
Radio Management Across Multiple Standards:
A Microkernel Approach

- D R A F T -

Vincent J. Kovarik, Jr.
Harris Corporation,

Melbourne, FL
vkovarik@harris.com

Abstract

Current trends in software radio infrastruc-
tures design have evolved over the past several
years and resulted in several standards. One of
the primary infrastructure architectures is the Soft-
ware Communications Architecture (SCA) devel-
oped in conjunction with and in support of the
Joint Tactical Radio System (JTRS) project. One
of the basic premises of the SCA and other simi-
lar standards, is the specification of a set of com-
mon, open interfaces and behavioral requirements.
The objective being to define a set of common in-
terfaces to which multiple vendors and suppliers
can provide components, develop software, new
waveforms, and have a common method for con-
trol. While these are valuable capabilities, a com-
mon criticism of the SCA is that it incurs too much
overhead for small-form factor radio deployment.
This paper asserts that one of the factors contribut-
ing to the size of the implementation has been the
approach to design from the interface rather than
designing to the interface.

1. Introduction

With the advent of digital signal processing,
increasingly more of the signal processing within
the radio system has migrated into the digital do-
main and is performed through software. The in-
creased use of software enables a degree of config-
urability and flexibility heretofore not seen in com-

munications systems.
In order to maximize the capabilities of the

processing resources and leverage the flexibility of
digital processing, there must be an overarching
control or management infrastructure. Manage-
ment of a software radio has multiple aspects that
need to be addressed, including the management
of physical or hardware resources and the logical
or software resources of the radio.

2. Radio Infrastructure Standards

Several standards have been proposed and de-
veloped over the past decade. The most famil-
iar are the Software Communications Architecture
(SCA), PIM and PSM for Software Radio
Components (SWRADIO), and Space Telecom-
munications Radio Systems (STRS) specifications.
Although each the standards have the common ob-
jective of managing a software radio, each has dif-
ferent perspectives in terms of target deployment
environments and interfaces.

Development of the SCA was originally spon-
sored through the Joint Tactical Radio System
(JTRS) Joint Program Office (JPO). The
SWRADIO specification was developed through
the Object Management Group (OMG), an indus-
try standards organization, and STRS was initiated
and largely developed by National Aeronautics and
Space Administration (NASA).

The first of these standards was the SCA which
was an adaptation of an existing standard, the
CORBA Component Model (CCM). The CCM



standard, developed by the OMG, forms the ba-
sis of the SCA. The remainder of this section will
discuss each of the above standards from the con-
text of the rationale and objectives that resulted in
the initiation of the standard. The three will be dis-
cussed in the general order in which each standard
was introduced, beginning with the CCM.

2.1. CORBA Component Model

The Common Object Request Broker
Architecture (CORBA) standard initially gained
widespread acceptance in the early 90’s. One of
the primary benefits provided by CORBA was
an implementation-neutral approach to speci-
fying and developing distributed applications.
Targeted for a General Purpose Processor (GPP)
environment, CORBA allowed components of an
application to be distributed across a network of
computer resources without requiring developers
to write software specific to the network interfaces,
data format and transport protocols.

Although CORBA simplified the development
of distributed applications, the deployment of these
applications were still dependent on the specific
host target capabilities. So, while the application
components could locate and and connect to other
components of the application, the actual deploy-
ment of the application remained a manual process.

To address this limitation, the OMG initiated
development of the CORBA Components Model
(CCM)[1]. The intent of this specification was
to describe a distributed application as a set of
components using a set of eXtensible Markup
Language (XML) files. The XML files described
each of the components in the application, the de-
ployment constraints of each of the components
in terms of operating system, processor, etc. and
the connection dependencies of each components
which identified the order and precedence of the
flow of control and data through the distributed ap-
plication. It was this distributed application de-
ployment approach that was used as a foundation
for the SCA.

