
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

SDR IMPLEMENTATION ISSUES: RF FRONT END NONLINEARITY AND

DYNAMIC COMPUTING RESOURCE ALLOCATION

Feng Ge and Charles W. Bostian

Virginia Polytechnic Institute and State University, Wireless @ Virginia Tech, Center for Wireless

Telecommunications, Virginia Tech, Blacksburg, VA 24061, USA;

{gef, bostian}@vt.edu

ABSTRACT

This paper addresses two practical issues governing

Software Defined Radio (SDR) performance that are often

overlooked: RF front end nonlinearity and dynamic

computing resource allocation. While the effects that we

discuss are certainly well known in some parts of the SDR

community, they frequently come as a surprise to

inexperienced radio designers. These individuals typically

begin with the Universal Software Radio Peripheral (USRP)

and GNU Radio, so in this paper we use these platforms as

the basis for our analyses and experiments.

Current SDR performance still depends heavily on analog

radio frequency (RF) technologies. Intermodulation and

other nonlinear effects in these devices make it very

challenging to create an RF front-end that is applicable to a

variety of signals with widely differing center frequencies,

modulation bandwidths, and power levels. Unanticipated

intermodulation products can seriously degrade receiver

performance. Digital signal processing in wireless

communication is fundamentally a real-time task. Achieving

real-time performance in SDRs puts stringent requirements

on dynamic computing resource allocation; these

requirements may be much higher than those in

conventional digital radios. We explain why and investigate

the impact of computing resource allocation on SDR

performance.

1. INTRODUCTION

The software radio concept is built upon the use of

reconfigurable (programmable) hardware whose operation

can be changed through software modifications [1]. SDR’s

one inherent goal is to move digital signal processing

functions progressively closer to the radio antenna [1].

Doing so paves the way to achieving SDR’s promise of

multi-band multi-mode reconfigurability by using software

methods to replace analog functions. However, currently it

is very challenging to create an RF front-end and associated

AD/DA converters that are applicable to a variety of signals

with widely differing center frequencies, modulation

bandwidth, and power levels [2]. Therefore, SDR's current

performance still depends heavily on analog RF

technologies. For example, RF front-end performance

metrics, particularly non-linearity and dynamic range

significantly limit SDR's.

Digital communication systems [3] are fundamentally real-

time because data are transmitted as segments at the PHY

layer; to receive all the data, the time to process each data

segment is limited since the radio must accept and process

each incoming data segment before the next one arrives.

Such requirements are stringent in the digital domain when

signal processing functions are complicated and there is

limited battery life to support sufficient computing

resources. It is possible to achieve both real-time

performance and low power consumption for a single digital

waveform because (1) the RF radio signals can be down-

converted to the baseband with a necessary minimum data

rate, thus minimizing required computing resources; (2) the

required digital signal processing functions can be fully

optimized and executed on Application-Specific Integrated

Circuits (ASICs). Most commercial radios are produced,

(cell-phones for example) in this way.

However, it is quite a different story for SDR. First, moving

digital signal processing functions closer to the radio

antenna requires a high data rate and more functional

components in the software domain; this implies additional

computing resources such as computing cycles in signal

processing and memory space to hold more signal samples.

Second, SDR usually needs to reconfigure itself to support

more than one application; this makes it very challenging to

highly optimize computing resource allocation for

dynamically configured radio functions. Third, developing

and executing SDR systems requires a running computing

system. Such a system consumes computing resources,

maybe at a significant level, without even running any SDR

code.

Among the three most popular computing systems for SDR

development – field-programmable gate arrays (FPGAs),

general purpose processors (GPPs), and digital signal

processors (DSPs) – FPGAs are difficult to reconfigure and

consume significant power, but they can support real-time

performance [4]. GPPs are capable of reconfiguration but

are power demanding and also suffer from execution latency

[5]. DSPs consume less power and can reconfigure for

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

simple real-time tasks but are not able to support

computationally intensive tasks [1].

The emerging cognitive radios (CRs) [6] require not just

radio platform reconfiguration, but also the abilities to learn

and to adapt. This further complicates the above issues if

SDR is used as a supporting platform. For example,

nonlinearity not only impacts radio performance [7], but

also fundamentally limits CR’s application in dynamic

spectrum access (DSA) [8] and other fields [9]. CR also may

be aware of its computing resources [10]. However, how to

dynamically allocate and manage computing resources for

different functions with real-time performance while

satisfying some power constraint is very challenging [11].

