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ABSTRACT 
 

While the Software Communications Architecture (SCA) is 
a suitable framework for a broad-range of medium and 
higher capability radio platforms, its use can be non-optimal 
or precluded on smaller platforms, where software image 
size, boot time performance or battery life and platform cost 
become dominant.  For these platforms, a lighter-weight 
solution is desired.  On the other hand, the component-
based framework and other concepts the SCA provides has 
proven benefits, and it is desirable to be able to easily port 
waveforms between an SCA and such lighter-weight 
frameworks. 

In this paper, the “Lightweight Communications 
Architecture”, or LCA, is described.  This framework is 
appropriate for use on smaller commercial platforms, with 
land-mobile radio (LMR) systems being a typical example.  
From a formative standpoint, the design rationale and trade 
decisions for LCA are detailed, followed by a description of 
the framework itself.  The paper concludes with a 
discussion on scalability, patterns for facilitating application 
portability between LCA and the SCA platforms, and 
performance metrics. 

 

1. INTRODUCTION 
 

When the first version of the Software Communications 
Architecture (SCA)[1] was released in 2000, a major 
paradigm shift was made by the US military radio 
community.  Instead of a plethora of closed radio platforms 
running customized waveform applications, for the first 
time cross-industry standardized radio platforms running 
highly portable applications (“waveforms”) started 
becoming available.  While the first platforms were 
developed under programs funded by the US military, 
commercially-funded  radios also appeared (such as the 
Harris Falcon™ III series of products), indicating the SCA 
was a viable and competitive architecture.  During the same 
time, the SCA was breaking out of the military-only 
community, appearing in applications such as cellular base 
stations. 

While prominent in its target community, the 
application of the SCA is still relegated to two primary 
market segments – the military / government market, where 

use is essentially mandated, or large-scale radio systems, 
where the field-upgradability, and often multiprocessor 
expandability justify the “cost” of the SCA.  The vast 
majority of radio systems are much smaller and simpler, 
with insufficient size, weight and power (SWAP) to support 
a CORBA-based SCA.  This was the quandary faced by 
Harris Corporation when we started the design of our 
Unity™ XG-100 Public Safety Radio product line.  On such 
a radio, battery mission life, fast (less than 3 second) boot 
time and low cost precluded an SCA solution, but over the 
past 8 years Harris had internalized the benefits of SCA-
based development, and we did not want to regress to the 
previous “monolithic platform with integrated waveform” 
second-generation approach that had characterized pre-SCA 
radios.  This same conflict was seen in several other 
concurrent developments at Harris, making the need clear – 
needed was a standardized framework for lightweight 
platforms, much as the SCA has become our standard 
solution for our military and more complex architectures.  
This need eventually coalesced into the Lightweight 
Communications Architecture, or LCA. 

 

2. LCA DESIGN PHILOSOPHY 
 
In creating the LCA, the solution space was narrowed based 
on several key objectives: 
1. Scale for small platforms: The SCA already provides a 

good solution for multiprocessor solutions with 
requirements for multiple address spaces.   If a solution 
was specialized towards single process / single 
processor platforms, and by standardizing on C++ as a 
development language, inter-component calls can be 
accomplished with simple C++ method calls, 
eliminating the need for CORBA middleware.  This in 
turn also greatly reduces the memory footprint of the 
solution. 

2. Maximize portability to / from the SCA at the 
application level:  To facilitate porting between an 
LCA and an SCA platform, the structure / form of a 
Resource-based component was maintained to the 
extent possible.  Additionally, the POSIX-AEP was 
retained.  Together, if a “ports by composition” pattern 
is maintained in conjunction with a BaseResource as 
part of a development kit, the core component 
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Device

<<virtual>> ~Device()
<<virtual>> isAvai lable() : boolean

(from Lca)

<<Interface>>
ProvidesPort

<<virtual>> ~ProvidesPort()
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

Resource

<<virtual>> getProvidesPort(portName : const char*, portPtr : ProvidesPort**) : errorCode
<<virtual>> getUsesPort(portName : const char*, portPtr : UsesPort**) : errorCode
<<virtual>> ini tial ize() : errorCode
<<virtual>> start() : errorCode
<<virtual>> stop() : errorCode
<<virtual>> getVersion() : string
<<virtual>> ~Resource()
<<virtual>> prepareTeardown() : void
<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

