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ABSTRACT 

 

This paper addresses two practical issues governing 

Software Defined Radio (SDR) performance that are often 

overlooked: RF front end nonlinearity and dynamic 

computing resource allocation. While the effects that we 

discuss are certainly well known in some parts of the SDR 

community, they frequently come as a surprise to 

inexperienced radio designers. These individuals typically 

begin with the Universal Software Radio Peripheral (USRP) 

and GNU Radio, so in this paper we use these platforms as 

the basis for our analyses and experiments.  

Current SDR performance still depends heavily on analog 

radio frequency (RF) technologies. Intermodulation and 

other nonlinear effects in these devices make it very 

challenging to create an RF front-end that is applicable to a 

variety of signals with widely differing center frequencies, 

modulation bandwidths, and power levels. Unanticipated 

intermodulation products can seriously degrade receiver 

performance. Digital signal processing in wireless 

communication is fundamentally a real-time task. Achieving 

real-time performance in SDRs puts stringent requirements 

on dynamic computing resource allocation; these 

requirements may be much higher than those in 

conventional digital radios. We explain why and investigate 

the impact of computing resource allocation on SDR 

performance. 

 

1. INTRODUCTION 

 

The software radio concept is built upon the use of 

reconfigurable (programmable) hardware whose operation 

can be changed through software modifications [1]. SDR’s 

one inherent goal is to move digital signal processing 

functions progressively closer to the radio antenna [1]. 

Doing so paves the way to achieving SDR’s promise of 

multi-band multi-mode reconfigurability by using software 

methods to replace analog functions. However, currently it 

is very challenging to create an RF front-end and associated 

AD/DA converters that are applicable to a variety of signals 

with widely differing center frequencies, modulation 

bandwidth, and power levels [2]. Therefore, SDR's current 

performance still depends heavily on analog RF 

technologies.  For example, RF front-end performance 

metrics, particularly non-linearity and dynamic range 

significantly limit SDR's.  

Digital communication systems [3] are fundamentally real-

time because data are transmitted as segments at the PHY 

layer; to receive all the data, the time to process each data 

segment is limited since the radio must accept and process 

each incoming data segment before the next one arrives. 

Such requirements are stringent in the digital domain when 

signal processing functions are complicated and there is 

limited battery life to support sufficient computing 

resources. It is possible to achieve both real-time 

performance and low power consumption for a single digital 

waveform because (1) the RF radio signals can be down-

converted to the baseband with a necessary minimum data 

rate, thus minimizing required computing resources; (2) the 

required digital signal processing functions can be fully 

optimized and executed on Application-Specific Integrated 

Circuits (ASICs). Most commercial radios are produced, 

(cell-phones for example) in this way.  

However, it is quite a different story for SDR. First, moving 

digital signal processing functions closer to the radio 

antenna requires a high data rate and more functional 

components in the software domain; this implies additional 

computing resources such as computing cycles in signal 

processing and memory space to hold more signal samples. 

Second, SDR usually needs to reconfigure itself to support 

more than one application; this makes it very challenging to 

highly optimize computing resource allocation for 

dynamically configured radio functions.  Third, developing 

and executing SDR systems requires a running computing 

system. Such a system consumes computing resources, 

maybe at a significant level, without even running any SDR 

code.  

Among the three most popular computing systems for SDR 

development – field-programmable gate arrays (FPGAs), 

general purpose processors (GPPs), and digital signal 

processors (DSPs) – FPGAs are difficult to reconfigure and 

consume significant power, but they can support real-time 

performance [4]. GPPs are capable of reconfiguration but 

are power demanding and also suffer from execution latency 

[5]. DSPs consume less power and can reconfigure for 
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simple real-time tasks but are not able to support 

computationally intensive tasks [1].  

