
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

SOFTWARE COMMUNICATION ARCHITECTURE RADIO ENVIRONMENT
PERFORMANCE CONSIDERATIONS

Timothy M. Schoenfelder (Rockwell Collins Inc., Cedar Rapids, IA;

tmschoen@rockwellcollins.com)

ABSTRACT

This paper addresses methodologies and applicable metrics
that help achieve optimum performance for a Software
Defined Radio (SDR) application. Implementers must
identify and examine the critical metrics of waveforms and
the operating environment(OE) processes that enter into the
overall radio communications path in order to successfully
determine the performance of a waveform on a Software
Communications Architecture (SCA)[1] Radio.

Requirements analysis and functional decomposition
yields key metrics which lead to a solid comprehension of
the user to antenna data paths as well as waveform control.
These key metrics are crucial to understanding performance
as each individual radio processor and interface must be
able to support the waveform performance requirements
while also recognizing the unique attributes of that
particular waveform. SCA optimization methodologies
within the scope of these metrics can enhance SCA
performance.

1. INTRODUCTION

With SCA becoming the defacto standard SDR architecture,
especially in the military radio communications field, the
portability that SCA implies brings into consideration the
porting of new and existing waveforms to new and existing
hardware. New functionality or features brought to the
radio by the respective waveform under consideration may
also drive hardware revisions as well as software revisions
to ensure a successful implementation. Essential to this
effort is ensuring that key elements of the Waveform and
SCA environment are adequately characterized to make
certain that any necessary hardware and software changes
are captured.

Understanding the importance of the underlying
waveform requirements, this paper focuses primarily on the
waveform to OE interaction along with any resulting impact
on associated platform hardware.

2. BACKGROUND

SCA intentionally allows design flexibility by imposing
constraints on the interfaces and software structure but not
on the implementation of functions. This flexibility offers
the implementer many design choices and decisions. If
these design choices are not adequately researched with
respect to the implementer’s particular application, the
design may certainly be less than optimum. Less than
optimum design choices prevent a design from achieving its
intended potential; these, therefore, have led to a number of
SCA myths[2] including the perception of SCA
implementations as being heavy-weight both from a
memory and processing standpoint. This in turn suggests
that SCA applications are inherently slow.
 While the above myths are rooted in non-optimized
SCA implementations, where there is risk, there is also
opportunity. The requirements analysis and functional
decomposition, key metrics, and SCA optimization
methodologies described in this paper seek to provide an
overview for a successful design while also addressing
some of the key underlying causes resulting in SCA
performance deficiencies.

3. REQUIREMENTS ANALYSIS AND FUNCTIONAL

DECOMPOSITION

Model-Driven Architecture (MDA) provides a process to
analyze and decompose requirements. Implementers can
analyze waveforms individually or collectively as a
composite waveform. This process yields and further
refines desired metrics via three primary models.

3.1 Computationally Independent Model (CIM)

The CIM describes a single waveform or a representative
composite waveform with the most demanding
attributes/requirements. A CIM from a Radio Frequency
(RF) frontend-to-user perspective includes radio parameters
as well as signal processing and networking protocols.

The modem level radio parameters involve the
following: instantaneous dynamic range, selectivity,
induced distortion, phase ripple/flatness, spur-free dynamic

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

range, AGC dynamics, channel skirt, linear and also non-
linear (constant envelope) transmissions and receptions.

Another aspect of the frontend-to-user perspective is
waveform signal processing. binary correlations, Galois-
field arithmetic, FFT, CIC, digital filtering, Viterbi, Trellis,
BCH, generalized convolutional codes, binary-logic as well
as decimal and binary mathematics are a few of the
mathematical operations which describe waveform signal
processing.