(from Lca)

<<Interface>>

UsesPort

<<virtual>> ~UsesPort()
<<virtual>> connectPort(targetPort : ProvidesPort*) : errorCode
<<virtual>> disconnectPort(port : ProvidesPort*) : errorCode

(from Lca)

<<Interface>>
LoadableDevice

<<virtual>> load(filename : const char*) : errorCode
<<virtual>> unload(filename : const char*) : errorCode
<<virtual>> loadImage(dataPtr : UNIT16*, dataCount : long unsigned) : errorCode
<<virtual>> unloadImage() : errorCode

(from Lca)

<<Interface>>

<<virtual>>

Figure 1: LCA Component and port interfaces 

implementation can be substantially ported by 
substituting LCA port classes and base classes for the 
SCA equivalents.  This is discussed further in section 5. 

3. Pattern after SCA when you can: The essential SCA 
architecture at the interface level is well validated, and 
many organizations are well versed in it.  Furthermore, 
many radio developers are likely to move between LCA 
and SCA projects.  For these reasons, SCA form, names 
and responsibilities were maintained to the extent 
practical. Examples of this can be seen in the following 
sections detailing the architecture. 

4. Maximize implementation flexibility: Like the SCA, the 
LCA is specified primarily at the interface level, which 
allows for variations in implementation including static 
or dynamic application launch, and pre-linked or 
separately installable applications. 
 

3. LCA ARCHITECTURE 
 
Like the SCA, the LCA is specified with pure interface 
classes with specified behaviors and interactions, not 
modules of executable code.  Instead of IDL, C++ pure 
abstract base classes are used to represent interfaces.  

3.1 Component and port interfaces 
LCA waveforms and platform software are constructed of 
components which are interconnected using ports.  Each 
component inherits from a LCA::Resource, LCA::Device, or 
LCA::LoadableDevice interface supports its operations. 

The Resource interface, shown in Figure 1 is modeled 
after its SCA cousin, with similar semantics for initialize(), 
start() and stop() operations.  The CF release() operation 
was replaced with  a prepareTeardown(), and supplied with 
different behavior -- LCA components don’t destroy 
themselves (this is done by the LCA::ApplicationFactory), 
but merely put themselves into a state consistent with 
teardown.  The SCA getPort() operation was replaced with 
a pair of operations, LCA::getProvidesPort() and 
LCA::getUsesPort(), to better utilize C++ static type 
checking.  Finally, an LCA:: getVersion() operation is added 
to enable standardized queries of component versions. 

Notably lacking in the LCA::Resource interface is a 
standardized configure interface.  In the SCA this was 
provided using the CORBA “any” facility to pass name / 
value pairs to a resource or application 
“assemblycontroller” component.  This centrally-managed 
interface allowed for the core framework to supply XML-
based initial configuration values, as well as providing the 
theoretical ability for a “generic” user interface to provide 
XML-driven configuration of an application.  As C++ does 
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not provide a simple, type-safe mechanism for generic 
typing, and since customized port-based configuration is 
viable alternative (indeed, this is the de-facto way of 
configuring SCA platform devices), this mechanism was not 
included in LCA.  Instead, any component may provide a 
configuration port supporting whatever custom interface it 
requires. 

Separate “uses” and “provides” ports interfaces were 
defined to match their intended functions, and to provide a 
lightweight real-time type checking mechanism.  
ProvidesPorts are connected to UsesPorts by pointer, but it 
is prudent for a UsesPort to ensure it has indeed been 
connected with the correct subclass of ProvidesPort.  This 
is done through the polymorphic operation 
isTypeCompatible(), which allows the target port to verify 
that it is indeed compatible with the type supplied by the 
caller1.  This mechanism also supports type checking when 
subclassing of ProvidesPorts is employed, allowing use of  
extension patterns.  In this case, a more derived 
(specialized) port could indicate if they were able to also 
function as one of the more general interfaces, or if this is to 
be precluded. 