2.2. Software Communications Architecture

In the mid-1990’s, the benefits of software ra-
dio were recognized as having substantial benefits
to the military radio domain as a means by which
the military could develop a software-based radio
system that would be capable of evolving to new
waveforms and missions through the update and
addition of software. This had the potential of hav-
ing a very significant cost benefit to the military
because it would break the dependency on radio
hardware to implement new waveforms and capa-
bilities, which was very expensive. However, it
was also recognized that, in order to realize the po-
tential benefits, a standardized management infras-
tructure was necessary to in order to ensure com-
monality of interfaces and behaviors.

In the late 1990’s work was begun to develop
a standard software radio management infrastruc-
ture through a group called the Modular Software
Radio Consortium (MSRC). The MSRC was an
industry/government consortium that began devel-
oping a radio management infrastructure specifica-
tion in the late 1990’s that would eventually evolve
into the SCA [2].

2.3. PIM and PSM for Software Radio

One of the objectives of the JTRS JPO was to
promote the evolution of the SCA into an indus-
try standard. The rationale was that, an industry
standard would gain wider acceptance and thereby
promote continued refinement, improvements and
extension to the specification through industry par-
ticipation. To achieve this objective, collaboration
with OMG was initiated through the companies
and individuals who developed the SCA specifica-
tion to socialize and promote the specification and
evolve it into an OMG specification document.

As work progressed within the OMG it became
apparent that, although the SCA provided an initial
starting point for the specification, the standards
process would result in the evolution of the spec-
ification away from the specific form of the SCA
specification. The OMG had developed a process
called Model Driven Architecture (MDA) which
described a methodology for developing an archi-

2 of 7



tecture through a series of models that reflected
different perspectives of the specification. At the
time, the two key perspectives were the Platform
Independent Model (PIM) and Platform Specific
Model (PSM). The PIM, as the name implies,
defines a model that describes the system without
specifying the implementation technology. While
the PSM extends the PIM by identifying specific
implementation technologies that realize the PIM
for a specific target platform.

Because the SCA identified specific imple-
mentation technologies, e.g. CORBA, the SCA
was viewed as a PSM. Consequently, the bulk of
the standards work performed in development of
the PIM which is an abstraction of the SCA, re-
sulting in the SWRADIO specification [3].

While the OMG work provided additional
value through the PIM and did involve the partici-
pation and contributions from a variety of industry
representatives, it is debatable whether the speci-
fication had any positive effect on the acceptance
and adoption of the SCA by industry or govern-
ment outside of the U.S. military.

2.4. Space Telecommunications Radio Stan-
dard

A common view of the SCA has been that it is
not suitable for deployment in systems with strin-
gent Size Weight and Power (SWaP) constraints.
This view was primarily based on the perception
that the memory and processor requirements for
hosting SCA were greater than could be supported
in small form factor platforms.

Although some implementations of the SCA
did require substantial resources, this perception
was not entirely valid [4] and there is no inher-
ent shortcoming that prevents use of the SCA in a
small form factor radio. Nonetheless, a parallel ef-
fort to develop a software radio infrastructure suit-
able for space deployment was initiated by NASA.
The primary, driving requirement of the effort was
the sever SWaP constraints of a space-deployed
communications system. The results was the STRS
specification which defined an initial draft specifi-
cation for a space-deployable radio infrastructure.

3. Framework Comparison

Each of the specifications were driven by or-
ganizations with different perspectives and agen-
das such as target deployment environment, SWaP
constraints and the types of applications to be run
on the radio platform. While each of the specifi-
cations appear to be different on the surface, upon
closer inspection, similarities in the interfaces and
behaviors quickly emerge.

3.1. Interfaces

One of the fundamental areas of similarity be-
tween each of the specifications is the interface
definitions and behaviors. A short cross-section of
a subset of the interfaces for each of the specifica-
tions was inspected to identify the similarities and
differences between the specifications.

Briones et al [5], provide an overview of the
relationship between the OMG SWRADIO speci-
fication and the STRS specifications. Table 1 pro-
vides a simple table of the interfaces for a subset of
the functionality across each of the standards.

As can be observed in Table 1, there are sub-
stantial similarities in the names and behaviors of
the interfaces across the different specifications be-
tween the subset. This similarity of name and func-
tion raises the question as to what are the funda-
mental differences, if any, that require the develop-
ment of a specification for a different domain.