The frontend-to-user facet of a CIM also can deal with
network waveforms.[4] If the network uses an internet
protocol(IP) then RFCs may be implemented by IP stacks.
Due to the layered nature of a network, the network
waveform may invoke linking and crossbanding protocols.
These waveforms also encompass subnetworking layers,
particularly layers 2 & 3a, which include channel/media
access (e.g. MAC addressing protocols), neighbor
discovery, adaptive link control, acknowledgment,
retransmissions, and routing. Additionally network
waveforms may also utilize multiple red enclaves, black
and red processing, red and black IP or red only IP, ‘link
level’ or ‘IP sec’ security.
 The above radio attributes comprise an overview of the
functionality that an implementer may encounter.

3.2 Platform Independent Model (PIM)

The PIM[3] involves performing a functional analysis and
decomposition of the waveform to determine its anticipated
target radio architecture. This characterizes the data flow,
bandwidth, information assurance, and latency requirements
in terms of required memory, processing power, encrypted
overhead traffic, baseband throughput, IF processing, and
RF front-end requirements which yields a representative
hardware platform.

3.3 Platform Specific Model (PSM)

The PSM[3] further maps the PIM’s waveform functionality
onto a specific hardware design. Allocating functionality to
appropriate respective hardware maximizes portability as
well as efficiency. Functionality is typically allocated by
available processing time. The GPP generally executes the
most time intensive and complex operations with relatively
low bandwidth. A DSP, if used, generally handles less
complex computations requiring faster processing or higher
bandwidth while the FPGA is best suited for simple-time
critical and bitwise type operations.

4. KEY WAVEFORM METRICS

The above requirements analysis and functional
decomposition presents a process by which the design can
be implemented successfully. This method can also provide

several key metrics or Most Important Requirements
(MIRs) necessary to optimize the design in an SCA
environment. The next sections further describe these key
metrics.

4.1 Memory Footprint

The waveform’s Static and Dynamic Component Memory
Footprints provide basic metrics for determining the size of
non-volatile flash and random access memory (RAM)
respectively. The Static Memory Footprint dictates the
amount of flash memory required to store the waveform
while the Dynamic Memory Footprint is the approximate
waveform RAM required to support the waveform once it is
loaded as follows:
1. Static Memory Footprint ≅ static uncompressed

waveform image size.
2. Dynamic Memory Footprint ≅ (Static Memory

Footprint + dynamically created directories +
dynamically created files + heap space).

4.2 SLOCs, Classes, and Threads

Counts of software lines of code (SLOCs), classes, and
threads by component give developers insight into porting,
integration, and testing efforts via code size, complexity,
and concurrency. Concurrency and threading are discussed
further in section 5.5 Concurrency and Threading Priorities.

4.3 Processor Resource Utilization

Special attention must be directed toward waveforms that
utilize computationally intensive algorithms to ensure that
respective processors are chosen properly and sized
correctly. For instance, HF waveforms, with relatively low
datarates, execute extensive floating-point based decoding
on baseband signals within the DSP to extract data from
noise.
 The Million of Instructions per Second (MIPS) metric
may be one of the most difficult metrics involved with SDR
as MIPS means different things to different audiences. A
relevant question is, “How many MIPs does the OE and
waveform use at normal vs. at peak demand?” Time
Division Multiplexed Access (TDMA) waveforms with
more constant data flow naturally pose a more straight-
forward approach to this metric than IP based waveforms.
 The implementer should verify the metrics against a
given platform as specifications may appear valid merely as
a result of their presentation – ‘window dressing’. For
example, a team may find that hardware vendor
specifications are consistently low or high. To validate a
performance specification, run a benchmark profile based
on activities that the application is required to implement.
Another example might be benchmarking a

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Communications Entity (CE) only to find that it transfers
data well unidirectionally but cannot turn its interfaces
around quickly enough to effectively work with
bidirectional data.

4.4 Security

Security plays a vital role especially in Military SDRs. It
complicates SCA implementation by placing additional
constraints on data and control such that many typical SCA
optimizations cannot be implemented. Security in this
regard, while important, is beyond the scope of this paper.

