the NodeManager can be implemented to
support application installation. In this scenario, all
application code is linked into a shared library, including a
named function to create an ApplicationFactory instance.
When this shared library is installed, the NodeManager is
passed the pathname to the shared library file as well as the
function name to call to create the ApplicationFactory.

Upon boot, the NodeManager iterates through all such
installed files, calling the named function, which creates the
ApplicationFactory and returns a pointer to the created
instance.

4.2 Static or Dynamic application instantiation

The LCA intentionally does not specify behavior for the
ApplicationFactory::create() and release() operations –
only the postconditions. Since CORBA is not used,
application memory footprint is often quite small and hence
the value of releasing components may be scant. Because
of this, an ApplicationFactory implementation could choose
to create the application at ApplicationFactory creation (or
first application create), leave it permanently created, and
only perform port connect and disconnect operations when
the create() and release() operations are called. This can
result in almost instantaneous application launch times.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Resource
(from Lca)

<<Interface>>

BaseResource
(from LcaDevkit)

<<vi rtual>>

UsesPort
(from Lca)

<<Interface>>ProvidesPort
(from Lca)

<<Interface>>

ProvidesPort1

ProvidesPort2

UsesPort1

UsesPort2

PortableComponent

Figure 3: Component structure for SCA portability

Alternatively, the SCA-style method of dynamic creation
and destruction can be used.

4.3 Hard-coded vs. scripted creation

While the NodeManager is responsible for creation of
Devices and platform Resources (“services”), this creation
can similarly be hard-coded into the NodeManager
implementation, or scripted via XML or other means, and
interpreted by the NodeManager implementation. A similar
option is seen with the ApplicationFactory – either a
generic component running off scripts or hard-coded
specialized classes may be used in implementation, allowing
a trade between small core framework size vs. versatility.

5. APPLICATION PORTABILITY TO/FROM SCA

Facilitating cross-portability of applications between LCA
and SCA environments was a major goal for the LCA
design, and is primarily accomplished by using a similar
component model. To further aid this portability a
combination of “development kit” base classes and a
composite port structure can be employed, as shown in
Figure 3. In this pattern, common in the JTRS community
and somewhat simplified for clarity, the actual inter-
component communication protocols are concentrated in
standalone port classes. A core component then holds these
port classes by composition. The port classes themselves
are specialized to LCA or SCA, and in the case of SCA
contain most of the CORBA dependencies. Communication
between the core component and port classes is done
exclusively using C++. In this way, the base component

can be ported between LCA and SCA environments by
(mostly) swapping port classes. A similar separation is
done with the framework state model by wrapping standard
behavior in a BaseResource helper class.

While this approach greatly facilitates porting, residual
effort remains, as CORBA employs pass-by-value
semantics using CORBA-specific data structures (e.g.
sequence containers), while LCA permits the standard
embedded “pass by pointer, use or copy data before return”
semantics. While it would be possible to write the core
component using a completely neutral technology (e.g.
using STL structures), SCA compliance issues and
translation efficiencies preclude such use in most situations.

Differences between CORBA and LCA threading and
synchronization models also need examination. While
CORBA provides multiple synchronization models, LCA
communication is always done at the “local C++ call” level.
From a component synchronization model, this most closely
matches a CORBA two-way call, which luckily is the most
common in SCA systems, and always present in process co-
located CORBA components. If true CORBA one-way
semantics are required, a ProvidesPort class with an internal
thread and queue could be employed to provide similar
synchronization.