2. SDR RF FRONT END NONLINEARITY

RF front end nonlinearity severely impacts radio

performance. Fundamentally, nonlinearity comes from

nonlinear elements like diodes and transistors that are used

in RF amplifiers and mixers. If an input signal, for example,

a sinusoidal signal 𝐴 = cos(2𝜋𝑓0𝑡) has a power level that

lies beyond the linear region of such devices, the output

signal will include frequency components at 𝑓0 as well as at

2𝑓0, 3𝑓0, etc. Further, if there exists more than one input

signal with one or more having power levels beyond the

linear regions of such devices, they will interact with each

other and degrade the overall performance on each signal.

There are mainly three nonlinearity problems: inter-

modulation distortion, desensitization, and cross-modulation

[1]. In this section, we present some analysis on the impact

of RF nonlinearity on SDR performance through USRP and

GNU Radio [12].

Figure 1. The RF front end in the USRP.

Figure 2. Two signals at a low receiving gain.

2.1. Types of Non-linearity Distortion

2.1.1. Inter-modulation

The RF front end is shown in Figure 1, where GNU Radio

controls the receiver gain through the programmable gain

amplifier (PGA) before the ADC. To illustrate the inter-

modulation, we set up two transmitters with the same power

levels and at close center frequencies (900MHz and

900.2MHz) as in Figure 2. Both transmitted GMSK

modulated data with a baseband data rate of 50vB/s. A

receiver captured 4MHz bandwidth of signal centered at

900MHz. When we set the receiving gain in the PGA at

40% of the maximum value, only two signals were shown in

the frequency domain. However, as we increased the

receiving gain to 45%, multiple signals appeared, as shown

in Figure 3. The additional signals are third and fifth-order

intermodulation products that appear in the IF passband and

cause downstream interference. At the receiver output they

are indistinguishable from unwanted signals that exist at the

input.

Figure 3. Apparent input signals under high gain conditions.

Only the largest two actually exist at the antenna

Figure 4. Two signals with different transmitting powers.

Figure 5. Adjacent channel interference.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

2.1.2. Adjacent Channel Interference

We also studied the problem of adjacent channel

interference (ACI). This is particularly noticeable when the

receiver must simultaneously process multiple independent

signals or when the weak signal is adjacent to a strong signal

from a nearby transmitter. To demonstrate ACI, we

decreased one signal’s power level 32 dB lower than the

other signal, as shown in Figure 4. We then moved the

center frequencies of the two signals closer at a separation

of 100 KHz as shown in Figure 5. We can see that the

frequency selectivity of the receiver is degraded as the

energy from the strong signal leaks into the bandwidth of

the weak signal.

2.2. Two Application Examples

2.2.1. Nearby Channel Data Communication

An SDR can’t set its receiver gain too high because of non-

linearity as shown in Figure 3. However, if the receiver gain

is too low, the received signal’s SINR might be too low,

therefore resulting in high BER and packet error rate (PER).

Here we used GNU Radio and USRP 1 (with a FLEX 900

daughterboard) to characterize PER variation against SINR.

Instead of varying the receiver gain, we change the

transmitter power over a large range because it is a more

appropriate way to vary SINR received at the receiver. (The

noise level remains constant.) The receiver gain was set at

one third of the maximum value at the PGA in Figure 1. In

calculating PER, the receiver received 5000 packets and

each one had an error checking header. The SINR is the

effective input SINR as measured in GNU Radio and thus

including all of the effects of the receiver operations and

components. Figure 6 shows the results and it also indicates

the SINR where inter-modulation begins when the receiver

is processing equally strong signals on adjacent channels.

Figure 6. PER vs. SINR distribution.

The calculated SINR was determined by USRP’s

architecture because the signals used in calculation went

through function components such as filtering,

amplification, and gain control. However, the same signal

samples were also used in demodulation; therefore, Figure 6

does demonstrate that non-linearity and SINR significantly

limit the proper operating range for received signals at

different power levels. In this example the effective dynamic

range of the receiver is only about 7 dB.

2.2.2. RF Signal Detection

Inter-modulation also impacts signal detection over a wide

frequency range, particularly for the detection of signals at a

low power level. This is especially important for cognitive

radio and DSA applications [7]. To guarantee non

interference to primary users, a sensor is needed to detect

even weak signals. To do so, the sensor has to set its

receiving gain very high. However, a nearby strong signal

might cause inter-modulated signals. Without further

differentiation, such signals will be treated as primary users,

artificially limiting available frequency bands.

