HARRIS
|
A Simple, Lightweight Communications
Architecture facilitating SCA application

portability

Charles Linn

Harris Corporation

Charles.linn@harris.com

Enter stage right... the SCA | BARRIS
In early 2000 the Software Communications
Architecture (SCA) is introduced to the US military
market. This caused a paradigm shift in how radios
were designed and structured.

The SCA formalized waveform / platform separation,
component-based design, and waveform portability

— Military radio SW design “sea change”

— Once platform APIs standardized, allows waveforms
to move between platforms with minimum effort

— Installable waveforms follow the “PC” model instead
of the “Wang word processor model”

All these things were good for industry

ssssss d communications™

y/\MIS

SCA Challenges |

Despite advantages, the SCA is often too
heavyweight a solution for low-SWAP platforms

— SCA pretty much assumes multi-process,
multiprocessor architectures are required

— Platform sizes measured in “dozens” of MB, boot
times below 10 seconds very hard to achieve

Desire to keep the good, but devise a lighter weight

solution

Needed — a lighter weight architecture that keeps
the advantages of SCA, and fosters application
portability to/from SCA frameworks

Enter stage left... the LCA | HARRIS

With this, the Lightweight Communications
Architecture (LCA) was born

Target architecture — small, SWAP-limited platforms
employing single-process space, single processor
(plus DSP or FPGA) environments

— This allowed CORBA to be replaced by C++ calls

— In limited cases multiple processors and address
space could be employed by using proxies

Fostering of waveform portability between SCA and
LCA was a primary goal

Foster developer movement across SCA and LCA
projects

LCA design philosophy | HBARRIS

Keep overall SCA structure, and where possible,
responsibilities

Replace CORBA with C++ calls

— CORBA object references change to C++ pointers
Standardize on C++ (SCA language porting little used)

Keep a component model (with ports)

Keep waveform (Resource) interfaces as similar as practical

Also create a DevKit to further abstract our SCA / LCA
differences

Specify at interface and postcondition level only
— Leave implementation choices free

LCA Component port interfaces

<<Interface>>
Resource
(fromLca)

#<<virtual>> getProvidesPort(portName : const char*, portPtr : ProvidesPort**) : errorCode
“<<virtual>> getUsesPort(portName : const char*, portPtr : UsesPort**) : errorCode
“<<virtual>> initialize() : errorCode

“B<<virtual>> start() : errorCode

fp<<virtual>> stop() : errorCode

W<<virtual>> getVersion() : string

<<virtual>> ~Resource()

“g<<virtual>> prepareTeardown() : void

“B<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

<<lInterface>> <<Interface>>
Device ProvidesPort
(fromLca) (fromLca)

W<<virtual>> ~Device() #<<virtual>> ~ProvidesPort()
Sp<<virtual>> isAvailable() : boolean “p<<virtual>> isTypeCompatibleWith(usesClassName : const char*) : bool

<<Interface>>
LoadableDevice
(from Lca)

<<Interface>>
UsesPort
(fromLca)

S<<virtual>> load(filename : const char*) : errorCode

#<<virtual>> unload(filename : const char*) : errorCode

f<<virtual>> loadimage(dataPtr : UNIT16*, dataCount : long unsigned) : errorCode
&<<virtual>> unloadimage() : errorCode

P<<virtual>> ~UsesPort()
“B<<virtual>> connectPort(targetPort : ProvidesPort*) : errorCode
#@<<virtual>> disconnectPort(port : ProvidesPort*) : errorCode

assured communications™ 13-Nov-09

Design rationale - Resource | l/-lARRIS

The SCA Port class was split into ProvidesPort and UsesPort,
and explicit type checking was added

— Maximize strong type checking where possible
— C++ RTI was not used, as embedded systems

— A derived port can choose to support the generalized port
protocol or not. This supports extension patterns.

Resource interface maintained, except:
— Properties were deleted
« No CORBA any in C++, need lightweight

« An application assembly controller can add custom configure
operations by inheriting from Resource or adding a control
ProvidesPort

— SCA Release operation was changed to a prepareTeardown()
(ApplicationFactory does deletion)

assured communications™ 13-Nov-09

Component rationale - Devices | l/-MRRIS

LCA Devices are analogous to SCA devices, but...
— Don’t support allocateCapacity or usageSate
 Allocation is done statically in LCA, so no need

— Don’t support adminState — since you can’t shutdown
a node, need disappears

— The operationalState attribute moved to the

ISAvalilable() operation

No ExecutableDevice — LCA does not “deploy”
components on a Device. Since only one node,
they are run by the NodeManager itself.

No AggregateDevice

Services, which are non-HW accessing components
launched as part of the platform, use Resource.

ssssss d communications™

NodeManager Interface
EBBBEEE—S—SSS ..