3.2. Fundamental Questions

Based on the history of software radio infras-
tructure development and the brief comparison of
selected interfaces in table 1, there are several fun-
damental questions that are raised.

1. Are there fundamental differences between
the above that indicates a real necessity for
multiple software radio infrastructure specifi-
cations?

2. Are there commonalities across the above
specifications that indicate a common set of
interfaces and behaviors, regardless of the im-
plementation or deployment?

3 of 7



Table 1. Comparison of interfaces
STRS OMG SCA Description

STRS ControllableComponent
• WF Start();

• WF Stop();

ControllableComponent

• start();

• stop();

Resource

• start();

• stop();

The start and stop interfaces pro-
vide the function calls to start
and stop processing of a hard-
ware or software component of
the system.

STRS Lifecycle

• WF Initialize();

• WF ReleaseObject();

Lifecycle

• initialize();

• releaseObject();

Lifecycle

• initialize();

•
releaseObject();

The Lifecycle calls provide
the essential interfaces for
the proper initialization and
finalization of the hardware and
software resources within the
radio system.

STRS PropertySet

• WF Configure();

• WF Query();

PropertySet

• configure();

• query();

PropertySet

• configure();

• query();

The PropertySet interfaces sup-
port the definition and use of
properties associated with an
object in the radio framework.
Each property is a name/value
pair with a string mnemonic for
the property name and any value
for the property.

STRS TestableObject

• WF RunTest();

• WF GroundTest();

TestableObject

• runText();

TestableObject

• runText();

The TestableObject interfaces
provide the ability to initiate
Built in Test (BIT) on any re-
source within the system.

3. If there is a need for different or additional
interfaces to address specific target deploy-
ment environment or requirements, can a
common implementation be realized that sup-
ports deployment-specific extensions rather
than have entirely new specifications?

The above questions lead to the hypothesis that
a common architecture and implementation that
provides the core functional elements required to
manage and configure a radio system. This imple-
mentation would be consistent across multiple ra-
dio system platforms with additional extensions of
interfaces supported for particular environments.

4. A Microkernel Approach

Early operating systems were monolithic with
each operating system developed to a specific hard-
ware architecture providing all of the capabilities
necessary to manage and run applications, inter-
face to devices and manage tasks and processes.

As processor architectures proliferated, it
quickly became cost prohibitive to develop an op-
erating system from the ground up for each operat-
ing system that would be run on a processor. This
led to the microkernel approach to operating sys-
tem design.

Figure 1. Microkernel operating system archi-
tecture

Figure 1 illustrates the basic concept of a
4 of 7



microkernel-based operating system (OS). The mi-
crokernel OS provides the core management ele-
ments required to support an operating system im-
plementation, e.g. task scheduling, memory man-
agement, basic I/O drivers.

The underlying question is whether there are
similarities in form and function between operating
systems and software radio infrastructures. More
importantly, if such similarities exist, can the same
approach be applied to software radio infrastruc-
ture design and implementation.

4.1. Essential Management Requirements

Given the proliferation of radio management
frameworks and the similarity of interfaces and
functions, as illustrated previously in table 1, it
would seem that the same approach use to reduce
the complexity and cost of operating systems de-
velopment would be applicable to software radio
framework development.

The first step to realizing a microker-
nel Software Defined Radio (SDR) Operating
Environment (OE) architecture is to identify the
common, cross platform functional capabilities.

Device Control: The start and stop interfaces pro-
vide the function calls to start and stop pro-
cessing of a hardware or software component
of the system.

Software Deployment: Since functional capabil-
ities are increasingly performed by soft-
ware, the deployment of software (includ-
ing Digital Signal Processor (DSP) and Field
Programmable Gate Array (FPGA) images)
across the set of processing elements in a ra-
dio must be supported.

Resource Management: Basic operations re-
quire some level of management control over
the resource available in the system. In an
operating system this may be memory or pro-
cessor cycles. In a radio system it may these
elements as well as Radio Frequency (RF)
electronics, amplifiers, and modems.