LCA Devices are considerably simpler than SCA 
Devices, as LCA does not support the dynamic, runtime 
deployment determination.  As a result, allocation property 
concepts, usageState and adminState can be eliminated.  
The only specialized operation present is 
Device::isAvailable(), which allows a Device to state if it is 
operational and hence available for connection to a 
waveform.  This mechanism accommodates the most 
common cases of cable-sensing devices, missing underlying 
hardware, offline status, et-cetera.  LoadableDevices, like in 
the SCA do not create LCA components (i.e. handle 
deployment), but are used to load external devices such as 
DSPs, FPGAs etc.  Two standardized methods are available, 
Load(), which loads from a file, and LoadImage(), which 
loads images directly from memory (useful when file-
services are limited or slow, with the image data being 
stored in a C++ header file instead). 

LCA does not have an analogy to a 
CF::ExecutableDevice, as it does not support deployment of 
components on Devices.  In most cases, the LCA “domain” 
is on a single processor, and so Devices and service 
components (in LCA a service is simply an LCA::Resource) 
are created by the NodeManager, and application Resources 
are created directly by the ApplicationFactory components. 

  

                                                 
1 C++ RTTI was not used for this purpose as many platforms 
choose to disable this feature. 

3.2 Management interfaces 
 
Figure 2 shows the NodeManager and ApplicationFactory 
interfaces, and their relationships to the component classes. 

In the LCA, the NodeManager is roughly equivalent to 
a combination of the SCA DeviceManager, 
DomainManager and CORBA naming service.  Since the 
LCA does not support multiple processors within a domain 
(LoadableDevices such as DSPs and FPGAs put aside), the 
need for independently-registering DeviceManagers was 
lost, and as a result the design could be simplified.  The 
NodeManager has the following major responsibilities: 
1. Creation and interconnection of the platform Devices 

and services, typically at platform boot. As each Device 
/ Resource is created, its name and pointer is added to 
an internal lookup table (the equivalent of the SCA 
Device registration process). 

2. Resolving Device instance names (each Device instance 
is given a name at creation, and this name is used by the 
ApplicationFactory to connect interested application 
components) into a Resource pointer. 

3. Creation of ApplicationFactory instances. 
4. If supported (optional capability), accept installations 

of applications, adding the new application to the 
“create application on NodeManager boot” list.  
 
ApplicationFactory components are responsible for the 

creation of application instances.  Unlike in the SCA, where 
a CF::Application instance is used to manage the created 
application, in the LCA the ApplicationFactory itself is 
responsible for waveform creation, reference counting and 
teardown.  Multiple creation of the same application using 
unique names is supported, and the ApplicationFactory may 
also be queried to provide pointers to the specified instance. 

The created “application” in actuality consists of one or 
more components (LCA::Resource), with a designated 
assembly controller.  These components are connected to 
each other as well as the platform Devices and platform 
Resources, with a pointer to the designated assembly 
controller being returned to the caller.  Each application’s 
assembly controller is responsible for delegating overall 
application configuration and control to the individual 
application’s components, in a manner similar to the SCA. 

 

4. LCA VARIATIONS 
 
As befits a framework targeted for minimalist platforms, 
considerable versatility is allowed to LCA implementations 
to accommodate varying requirements and SWAP 
considerations.  This section details some of the more 
common variations. 
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Resource
(from Lca)

<<Interface>>

NodeManager

<<virtual>> ~NodeManager()
<<virtual>> ini tialize() : errorCode
<<virtual>> getResourceReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getDeviceReference(name : const char*, componentPtr : Device**) : errorCode
<<virtual>> getAppl icationFactory(name : const char*, factoryPtr : ApplicationFactory**) : errorCode
<<virtual>> installApplication(appName : const char*, loadFi lePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstal lAppl icationFactory(appName : const char*) : void

(from Lca)

<<Interface>>

SampleAppFactory

SampleAppFactory(myNodeManager : const NodeManager&)
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyControl ler : Resource**) : errorCode

1..*1..*

creates, connects

obtains component 
references

Platform devices and 
services

Application 
components

Resource
(from Lca)

<<Interface>>
Device

<<virtual>> ~Device()
<<virtual>> isAvai lable() : boolean

(from Lca)

<<Interface>>

Appl icationFactory

<<virtual>> ~Appl icationFactory()
<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
<<virtual>> release(name : const char*) : errorCode
<<virtual>> getInstance(name : const char*, assyControl ler : Resource**) : errorCode

(from Lca)