3. DYNAMIC COMPUTING RESOURCE ALLOCAT

ION IN SDR

Fundamentally, any radio system must guarantee a real-time

performance. From the perspective of network data

communication, data are transmitted as segments at the PHY

layer; to receive all the data, processing time for each data

segment is limited — determined by the transmitting data

rate — since the radio must accept and process this data

segment before the next segment arrives. Therefore, the

overall signal processing in a radio system must have this

deadline-driven constraint [13] — they must be completed

within a certain time or radios may not function

appropriately. Following the receiver path chain, the antenna

and other analog parts can process signals of any bandwidth

at an almost instant speed. Therefore, the real-time

performance constraint mainly lies in the digital part.

After the ADC, a minimum amount computing resource, for

example, computing cycles and memory space, is needed to

process the digital samples in achieving a needed real-time

speed that matches the incoming digital samples’ speed.

Different waveforms require different amounts of

computing resources; for example, 16 QAM requires more

computing resource than BPSK in achieving the same

symbol rate. In conventional digital radios, the analog-to-

digital conversion occurs either at the baseband or at a low

IF band, which dramatically reduces the speed of the digital

signal samples. Therefore, the baseband data rate is usually

at the same order of the sample rate after ADC. Thus, the

real-time performance requirement of conventional digital

radios can be equally determined by the baseband data rate.

In commercial digital radios like a DSP based P25 radio, the

computing resource requirement for all P25 radio tasks is

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

thoroughly quantified, based on the selected waveforms and

the baseband data rates to achieve real-time performance. A

DSP with required computing resources (in terms of CPU

and memory), usually with some leeway is dedicated to the

corresponding signal processing functions that correspond to

such waveforms and data rates.

3.1. Support A Real-time Performance in SDR

SDR is quite different from conventional digital radios in

that it usually captures signals samples at a high IF

frequency and sends them to the software domain. The

result is that the digital domain has to deal with a much

higher sample rate after the ADC than the baseband data

rate – sometimes several orders of magnitude higher. For

example, a P25 radio may only require a data rate of 9.6

KB/s [14], but an SDR requires a sample rate of at least 1

MS/s if it captures signals with a bandwidth of 0.5MHz;

about a 100 times higher data rate. Depending on the type of

digital signal processing functions after ADC and before

baseband signal processing, processing such a much higher

sample rate in the digital domain may require more

computing resources than processing a specific waveform at

the baseband. This is certainly true for required memory

space and its associated memory operations. Therefore, the

real-time performance requirement of SDR is determined by

both the IF band sample rate and the baseband data rate for

a specific waveform. For simple waveforms, processing the

IF band sample rate requires far more computing resources

than the baseband data rate in achieving the required real-

time performance and dramatically increases the associated

power consumption, which fundamentally limits SDR’s

applications.

Further, unlike conventional digital radios which often

dedicate different optimized computing devices for different

parts of a system, SDR accommodates many digital signal

processing functions in a single computing domain and

targets many radio applications. Not only does this limit the

overall system optimization, but also it complicates the

system performance analysis because all running functions

compete with each other for computing resource. Such

competition is particularly complicated in GPPs and DSPs

because CPU and memory consumption for multiple

functions can be non-linear in most operating systems. This

creates a big challenge in analyzing CPU and memory

requirements for allocating resource dynamically in

achieving real-time performance. While FPGAs can, in

theory, allocate computing resources – the programmable

gates -- in a linear manner for different functions, the

resource usage can’t be optimized, resulting in a waste of

power consumption.

Further, GPP-based SDR has execution latency issues

because of the memory hierarchy in GPPs, the peripherals

connecting the RF front end to GPPs, and multiple data

buffers along the radio transceiver signal processing chain

[5]. The execution latency in GPP based SDR further limits

its ability to support real-time performance.

Figure 7. Experiment set up.

3.2. Experimental Investigation of Dynamic Computing

Resource Allocation in SDR

3.2.1. Experiment Settings

In this section, we use a concrete example to illustrate the

impact of computing resource allocation on the real-time

performance requirement in GNU Radio (version 3.1 as the

present paper was written) – a GPP based SDR system. As

shown in Figure 7, we set up a direct radio link between two

nodes by continuously transmitting a fixed amount of data

from the transmitter to the receiver using GMSK. The data

is transmitted in fixed-length packets at a fixed rate. In the

receiver path, the USRP sends digital samples at an IF band

to its connected GPP. In our experiment, the sampling rate

fed to the GPP is fixed at 4 MS/s and the baseband data rate

is 50 KB/s with 2 samples per symbol. The samples are then

low-pass filtered before demodulation. The final baseband

data is saved in a message queue. All the function blocks in

Figure 7 are implemented in terms of signal processing

blocks which require CPU cycles and memory space to do

their work. More details about how GNU Radio works is

available in [5]. To analyze the relationship between

computing resource allocation and real-time performance,

we also added a variable number of copies of the same low-

pass filter after the USRP, but feeding their output samples

to a null block which simply dumps the data. The low-pass

filter is a finite impulse response filter using Hamming

window with 1241 taps. The GPP we used was an Intel Duo

CPU (model T9300) with a frequency of 2.50GHz. It has 3.5

GB of memory.