4.5 Encrypted Traffic Overhead

Encrypted overhead traffic[5] is tied into the military
waveform domain. It is further decomposed into
Communications Security (COMSEC) and Transmission
Security (TRANSEC) traffic. This traffic is in addition to
regular data throughput and decreases the amount of usable
baseband throughput available to the waveform. Data
throughput ≅ baseband throughput – encrypted traffic
overhead. Including this metric in the design ensures
adequate baseband throughput is accounted for and
available to support the waveform’s bandwidth
requirements.
 Additional processing resources above and beyond the
predicted waveform traffic may be required to perform both
COMSEC and TRANSEC security functions.

4.6 Interprocessor Interface Bandwidth

Intrinsically, SCA describes a distributed system with many
computational elements which may include one or more
General Purpose Processors (GPPs), Digital Signal
Processors (DSPs), Field Programmable Gate Arrays
(FPGAs) and Embedded Cryptographic Subsystems (CSS).
As with all distributed systems the inter-element
communication bandwidth must be considered within the
waveform and system design. These metrics include the
traditional bus speeds of the interfaces between computation
elements (e.g. Ethernet, PCI) as well as any overhead
associated with communication transport over the bus (e.g.
IP header).
 Memory speed in particular plays a critical role with
many processors having the ability to execute code faster
than instructions and data can be fed to them. This can
trump processor speed as a critical metric; thereby, assuring
its place in system design[6,7].
 Understanding the impact of interface and transport
selection for interelement (or interprocessor)
communication is instrumental in determining the overall
throughput of an SCA system.

4.7 Timing Methodology

Correct time-sourcing within a distributed architecture
ensures that all waveform components and processes are
synchronized. Smith, Demirbilek, and Bicer[8] divide
multiprocessing waveform timing issues into three classes:
Waveform Synchronization, Intercomponent/Interprocessor
Communication Timing, and Security-Related Timing.
 Waveform Synchronization ensures system clocks
synchronization to involve both timing and carrier recovery.
This allows multiple components working on different
aspects of the same data to accurately merge their outputs.
 Intercomponent/Interprocessor Communication Timing
issues result from buffering, processor multiplexing rate,
processor multiplexing overhead, context switching
overhead and synchronization of multiple task completion
threads.
 Security-Related Timing issues involve suppressing
covert channels. These covert channels result from timing
leaks resulting in the potential of data with different
classification levels being on the same bus simultaneously.
A Multiple Independent Levels of Security (MILS)
architecture suppresses covert timing channels through
careful management of processor time allocation in fixed
increments.

4.8 Baseband Throughput

Waveforms have a data throughput requirement. A radio’s
data traffic throughput potential can be determined via the
baseband processing speed. All SCA application data and
control traffic is eventually converted to and from baseband.
The radio’s theoretical throughput potential is further
tempered by the RF hardware’s designed transmit duty
cycle. Baseband Throughput ≅ (Encrypted control traffic
overhead + data traffic). The radio’s data traffic with
respect to Baseband Throughput also includes message
header and framing overhead and forward error correction if
applicable.

4.9 Multichannel

Multichannel Radios are essentially two or more Single
Channel radios with a single Human Machine Interface
(HMI). However, unlike two separate radios, a
Multichannel Radio has additional complexity due to inter-
channel communication, and control. The decomposition of
any additional functionality as a result of this channel-to-
channel interaction and control early in the design cycle
ensures any required hardware support as well as timely
incorporation.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

4.10 Multiple Waveforms per Channel

Supporting multiple waveforms can present several
challenges in addition to just their basic operation. The
radio may require the ability to dynamically switch between
waveforms ‘on the fly’ after power-up. The SCA does not
provide a convenient method of switching waveforms
efficiently given some implementations can take relatively
considerable amounts of time to release application
resources and instantiate new ones as the defacto SCA
Method of Operation implies. This capability to switch
waveforms is platform specific at present so waveforms
may have to implement specific functionality as a result.
User perception typically drives how quickly a new
waveform must be instantiated and operational which is
similar to the reasoning leading to maximum waveform
instantiation time as described in section 4.11.