<<Interface>>

ConcreteNodeManager

<<virtual>> ini tialize() : errorCode
<<virtual>> getComponentReference(name : const char*, componentPtr : Resource**) : errorCode
<<virtual>> getAppl icationFactory(name : const char*) : Appl icationFactory*
<<virtual>> installApplication(appName : const char*, loadFi lePathname : char*, factoryLaunchFunction : char*) : errorCode
<<virtual>> uninstal lAppl ication(appName : const char*) : void

0..*0..*

creates, connects

0..*0..*

creates, connects

Figure 2: LCA Management Interfaces

4.1 Pre-installed or dynamically installed applications 
 
While the NodeManager is responsible for ensuring that an 
ApplicationFactory instance be created for each application, 
installation of individual applications is an optional 
capability.  In a minimal LCA, if all applications are known 
in advance, a NodeManager implementation may be used 
that is essentially hard-coded to create the required 
ApplicationFactory instances.  This is not only simple, but 
allows application code to be pre-linked into the platform 
executable for fast loading. 

Alternatively, the NodeManager can be implemented to 
support application installation.  In this scenario, all 
application code is linked into a shared library, including a 
named function to create an ApplicationFactory instance.  
When this shared library is installed, the NodeManager is 
passed the pathname to the shared library file as well as the 
function name to call to create the ApplicationFactory.  

Upon boot, the NodeManager iterates through all such 
installed files, calling the named function, which creates the 
ApplicationFactory and returns a pointer to the created 
instance. 

 

4.2 Static or Dynamic application instantiation 
 
The LCA intentionally does not specify behavior for the 
ApplicationFactory::create() and release() operations – 
only the postconditions.  Since CORBA is not used, 
application memory footprint is often quite small and hence 
the value of releasing components may be scant.  Because 
of this, an ApplicationFactory implementation could choose 
to create the application at ApplicationFactory creation (or 
first application create), leave it permanently created, and 
only perform port connect and disconnect operations when 
the create() and release() operations are called. This can 
result in almost instantaneous application launch times.  
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Resource
(from Lca)

<<Interface>>

BaseResource
(from LcaDevkit)

<<vi rtual>>

UsesPort
(from Lca)

<<Interface>>ProvidesPort
(from Lca)

<<Interface>>

ProvidesPort1

ProvidesPort2

UsesPort1

UsesPort2

PortableComponent

Figure 3: Component structure for SCA portability 

Alternatively, the SCA-style method of dynamic creation 
and destruction can be used. 

 

4.3 Hard-coded vs. scripted  creation 
 
While the NodeManager is responsible for creation of 
Devices and platform Resources (“services”), this creation 
can similarly be hard-coded into the NodeManager 
implementation, or scripted via XML or other means, and 
interpreted by the NodeManager implementation.  A similar 
option is seen with the ApplicationFactory – either a 
generic component running off scripts or hard-coded 
specialized classes may be used in implementation, allowing 
a trade between small core framework size vs. versatility.  

 

5. APPLICATION PORTABILITY TO/FROM SCA 
 
Facilitating cross-portability of applications between LCA 
and SCA environments was a major goal for the LCA 
design, and is primarily accomplished by using a similar 
component model.  To further aid this portability a 
combination of “development kit” base classes and a 
composite port structure can be employed, as shown in 
Figure 3. In this pattern, common in the JTRS community 
and somewhat simplified for clarity, the actual inter-
component communication protocols are concentrated in 
standalone port classes.  A core component then holds these 
port classes by composition.  The port classes themselves 
are specialized to LCA or SCA, and in the case of SCA 
contain most of the CORBA dependencies.  Communication 
between the core component and port classes is done 
exclusively using C++.  In this way, the base component 

can be ported between LCA and SCA environments by 
(mostly) swapping port classes.  A similar separation is 
done with the framework state model by wrapping standard 
behavior in a BaseResource helper class. 

While this approach greatly facilitates porting, residual 
effort remains, as CORBA employs pass-by-value 
semantics using CORBA-specific data structures (e.g. 
sequence containers), while LCA permits the standard 
embedded “pass by pointer, use or copy data before return” 
semantics.  While it would be possible to write the core 
component using a completely neutral technology (e.g. 
using STL structures), SCA compliance issues and 
translation efficiencies preclude such use in most situations. 