The emerging cognitive radios (CRs) [6] require not just 

radio platform reconfiguration, but also the abilities to learn 

and to adapt. This further complicates the above issues if 

SDR is used as a supporting platform. For example, 

nonlinearity not only impacts radio performance [7], but 

also fundamentally limits CR’s application in dynamic 

spectrum access (DSA) [8] and other fields [9]. CR also may 

be aware of its computing resources [10]. However, how to 

dynamically allocate and manage computing resources for 

different functions with real-time performance while 

satisfying some power constraint is very challenging [11].  

 

2. SDR RF FRONT END NONLINEARITY 

 

RF front end nonlinearity severely impacts radio 

performance. Fundamentally, nonlinearity comes from 

nonlinear elements like diodes and transistors that are used 

in RF amplifiers and mixers. If an input signal, for example, 

a sinusoidal signal 𝐴 = cos(2𝜋𝑓0𝑡) has a power level that 

lies beyond the linear region of such devices, the output 

signal will include frequency components at 𝑓0 as well as at 

2𝑓0, 3𝑓0, etc. Further, if there exists more than one input 

signal with one or more having power levels beyond the 

linear regions of such devices, they will interact with each 

other and degrade the overall performance on each signal. 

There are mainly three nonlinearity problems: inter-

modulation distortion, desensitization, and cross-modulation 

[1]. In this section, we present some analysis on the impact 

of RF nonlinearity on SDR performance through USRP and 

GNU Radio [12].  

Figure 1. The RF front end in the USRP. 

 

Figure 2. Two signals at a low receiving gain. 

 

2.1. Types of Non-linearity Distortion 

 

2.1.1. Inter-modulation 

The RF front end is shown in Figure 1, where GNU Radio 

controls the receiver gain through the programmable gain 

amplifier (PGA) before the ADC. To illustrate the inter-

modulation, we set up two transmitters with the same power 

levels and at close center frequencies (900MHz and 

900.2MHz ) as in Figure 2. Both transmitted GMSK 

modulated data with a baseband data rate of 50vB/s. A 

receiver captured 4MHz bandwidth of signal centered at 

900MHz. When we set the receiving gain in the PGA at 

40% of the maximum value, only two signals were shown in 

the frequency domain. However, as we increased the 

receiving gain to 45%, multiple signals appeared, as shown 

in Figure 3. The additional signals are third and fifth-order 

intermodulation products that appear in the IF passband and 

cause downstream interference.  At the receiver output they 

are indistinguishable from unwanted signals that exist at the 

input.  

Figure 3. Apparent input signals under high gain conditions.  

Only the largest two actually exist at the antenna 

 

Figure 4. Two signals with different transmitting powers. 

 

Figure 5. Adjacent channel interference. 
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2.1.2. Adjacent Channel Interference 

We also studied the problem of adjacent channel 

interference (ACI). This is particularly noticeable when the 

receiver must simultaneously process multiple independent 

signals or when the weak signal is adjacent to a strong signal 

from a nearby transmitter. To demonstrate ACI, we 

decreased one signal’s power level 32 dB lower than the 

other signal, as shown in Figure 4. We then moved the 

center frequencies of the two signals closer at a separation 

of 100 KHz as shown in Figure 5. We can see that the 

frequency selectivity of the receiver is degraded as the 

energy from the strong signal leaks into the bandwidth of 

the weak signal.  

 

2.2. Two Application Examples 

 

2.2.1. Nearby Channel Data Communication 

An SDR can’t set its receiver gain too high because of non-

linearity as shown in Figure 3. However, if the receiver gain 

is too low, the received signal’s SINR might be too low, 

therefore resulting in high BER and packet error rate (PER).  

Here we used GNU Radio and USRP 1 (with a FLEX 900 

daughterboard) to characterize PER variation against SINR. 

Instead of varying the receiver gain, we change the 

transmitter power over a large range because it is a more 

appropriate way to vary SINR received at the receiver. (The 

noise level remains constant.) The receiver gain was set at 

one third of the maximum value at the PGA in Figure 1. In 

calculating PER, the receiver received 5000 packets and 

each one had an error checking header. The SINR is the 

effective input SINR as measured in GNU Radio and thus 

including all of the effects of the receiver operations and 

components. Figure 6 shows the results and it also indicates 

the SINR where inter-modulation begins when the receiver 

is processing equally strong signals on adjacent channels.   