4.11 Maximum Waveform Instantiation Time

The user’s anticipated performance perception typically
drives maximum waveform load and instantiation times
with handheld and non-console radios receiving the most
scrutiny[9]. To this end, waveform instantiation time key
‘players’ include the RTOS/Board Support Package (BSP),
CSS, Operating Environment (OE), and waveform.
Whether the OE and waveform application are copied and
instantiated simultaneously or separately depends on the
design.
 Application loading and instantiation time depends
largely on the static memory footprint and the number of
SCA connection and configuration in the Software
Assembly Descriptor profile of the application. The
application execution is directly impacted by the bus,
memory, processor, and CSS (if involved) speed. All
collectively determine how quickly the application can be
copied from flash into RAM. The waveform instantiation
time is directly related to the amount of dynamic
connections and configuration specified in the waveform
software assembly descriptor profile and the capabilities of
the SCA implementation to process the dynamic nature of
application deployment.

5. SCA OPTIMIZATION METHODOLOGIES

The flexibility of the SCA allows a number of optimizations
to be considered. Linn[9] recommends several including the
following:
1. Partially linking multiple components such as

DomainManager, ApplicationFactory, Application,
DeviceManager, Log and various file components into
a single partially linked shared library or executable
that is loaded on power-up.

2. Speeding up local file access by extending the core
framework interface via IDL inheritance to add
getNativeFilename(), with a processor ID passed as a
parameter. This allows the application to perform file
operations efficiently without the CORBA overhead.

3. Minimize use of device capacities by components that
are always deployed on the same device by using of a
non-external allocation property which does not
involve performing an allocateCapacity() operation on
the device. This speeds up the application’s launch.

5.1 Optimize XML Parsing

XML parsing performance will have a relatively large
impact on how quickly the core framework is loaded as it
has to parse the many XML files required for the core
framework and Waveform Application loading. Rockwell
Collins Inc. (RCI) tests reveal this to be as much as 10% of
the total boot-up time. There are several ways that this
parsing time can be addressed to minimize impact:
 Test parsers against the implemented files to
benchmark which will accomplish the most with the least
overhead in both memory footprint and parsing time.
 Require XML files to be validated prior to installation
with in an SCA system. Including a validating XML parser
in an SCA implementation significantly increases the
processor resources and memory utilization. Invalid XML
can cause significant parsing delays. For example, tests of a
representative XML file with invalid syntax required 400ms
to parse while its equivalent clean example took 50ms.
 This optimization improves the system startup and
waveform initialization metrics.

5.2 Offline XML Parsing

Consider making the XML parsing a part of the software
installation process[9] since the SCA does not specify when
it must take place. This method results in a one-time
increase in boot time that could be done at software
installation. This parsed information is then stored in a non-
XML file for use in future boots effectively eliminating this
parsing activity.
 Gonzalez, Portelinha, and Reed[10] propose a two step
offline domain profile XML installation method which
consists of translating XML files into a simplified text
format which only incorporates the most important
information related to framework functionality.
 This optimization improves the system startup and
waveform initialization metrics.

5.3 CORBA and Interprocess Communications (IPC)

Lind and Littke [11] demonstrated that even for Military
Satellite Communication waveforms the CORBA ORB is

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

not the major factor in waveform performance; however,
CORBA does offer ample opportunity for optimization and
therefore deserves a closer look.
 CORBA takes on many shapes. Real-Time (RT)-
CORBA has been designed with embedded systems needs
in-mind. Still, several CORBA Optimizing techniques can
provide real benefits to your application. TCP/IP Internet
Inter-Orb Protocol (IIOP) transport has too much overhead
for many embedded applications. A faster transport such as
UDP, Multicast or Shared-Memory in some cases can yield
an order of magnitude[2] improvement.
 Also consider augmenting CORBA with Non-CORBA
IPC message passing for additional performance. SCA
Implementers must evaluate the CORBA interfaces which
carry most of the baseband data where the benefits of
CORBA data marshalling are outweighed by the need for
performance. Those interfaces, which are known for
passing sequences of octets or characters, are examples
where a Non-CORBA IPC Message passing provides
significant performance improvement over the CORBA
interface.