Differences between CORBA and LCA threading and 
synchronization models also need examination.  While 
CORBA provides multiple synchronization models, LCA 
communication is always done at the “local C++ call” level.  
From a component synchronization model, this most closely 
matches a CORBA two-way call, which luckily is the most 
common in SCA systems, and always present in process co-
located CORBA components.  If true CORBA one-way 
semantics are required, a ProvidesPort class with an internal 
thread and queue could be employed to provide similar 
synchronization. 

In summary, application portability between LCA and 
SCA, while not all-embracing, can typically be achieved 
with less than a 5 percent code modification level (for the 
core component classes) with careful design.  Examination 
of the JPEO device APIs [2] also show little difficulty, as 
they typically employ two-way calls, relatively little 
container-based data passing, and few if any CORBA any 
types. 
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6. LCA  PERFORMANCE 
 
Since the LCA specification, like the SCA, consists of a set 
of interfaces and conventions instead of a executable code, 
LCA sizing and performance is very implementation 
specific. Based on our experience in employing the LCA in 
our Harris UNITY™ XG-100 Public Safety radio, overhead 
and code was found to be truly minimal.  Employing a C++ 
hard-coded (vs. XML parsing) implementation, the XG-100 
NodeManager creates / initializes / starts four 
ApplicationFactories, 7 Devices, and 8 Services (platform 
Resources) and makes 52 port connections.  This 
NodeManager consumes 18kB of code (.text) memory, 
creating all platform components and factories in 
approximately 360 milliseconds2.  Most of this time is 
actually spent in the components themselves, not by  
NodeManager execution, which is presumed to be a small 
fraction thereof. 

From an application standpoint, the typical LCA .text 
size overhead for a Resource (using a LCA BaseResource 
DevKit class) is less than 1 kB, exclusive of component-
specific code logic.  A typical ApplicationFactory (in this 
case launching and initializing 1 component and getting / 
connecting and disconnecting 9 ports) consumes 5 kB of 
.text.  The execution of this factory (exclusive of actual 
waveform initialization) is trivial in the millisecond range.  
Waveform teardown is similarly trivial, as in this 
implementation the application is left in memory, and only 
stopped and disconnected. 

In total, the XG-100 radio performs a full cold-boot 
from power off to P25 receive audio in less than 3 seconds, 
a significant savings compared to full-SCA based solutions. 

 

7. OTHER APPLICABLE FRAMEWORKS 
 
Software-based radio technology is not particularly new, 
although formalized frameworks are a more recent 
phenomenon.  Beyond the SCA itself, the Object 
Management Group (OMG) Swradio specification [3] is the 
most comprehensive, using a Model-Driven-Architecture 
(MDA) approach to define a SCA compatible framework, 
with (potentially) multiple Platform-specific Metamodel 
(PSMs) to map to different implementation technologies.  
While broad and arguable more scalable than the SCA, most 
applications are still best suited for the same platform range 
as the SCA. 

Lafaye and Nicollet[4] define a DSP-environment 
extension of the Swradio framework that shares many 
essential characteristics with LCA.  In this framework non-
CORBA components supporting SCA-like operations  

 
2 The processor type and clock speed is not publically releasable, 
but is consistent with higher-end low-SWAP public safety radios. 

(Cpp_ResourceComponents) are hosted in a micro-
framework (DSP μF), which provides connection services.  
This framework, however is defined only within the larger 
context of a CORBA-based Swradio implementation. 

Much additional work has been done on DSP and 
FPGA implementations of subsets of the SCA, primarily for 
use within an SCA system to enhance component 
portability.  These include DSP-optimized CORBA 
implementations [5] and FPGA component structures that 
can interconnect with SCA frameworks. 

 

8 . CONCLUSIONS 
 
While the SCA continues to be the most appropriate radio 
framework for larger platforms, the LCA is tailored with a 
“sweet spot” towards simpler, single processor systems.  
Based on Harris’ experience, it has accomplished its 
primary goals, which is to provide a standard, versatile 
component framework that not only is familiar to SCA 
developers, but also which can provide a measure of 
application portability between the two environments.  
Furthermore, flexibility in implementation will support both 
customized as well as reusable script-driven core 
frameworks. 
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