<<Interface>>
NodeManager
(fromLca)

P<<virtual>> ~NodeManager()

S<<virtual>> initialize() : errorCode

&<<virtual>> getResourceReference(name : const char*, componentPtr : Resource**) : errorCode

“B<<virtual>> getDeviceReference(name : const char*, componentPtr : Device**) : errorCode

S<<virtual>> getApplicationFactory(name : const char*, factoryPtr : ApplicationFactory**) : errorCode

<<virtual>> installApplication(appName : const char*, loadFilePathname : char*, factoryLaunchFunction : char*) : errorCode
Sk<<virtual>> uninstallApplicationFactory(appName : const char*) : void

A

ConcreteNodeManager

&<<virtual>> initialize() : errorCode

S¥<<virtual>> getComponentReference(name : const char*, componentPtr : Resource**) : errorCode

“B<<virtual>> getApplicationFactory(name : const char*) : ApplicationFactory*

&<<virtual>> installApplication(appName : const char*, loadFilePathname : char*, factoryLaunchFunction : char*) : errorCode
&p<<virtual>> uninstallApplication(appName : const char*) : void

<<Interface>>
Re source
(fromLca) <<Interface>>
Device
(fromLca)

P<<virtual>> ~Device()
“B<<Virttual>> i Available() : bool ean

Platform devices and
senices

assured communications™ 13-Nov-09

Rationale — NodeManager | HARRIS

The NodeManager serves as a combination of a
DeviceManager, DomainManager, and naming service

— Since LCA scoped to one processing node (plus slaves),
multiple DeviceManagers merged, and this in turn merged into
the DomainManager.

— This merging does not significantly affect applications
NodeManager Responsibilities:

Creates all platform Devices and services (Resources)

Creates all ApplicationFactory instances

Registry of all created resources and app factories

Install point for applications (optional)
HOW the platform components and app factories are created
IS left up to the implementation
— Hard-coded C++, XML or other based scripts, etc.

assured communications™ 13-Nov-09

ApplicationFactory Interface | l/-MRRls

I
obtains component references

<<Interface>>
NodeManager
(fromLca)

ConcreteNodeManager

<<Interface>>
Application Factory
(fromLca)

@<<virtual>> ~ApplicationFactory()

Sk<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
p<<virtual>> release(name : const char*) : errorCode

&§<<virtual>> getinstance(name : const char*, assyController : Resource**) : errorCode

A

Sample AppFactory
- 0000000000000000000000000000000000_0___]

#§SampleAppFactory(myNodeManager : const NodeManager&)

&§<<virtual>> create(name : const char*, assyController : Resource**) : errorCode
“B<<virtual>> release(name : const char*) : errorCode

&<<virtual>> getinstance(name : const char*, assyController : Resource**) : errorCode

creates, connects

<<Interface>>
Re source
(fromLca)

Application A
components

assured communications™ 13-Nov-09

ApplicationFactory Rationale | l/-MRRls

ApplicationFactory at the interface level is very similar to its
SCA cousin, but implementation can be quite different

— Creates applications

— Reference counts applications

— Releases applications (there is no Application class) — in this
case, only guaranteed behavior is that app. is prepared for
teardown and ports disconnected. App. Components may

remain instantiated.

Application is created, and a reference to the Resource
proxying as the “assembly controller” is returned to caller.

— Caller should not call prepareTeardown(), leave this to app
factory.

Implementations can vary:
— Application creation can be static or dynamic
— Application creation can be hard-coded, or script based

Application portability LCA < SCA l/-lARRls
|

As the Resource interface was kept rather similar, designing
easily-portable applications is straightforward. To do this, use
the following techniques:

— Use a “DevKit” to provide (and abstract out) common behavior,

such as port handling, state handling, and CORBA patrticulars in
SCA

— Use explicit Port classes (by composition) to convert between
(for SCA) C++ and CORBA.

— This leaves the main component class reasonably free from SCA
and CORBA detalils.

— Pay attention to threading — try to design application to use 2-
way conventions, or use one-way and provide an explicit thread
In server. (Even pure SCA has this challenge with co-location)

Some “CORBAIsm” is hard to abstract out;

— Container classes (OctetSequence) — could be abstracted by
port classes, at cost of extra copies

— CORBA object references vs. C++ pointers

assured communications™ 13-Nov-09

Pattern for LCA & SCA portability

<<Interface>>
Resource
(fromLca)

I

TD<|nt§dﬁaS(:Pe>> BaseResource <<Interface>>
rovide sPort (from LcaDewkit) UsesPort

(fromLca)
(fromLca)

ProvidesPortl UsesPortl

PortableComponent

ProvidesPort2 UsesPort2

assured communications™ 13-Nov-09

Conclusions l/-MRRIS

|
LCA Is not profound, but earns its value by getting

the details right, and hitting a needs “sweet spot”

— Serves as a common “SCA alternative” framework,

such that everyone does not develop their own
variants.

— Keeps a common community with SCA developers

Application cross-portability can be easily achieved

Differing implementations can widen range of target
platforms.

The SCA should continue to be used in complex,
multiprocessor, or security-centric designs

— But now we have an alternative...

Questions?

Contact:
Chuck Linn
Harris Corporation
Charles.Linn@harris.com

	Home
	Presentations - Home
	Presentations - Track B