Figure 6. PER vs. SINR distribution. 

 

The calculated SINR was determined by USRP’s 

architecture because the signals used in calculation went 

through function components such as filtering, 

amplification, and gain control. However, the same signal 

samples were also used in demodulation; therefore, Figure 6 

does demonstrate that non-linearity and SINR significantly 

limit the proper operating range for received signals at 

different power levels. In this example the effective dynamic 

range of the receiver is only about 7 dB.  

 

2.2.2. RF Signal Detection 

 

Inter-modulation also impacts signal detection over a wide 

frequency range, particularly for the detection of signals at a 

low power level. This is especially important for cognitive 

radio and DSA applications [7]. To guarantee non 

interference to primary users, a sensor is needed to detect 

even weak signals. To do so, the sensor has to set its 

receiving gain very high. However, a nearby strong signal 

might cause inter-modulated signals. Without further 

differentiation, such signals will be treated as primary users, 

artificially limiting available frequency bands.  

 

3. DYNAMIC COMPUTING RESOURCE ALLOCAT 

ION IN SDR 

 

Fundamentally, any radio system must guarantee a real-time 

performance. From the perspective of network data 

communication, data are transmitted as segments at the PHY 

layer; to receive all the data, processing time for each data 

segment is limited — determined by the transmitting data 

rate — since the radio must accept and process this data 

segment before the next segment arrives. Therefore, the 

overall signal processing in a radio system must have this 

deadline-driven constraint [13] — they must be completed 

within a certain time or radios may not function 

appropriately. Following the receiver path chain, the antenna 

and other analog parts can process signals of any bandwidth 

at an almost instant speed. Therefore, the real-time 

performance constraint mainly lies in the digital part.  

After the ADC, a minimum amount computing resource, for 

example, computing cycles and memory space, is needed to 

process the digital samples in achieving a needed real-time 

speed that matches the incoming digital samples’ speed. 

Different waveforms require different amounts of 

computing resources; for example, 16 QAM requires more 

computing resource than BPSK in achieving the same 

symbol rate. In conventional digital radios, the analog-to-

digital conversion occurs either at the baseband or at a low 

IF band, which dramatically reduces the speed of the digital 

signal samples. Therefore, the baseband data rate is usually 

at the same order of the sample rate after ADC. Thus, the 

real-time performance requirement of conventional digital 

radios can be equally determined by the baseband data rate.  

In commercial digital radios like a DSP based P25 radio, the 

computing resource requirement for all P25 radio tasks is 



Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

thoroughly quantified, based on the selected waveforms and 

the baseband data rates to achieve real-time performance. A 

DSP with required computing resources (in terms of CPU 

and memory), usually with some leeway is dedicated to the 

corresponding signal processing functions that correspond to 

such waveforms and data rates.  

 

3.1. Support A Real-time Performance in SDR 

 

SDR is quite different from conventional digital radios in 

that it usually captures signals samples at a high IF 

frequency and sends them to the software domain. The 

result is that the digital domain has to deal with a much 

higher sample rate after the ADC than the baseband data 

rate – sometimes several orders of magnitude higher. For 

example, a P25 radio may only require a data rate of 9.6 

KB/s [14], but an SDR requires a sample rate of at least 1 

MS/s if it captures signals with a bandwidth of 0.5MHz; 

about a 100 times higher data rate. Depending on the type of 

digital signal processing functions after ADC and before 

baseband signal processing, processing such a much higher 

sample rate in the digital domain may require more 

computing resources than processing a specific waveform at 

the baseband. This is certainly true for required memory 

space and its associated memory operations. Therefore, the 

real-time performance requirement of SDR is determined by 

both the IF band sample rate and the baseband data rate for 

a specific waveform. For simple waveforms, processing the 

IF band sample rate requires far more computing resources 

than the baseband data rate in achieving the required real-

time performance and dramatically increases the associated 

power consumption, which fundamentally limits SDR’s 

applications. 