3.2.2. Experiment Results and Analysis

In this experiment, the receiver had a basic signal path

including the signal processing blocks of USRP,

demodulation, and only one low pass filter. It needed to

receive 5000 packets; the overall computing resource

consumption in receiving those packets and the PER were

calculated. We then added a variable number of extra low-

pass filters as shown in Figure 7 and measured both the

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

computing resource consumption and PER accordingly.

Specifically, we use four methods in estimating the

computing resource consumption. We use the package

SYSSTAT [15] and Oprofile in measuring the overall user

domain and individual GNU Radio function CPU

utilization, the Python Profiler [16] in measuring the overall

CPU time to process all received packets, and the Linux

system monitor in measuring the memory consumption. The

Python Profiler uses deterministic profiling by precisely

timing the intervals between events such as function call,

function return, and exception events [16] while SYSSTAT

and Oprofile use statistical profiling by randomly sampling

the effective instruction pointer and deducing where time is

being spent. To minimize the OS impact, we restarted the

computer in a clean environment for each running case.

Figure 8 shows the variation of overall CPU consumption in

the user domain, including both GNU Radio and other

running system programs, as we increase the number of

extra low pass filters. By total CPU, we mean the total

available CPU cycles of a computing device. The CPU

consumption is around 2% of all available CPU cycles

without running GNU Radio. Though not shown in the

figure, we also found from the Linux system monitor that

the memory utilization remains almost constant around

397MB (11% overall utilization) when running GNU Radio

and 373 MB (10.5% overall utilization) when not running

GNU Radio. Therefore, memory consumption has a

negligible impact in our experiment.

As we can see from Figure 8, no trend seems to exist purely

for the overall user domain CPU utilization. There may be

multiple reasons to explain this. Fundamentally, GPP’s CPU

has limited hardware resources, for example, registers and

ALUs. They are shared among different tasks as the OS

assigns resource and CPU clocks for each running task.

There is variation for the overall system CPU utilization and

such variation may obscure the CPU increment introduced

by running extra filters solely in GNU Radio.

To further investigate the variation of computing resource

consumption, we then specifically analyze the CPU

consumption of the low pass filters by using Oprofile

because the filter operation is the main CPU consumption

increment among all running cases. As shown in Figure 9,

the CPU consumption of all running low pass filters

increases linearly to a total of 7 filters, and then drops at 8,

followed by a continuous increase afterward. Two lines are

shown in Figure 9; one is the CPU percentage of all running

filters against the overall running programs in the user

domain, the other is the CPU percentage of all running

filters against all the available system CPU. We can see that

each extra filter only consumes about 0.3% of the overall

CPU; that result confirms our estimation in the previous

paragraph. Because now we can confirm that the required

CPU increases linearly at least for the first 7 running cases,

next we study the impact of CPU consumption increase on

SDR performance -- here the PER. As shown in Figure 10,

the PER for the first 7 running cases is, in almost all cases 0,

then it increases abruptly to almost 100%.

Figure 8. User domain overall CPU consumption variation.

Figure 9. CPU consumption variation of different number of

low pass filters.

To further investigate the CPU consumption, we used

Python Profiler to measure the overall timing requirement in

receiving 5000 packets. We found that the required time is

around 96.5 seconds for all the first 7 running cases, and

then it increases sharply for following cases, as does the

PER correspondingly. We also found that the receiver path,

starting from running case 8, experienced a significant

number of USRP overruns (By this we mean that USRP

samples are dropped because they were not read in time by

the following signal processing block.). In such situations,

the transmitter actually needed to send more data packets so

that the receiver could receive up to 5000 packets.

Therefore, the sharp increase in CPU time increase indicates

the increase in the number of dropped signal samples.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Figure 10. PER distribution as the number of low pass filters

increase. This illustrates how the PER increases once the

CPU runs out of time to do the number of computations

associated with a single packet.