In summary, application portability between LCA and
SCA, while not all-embracing, can typically be achieved
with less than a 5 percent code modification level (for the
core component classes) with careful design. Examination
of the JPEO device APIs [2] also show little difficulty, as
they typically employ two-way calls, relatively little
container-based data passing, and few if any CORBA any
types.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

6. LCA PERFORMANCE

Since the LCA specification, like the SCA, consists of a set
of interfaces and conventions instead of a executable code,
LCA sizing and performance is very implementation
specific. Based on our experience in employing the LCA in
our Harris UNITY™ XG-100 Public Safety radio, overhead
and code was found to be truly minimal. Employing a C++
hard-coded (vs. XML parsing) implementation, the XG-100
NodeManager creates / initializes / starts four
ApplicationFactories, 7 Devices, and 8 Services (platform
Resources) and makes 52 port connections. This
NodeManager consumes 18kB of code (.text) memory,
creating all platform components and factories in
approximately 360 milliseconds2. Most of this time is
actually spent in the components themselves, not by
NodeManager execution, which is presumed to be a small
fraction thereof.

From an application standpoint, the typical LCA .text
size overhead for a Resource (using a LCA BaseResource
DevKit class) is less than 1 kB, exclusive of component-
specific code logic. A typical ApplicationFactory (in this
case launching and initializing 1 component and getting /
connecting and disconnecting 9 ports) consumes 5 kB of
.text. The execution of this factory (exclusive of actual
waveform initialization) is trivial in the millisecond range.
Waveform teardown is similarly trivial, as in this
implementation the application is left in memory, and only
stopped and disconnected.

In total, the XG-100 radio performs a full cold-boot
from power off to P25 receive audio in less than 3 seconds,
a significant savings compared to full-SCA based solutions.

7. OTHER APPLICABLE FRAMEWORKS

Software-based radio technology is not particularly new,
although formalized frameworks are a more recent
phenomenon. Beyond the SCA itself, the Object
Management Group (OMG) Swradio specification [3] is the
most comprehensive, using a Model-Driven-Architecture
(MDA) approach to define a SCA compatible framework,
with (potentially) multiple Platform-specific Metamodel
(PSMs) to map to different implementation technologies.
While broad and arguable more scalable than the SCA, most
applications are still best suited for the same platform range
as the SCA.

Lafaye and Nicollet[4] define a DSP-environment
extension of the Swradio framework that shares many
essential characteristics with LCA. In this framework non-
CORBA components supporting SCA-like operations

2 The processor type and clock speed is not publically releasable,
but is consistent with higher-end low-SWAP public safety radios.

(Cpp_ResourceComponents) are hosted in a micro-
framework (DSP μF), which provides connection services.
This framework, however is defined only within the larger
context of a CORBA-based Swradio implementation.

Much additional work has been done on DSP and
FPGA implementations of subsets of the SCA, primarily for
use within an SCA system to enhance component
portability. These include DSP-optimized CORBA
implementations [5] and FPGA component structures that
can interconnect with SCA frameworks.

8 . CONCLUSIONS

While the SCA continues to be the most appropriate radio
framework for larger platforms, the LCA is tailored with a
“sweet spot” towards simpler, single processor systems.
Based on Harris’ experience, it has accomplished its
primary goals, which is to provide a standard, versatile
component framework that not only is familiar to SCA
developers, but also which can provide a measure of
application portability between the two environments.
Furthermore, flexibility in implementation will support both
customized as well as reusable script-driven core
frameworks.

9. REFERENCES

[1] Joint Program Executive Office JTRS, “Software

Communications Architecture Specification v2.2.2”,
http://sca.jpeojtrs.mil/, 15 May, 2006.

[2] Joint Program Office Executive Office JTRS, “APIs Release
1.1.1”, http://sca.jpeojtrs.mil

[3] Object Management Group (OMG), “PIM and PSM for
Software Components Specification (formal/07-03-01)”,
http://omg.org, 1 March, 2007.

[4] F. Lafaye, E. Niccolet, “A Dsp Micro-Framework (DSP uF)
for OMG Swradio Specification Extension”, SDR Forum
Technical Conference 2007 Proceedings, November, 2007.

[5] J. Bickle, “Next Generation SCA Operating Environments”,
SDR Forum Technical Conference 2006 Proceedings,
November, 2006.

http://sca.jpeojtrs.mil/
http://omg.org/

	Home
	Papers by Author
	Papers by Session