Further, unlike conventional digital radios which often 

dedicate different optimized computing devices for different 

parts of a system, SDR accommodates many digital signal 

processing functions in a single computing domain and 

targets many radio applications. Not only does this limit the 

overall system optimization, but also it complicates the 

system performance analysis because all running functions 

compete with each other for computing resource. Such 

competition is particularly complicated in GPPs and DSPs 

because CPU and memory consumption for multiple 

functions can be non-linear in most operating systems. This 

creates a big challenge in analyzing CPU and memory 

requirements for allocating resource dynamically in 

achieving real-time performance. While FPGAs can, in 

theory, allocate computing resources – the programmable 

gates -- in a linear manner for different functions, the 

resource usage can’t be optimized, resulting in a waste of 

power consumption.  

Further, GPP-based SDR has execution latency issues 

because of the memory hierarchy in GPPs, the peripherals 

connecting the RF front end to GPPs, and multiple data 

buffers along the radio transceiver signal processing chain 

[5]. The execution latency in GPP based SDR further limits 

its ability to support real-time performance.  

 

 

Figure 7. Experiment set up. 

 

3.2. Experimental Investigation of Dynamic Computing 

Resource Allocation in SDR 

 

3.2.1. Experiment Settings 

In this section, we use a concrete example to illustrate the 

impact of computing resource allocation on the real-time 

performance requirement in GNU Radio (version 3.1 as the 

present paper was written) – a GPP based SDR system. As 

shown in Figure 7, we set up a direct radio link between two 

nodes by continuously transmitting a fixed amount of data 

from the transmitter to the receiver using GMSK. The data 

is transmitted in fixed-length packets at a fixed rate. In the 

receiver path, the USRP sends digital samples at an IF band 

to its connected GPP. In our experiment, the sampling rate 

fed to the GPP is fixed at 4 MS/s and the baseband data rate 

is 50 KB/s with 2 samples per symbol. The samples are then 

low-pass filtered before demodulation. The final baseband 

data is saved in a message queue. All the function blocks in 

Figure 7 are implemented in terms of signal processing 

blocks which require CPU cycles and memory space to do 

their work. More details about how GNU Radio works is 

available in [5]. To analyze the relationship between 

computing resource allocation and real-time performance, 

we also added a variable number of copies of the same low-

pass filter after the USRP, but feeding their output samples 

to a null block which simply dumps the data. The low-pass 

filter is a finite impulse response filter using Hamming 

window with 1241 taps. The GPP we used was an Intel Duo 

CPU (model T9300) with a frequency of 2.50GHz. It has 3.5 

GB of memory.  

 

3.2.2. Experiment Results and Analysis 

 

In this experiment, the receiver had a basic signal path 

including the signal processing blocks of USRP, 

demodulation, and only one low pass filter. It needed to 

receive 5000 packets; the overall computing resource 

consumption in receiving those packets and the PER were 

calculated. We then added a variable number of extra low-

pass filters as shown in Figure 7 and measured both the 
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computing resource consumption and PER accordingly. 

Specifically, we use four methods in estimating the 

computing resource consumption. We use the package 

SYSSTAT [15] and Oprofile in measuring the overall user 

domain and individual GNU Radio function CPU 

utilization, the Python Profiler [16] in measuring the overall 

CPU time to process all received packets, and the Linux 

system monitor in measuring the memory consumption. The 

Python Profiler uses deterministic profiling by precisely 

timing the intervals between events such as function call, 

function return, and exception events [16] while SYSSTAT 

and Oprofile use statistical profiling by randomly sampling 

the effective instruction pointer and deducing where time is 

being spent. To minimize the OS impact, we restarted the 

computer in a clean environment for each running case.  