Given the above data results, we now can understand why

the CPU percentage of all running filters in Figure 9 doesn’t

increase linearly after the number of 7. GNU Radio

execution slows down if signal samples are dropped once in

a while and the CPU consumption dynamics thus change.

But most importantly, at a threshold value, a small amount

of required CPU increment may result that an SDR receiver

performance deteriorates abruptly because it can’t allocate

enough computing resources to processing the incoming

digitized samples at the required real-time speed.

4. CONCLUSION

We studied the non-linearity of SDR’s RF front end and its

impacts on the SDR’s performance. Through the examples

of GNU Radio and USRP, our experiment showed that

inter-modulation significantly limits SDR’s receiver gain

operation range. Further, we concluded that SDR may

require much more CPU resource and battery power than

conventional digital radios. Very importantly, SDR

performance may deteriorate abruptly if not enough

computing resources are available because of the real-time

constraint. This has a significant implication for SDR

development: the computing resource requirement of all

running applications must be thoroughly quantified under

all possible execution situations and the SDR must provide

sufficient resources for executing at least the maximum case.

5. ACKNOWLEDGEMENT

This project is supported by the National Science

Foundation (NSF) under Grant No. CNS-0519959 and by

the National Institute of Justice, Office of Justice Programs,

U.S. Department of Justice under Award No. 2005-IJ-CX-

K017 . The opinions, findings, and conclusions expressed

are those of the authors and do not necessarily reflect the

views of NSF and the Department of Justice.

6. REFERENCES

1.Reed, J.H., Software Radio: A Modern Approach to Radio

Engineering, . 2004, Englewood Cliffs, NJ: Prentice-Hall.

2. Le, B., et al., Analog-to-digital converters, in IEEE

Signal Processing Magazine. 2005. p. 69-77.

3. Proakis, J.G., Digital Communications. 4 ed. 2000, New

York: McGraw Hill.

4. Fong, R.J., S.J. Harper, and P.M. Athanas. A versatile

framework for FPGA field updates: an application of partial

self-reconfiguration. in Rapid Systems Prototyping, 2003.

Proceedings. 14th IEEE International Workshop on. 2003.

5. Ge, F., et al., Software Defined Radio Execution

Latency, in Software Defined Radio Technical Conference.

October, 2008: Washington D.C.

6. Mitola, J., Cognitive Radio: An Integrated Agent

Architecture for Software Defined Radio. 2000, Royal

Institute of Technology (KTH).

7. Marshall, P.F., Cognitive Radio as a Mechanism to

Manage Front-End Linearity and Dynamic Range. IEEE

Communications Magazine, 2009. 47(3): p. 81-87.

8. Daniel DePardo, J.B.E., James A. Roberts, Victor R.

Petty, Alexander M. Wyglinski, Paul J. Kolodzy, and

Michael J. Marcus, Observations of Potential Secondary

User Device Effects on Digital Television Receivers, in

Technical Report ITTC-FY2008-TR-41420-06. 2007.

9. ElNainay, M.Y., et al. Channel allocation for dynamic

spectrum access cognitive networks using Localized island

Genetic Algorithm. in 5th International Conference on

Testbeds and Research Infrastructures for the Development

of Networks & Communities and Workshops (TridentCom

2009). 2009. Washington D.C.

10. Ge, F., et al., Cognitive Radio: From Spectrum Sharing

to Adaptive Learning and Reconfiguration, in 2008 IEEE

Aerospace Conference,. 2008: Big Sky Montana, MT.

11. Chunlin, L. and L. Layuan, Dynamic resource

allocation for joint grid user and provider optimisation in

computational grid. Int. J. Comput. Appl. Technol., 2006.

26(4): p. 242-250.

12. Blossom, E., Exploring GNU Radio.

http://www.gnu.org/software/gnuradio/doc/exploring-

gnuradio.html, November 2004.

13. Liu, J.W.S., Real-Time Systems 2000: Prentice Hall.

14.http://www.apcointl.org/frequency/project25/information

.html.

15. http://pagesperso-orange.fr/sebastien.godard/.

16.http://www.vislab.uq.edu.au/users/manuals/python.2.4/li

b/profile-instant.html.

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.apcointl.org/frequency/project25/information.html
http://www.apcointl.org/frequency/project25/information.html
http://pagesperso-orange.fr/sebastien.godard/
http://www.vislab.uq.edu.au/users/manuals/python.2.4/lib/profile-instant.html
http://www.vislab.uq.edu.au/users/manuals/python.2.4/lib/profile-instant.html

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

―The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.‖

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

	Home
	Papers by Session
	Papers by Author