5.4 Non-CORBA IPC

IPC is used to move information between processes or
threads running on an OS. Linn[9] describes IPC between
threads within the same GPP and address space as being as
much as 2000x faster than identical IPC between separate
address spaces (i.e. processes). IPC within the same address
space leads to more portability, additional deployment
options and enhanced load balancing. Additionally,
collocating components within the same address space
provides the opportunity to use non-CORBA methods to
further enhance throughput.
 Common same-address space IPC mechanisms include
pipes, files, shared memory, and message queues. These
non-CORBA IPC methods leave data formatting including
Endianness (e.g. High Byte, Low Byte), Data/Packet
Structures as well as alignment and padding to the
implementation. Likewise, two way messaging such as
return values, flow control, and data synchronization is also
left to the implementation.
 SCA 2.2.2 Application Environment Profile[1] supports
POSIX message passing (_POSIX_MESSAGE_PASSING).
Given that SCA POSIX[12] is based on IEEE Std 1003.13-
2003, it also implies support of POSIX Message queues
and, thereby, mqueue. This method provides more CORBA
like behavior without the overhead providing an order of
magnitude higher throughput over CORBA based on RCI
tests. POSIX messaging enforces file permissions via the
OS; moreover, its syntax requires a name similar to a file.
 POSIX message passing provides the SCA developer
with the ability to open, read, or write SCA resources (e.g.
modem device) as a file. Additionally, POSIX IPC message

passing can transfer raw bytes while supporting basic flow
control and priorities. This method could work well for IPC
within co-located waveform components on the same GPP
and address space and be could be used in addition to
CORBA on devices (e.g. Modem Hardware Abstraction
Layer - MHAL) to allow lower latency as well as improved
throughput. Its drawbacks include not supporting
interprocessor communication and not being a good
medium for one to many, or many to many messages.

5.5 Concurrency and Threading Priorities

SDR applications use multi-threading to support diverse
tasks such as reading a file, processing an algorithm, and
monitoring I/O operations which in-turn provide timely
operations and services. These threads often support larger
functional tasks that must in-turn be prioritized to support
critical operations relating to the communications chain
involved with sending or receiving and processing the
radio’s messages. Additionally, to avoid unbounded
priority inversion and deadlock, the SDR applications
involving these functional tasks often require some form of
pre-emptive multi-threading.
 These larger functional tasks along with any supporting
tasks must preserve their priorities across components and
even across processors to provide the most optimum
message processing and predictability. Processor loading
and task priorities[11] with respect to these tasks can be the
primary timing concerns when working with CORBA
messaging.
 To ensure that messages are given proper priority from
creation until their task is completed, the Waveform,
Platform, and CSS should ideally use similar priorities. RT-
CORBA’s support of thread-pools provides a method of
achieving this. Pyarali, Spivak, Cytron, and Schmidt[13]
describe a leader-follower pattern for thread priority pools
that can be implemented in RT-CORBA.
 Thread pooling allows threads to be reused without
being invoked again, thereby, reducing the overhead of
threading. Their empirical benchmarks showed this pattern
to outperform its rival Half-Sync/Half-Async pattern in
practice by as much as 2800% with the improvement
reducing to ~8% as the number of threads increased and
amount of work per request increased.
 Thread banding allows the ORB to bound and minimize
priority inversion by setting up persistent dedicated
connections to a given pool of thread priorities with one per
address space.