Command Interface: The deployment of wave-
form software, the start of processing, getting

device status and other operations are typi-
cally initiated via some operator command or
interface. While the specific visual or tactile
method used by the operator to enter the com-
mand may vary, there is nonetheless a com-
mand processor that accepts the command
from an operator and transforms that into the
appropriate system level command or call.

Based on the above common functional capa-
bilities, it appears that the realization of microker-
nel implementation of a radio management frame-
work would be both logical and cost effective.

Figure 2. Microkernel SDR operating environ-
ment

Figure 2 illustrates the conceptual view of a
microkernel approach for implementing an SDR
core framework.

4.2. Deployment-Driven Functionality

Assuming the availability of a microkernel
SDR management framework, the question then
becomes how to address the different requirements
of specific SDR systems. While there are some dif-
ferences between the SCA, SWRADIO and STRS
specifications, most of the differences are rela-
tively minor, i.e. differences in function signatures.
The fundamental purpose and behavior of the func-
tions are essentially isomorphic.

The key drivers in radio framework implemen-
tation then appears to be:

• the key functionality required for a given ra-
dio system,

5 of 7



• the SWaP constraints of the radio architecture
and

• impact of the deployment environment.

When analyzed objectively, the above items
are the underlying drivers that promulgated the ini-
tiation of the STRS specification over use of the
SCA. For example, the use of CORBA within the
SCA adds overhead that was deemed to exceed the
resources available on a space-deployed radio sys-
tem.

The SWRADIO specification alleviated some
of the issues associated with specific implemen-
tation technology through its use of a PIM to de-
fine the essential architecture and interfaces with-
out committing to an implementation approach or
technology. In fact, elements of the SWRADIO
specification were incorporated into the second it-
eration of the STRS specification. However, the
essential functional interfaces across each of the
specifications remain essentially identical.

5. Summary

This paper has presented a conceptual ap-
proach to the development of software radio man-
agement infrastructure that focuses on the essential
functions required to support radio management.
As presented in the paper, there is a substantial in-
tersection of functionality and interfaces between
each of the three specifications. This indicates that
the underlying control and management function-
ality is essentially the same, differing only in minor
aspects.

By using a microkernel approach to develop-
ing a radio management infrastructure, it is feasi-
ble to implement a core set of management func-
tionality and behavior that is common across each
of the specifications. This implies the core func-
tionality is similar. Thus, the driver appears to be
related to the deployment constraints of the target
environment.

The microkernel approach will be investigated
in future work to investigate the feasibility of hav-
ing a common management kernel that can be
adapted to different specification through a layered
interface library.

Acronyms

BIT Built in Test

CCM CORBA Component Model

CORBA Common Object Request Broker
Architecture

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General Purpose Processor

JTRS Joint Tactical Radio System

JPO Joint Program Office

MDA Model Driven Architecture

MSRC Modular Software Radio Consortium

NASA National Aeronautics and Space
Administration

OE Operating Environment

OMG Object Management Group

OS operating system

PIM Platform Independent Model

PSM Platform Specific Model

RF Radio Frequency

SCA Software Communications
Architecture

SDR Software Defined Radio

STRS Space Telecommunications Radio
Systems

SWaP Size Weight and Power

SWRADIO PIM and PSM for Software Radio
Components

XML eXtensible Markup Language

6 of 7



References

[1] Object Management Group. CORBA Component Model
(CCM) Specification, 2006.

[2] Joint Tactical Radio System (JTRS) Joint Program Office
(JPO), Arlington, VA. Software Communications Archi-
tecture (SCA) Specification, version 2.2 edition, Novem-
ber 2001.

[3] Object Management Group. PIM and PSM for Software
Radio Components, dtc/2005-09-05 edition, 2005.

[4] J. Bard and V. Kovarik. The software communications
architecture. In Walter Tuttlebee, editor, Software Defined
Radio. Wiley & Sons, 2007.

[5] J. Briones, L. Handler, S. Hall, R. Reinhart, and
T. Kacpura. Case study: Using the omg swradio pro-
file and sdr forum input for nasa’s space telecommunica-
tions radio system. Technical Report NASA/TM-2009-
215478, NASA, January 2009.

7 of 7


	Home
	Papers by Author
	Papers by Session