Figure 8 shows the variation of overall CPU consumption in 

the user domain, including both GNU Radio and other 

running system programs, as we increase the number of 

extra low pass filters.  By total CPU, we mean the total 

available CPU cycles of a computing device. The CPU 

consumption is around 2% of all available CPU cycles 

without running GNU Radio.  Though not shown in the 

figure, we also found from the Linux system monitor that 

the memory utilization remains almost constant around 

397MB (11% overall utilization) when running GNU Radio 

and 373 MB (10.5% overall utilization) when not running 

GNU Radio. Therefore, memory consumption has a 

negligible impact in our experiment.  

As we can see from Figure 8, no trend seems to exist purely 

for the overall user domain CPU utilization. There may be 

multiple reasons to explain this. Fundamentally, GPP’s CPU 

has limited hardware resources, for example, registers and 

ALUs. They are shared among different tasks as the OS 

assigns resource and CPU clocks for each running task. 

There is variation for the overall system CPU utilization and 

such variation may obscure the CPU increment introduced 

by running extra filters solely in GNU Radio.  

To further investigate the variation of computing resource 

consumption, we then specifically analyze the CPU 

consumption of the low pass filters by using Oprofile 

because the filter operation is the main CPU consumption 

increment among all running cases. As shown in Figure 9, 

the CPU consumption of all running low pass filters 

increases linearly to a total of 7 filters, and then drops at 8, 

followed by a continuous increase afterward. Two lines are 

shown in Figure 9; one is the CPU percentage of all running 

filters against the overall running programs in the user 

domain, the other is the CPU percentage of all running 

filters against all the available system CPU. We can see that 

each extra filter only consumes about 0.3% of the overall 

CPU; that result confirms our estimation in the previous 

paragraph. Because now we can confirm that the required 

CPU increases linearly at least for the first 7 running cases, 

next we study the impact of CPU consumption increase on 

SDR performance -- here the PER. As shown in Figure 10, 

the PER for the first 7 running cases is, in almost all cases 0, 

then it increases abruptly to almost 100%.  

Figure 8. User domain overall CPU consumption variation.  

 

Figure 9. CPU consumption variation of different number of 

low pass filters.  

 

To further investigate the CPU consumption, we used 

Python Profiler to measure the overall timing requirement in 

receiving 5000 packets. We found that the required time is 

around 96.5 seconds for all the first 7 running cases, and 

then it increases sharply for following cases, as does the 

PER correspondingly.  We also found that the receiver path, 

starting from running case 8, experienced a significant 

number of USRP overruns (By this we mean that USRP 

samples are dropped because they were not read in time by 

the following signal processing block.). In such situations, 

the transmitter actually needed to send more data packets so 

that the receiver could receive up to 5000 packets. 

Therefore, the sharp increase in CPU time increase indicates 

the increase in the number of dropped signal samples. 
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Figure 10. PER distribution as the number of low pass filters 

increase.  This illustrates how the PER increases once the 

CPU runs out of time to do the number of computations 

associated with a single packet. 

 

Given the above data results, we now can understand why 

the CPU percentage of all running filters in Figure 9 doesn’t 

increase linearly after the number of 7. GNU Radio 

execution slows down if signal samples are dropped once in 

a while and the CPU consumption dynamics thus change. 

But most importantly, at a threshold value, a small amount 

of required CPU increment may result that an SDR receiver 

performance deteriorates abruptly because it can’t allocate 

enough computing resources to processing the incoming 

digitized samples at the required real-time speed. 

 

4. CONCLUSION 

 

We studied the non-linearity of SDR’s RF front end and its 

impacts on the SDR’s performance. Through the examples 

of GNU Radio and USRP, our experiment showed that 

inter-modulation significantly limits SDR’s receiver gain 

operation range. Further, we concluded that SDR may 

require much more CPU resource and battery power than 

conventional digital radios. Very importantly, SDR 

performance may deteriorate abruptly if not enough 

computing resources are available because of the real-time 

constraint. This has a significant implication for SDR 

development: the computing resource requirement of all 

running applications must be thoroughly quantified under 

all possible execution situations and the SDR must provide 

sufficient resources for executing at least the maximum case. 
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