5.6 Messaging

Waveform implementers can dramatically influence SCA
performance with a thorough understanding of the key
metrics and optimizations. The messaging strategy should

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

include messaging needs coupled with appropriate interface
and transport selection for interelement (or interprocessor)
communication and consider the traditional bus speeds of
the interfaces between computation elements (e.g. Ethernet,
PCI) as well as any overhead associated with
communication transport over the bus (e.g. IP header).
 To maximize data throughput use low overhead
transports such as Non-CORBA IPC for small messages and
messages not requiring data marshalling and tailor message
traffic. For instance, MHAL data by nature is already
marshaled as a self contained on-the-wire format; therefore,
CORBA messaging is not explicitly required for these
messages.
 Additionally, the size of the data message significantly
impacts CORBA throughput more than the number of
messages due to CORBA overhead. Thereby, taking
advantage of larger CORBA message sizes even with other
optimizations will be instrumental in optimizing throughput.

6. SUMMARY

SDR describes a distributed system in which throughput and
overall performance are the result of many hardware and
software components and interfaces collectively functioning
as a radio.
 Requirements analysis and functional decomposition
provides a process to identify and examine key metrics that
are captured and incorporated in the overall design. These
key metrics serve to enhance comprehension of the user to
antenna data path in additional to waveform control.
 Applicable SCA optimization methodologies when
coupled with an understanding of system throughput via
these key metrics team up to optimize overall radio and
application performance.

7. REFERENCES

[1] Joint Tactical Radio System (JTRS) Joint Program Executive

Office (JPEO), Software Communications Architecture(SCA)
version 2.2.2, http://jtrs.spawar.navy.mil/sca/, 2006

[2] S. Bernier, C. Bélisle, Taking the SCA to New Frontiers,
SDRF’06 Technical Conference, 2006.

[3] OMG, "Software Defined Radio Use Cases for PIM and PSM
for SWRADIO Component Submission,
http://www.omg.org/docs/swradio/03-05-02.pdf, May 2003.

[4] Department of Defense, Wireless Communications Waveform
Development and Management DoDI 4630.09,
www.dtic.mil/whs/directives/corres/pdf/463009p.pdf,
November 3rd, 2008

[5] Joint Staff, Information Security Guidelines for the
Deployment of Deployable Switched Systems CJCSI
6511.01,
http://www.dtic.mil/doctrine/jel/cjcsd/cjcsi/6511_01.pdf, Feb
2001

[6] R. Sites, “It’s the Memory, Stupid!” Microprocessor Report,
vol. 10, no. 10, Aug. 1996

[7] B. Jacob, A Case For Studying DRAM Issues at The System
Level, IEEE Computer Society, Volume 23, Issue 4, July-
Aug. 2003

[8] J. Smith, T. Demirbilek, M. Bicer, "Homogeneous
Middleware for Advanced Interoperable Communications",
Government Microcircuit Applications & Critical Technology
Conference (GOMAC) 2004, March 2004.

[9] C. A. Linn, Designing JTRS Core Frameworks for Battery-
Powered Platforms: 10 Techniques for Success, SDR’02
Technical Conference, 2002

[10] C. R. Aguayo Gonzalez, F. Portelinha, J. Reed, Design and
Implementation of an SCA Core Framework for a DSP
Platform, SDRF’06 Technical Conference, 2006

[11] G. Lind, C. Littke, Software Communication Architecture
(SCA) For Above 2 GHZ SATCOM, SDR’04 Technical
Conference, 2004

[12] Open Group, IEEE Std 1003.1-2001 Standard for Information
Technology- Portable Operating System Interface (POSIX),
IEEE Computer Society, 2004

[13] I. Pyarali, M. Spivak, R. Cytron, D. C. Schmidt, Evaluating
and Optimizing Thread Pool Strategies for Real-Time
CORBA, http://www.cse.wustl.edu/~schmidt/PDF/OM-
01.pdf, 2001

	Home
	Papers by Session
	Papers by Author

