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ABSTRACT 

 
In cognitive radio systems with multiple components, the 
radio must possess a way to manage, control, and properly 
use the services provided to it by these components. This 
scenario grows more complex as components of the same 
type (e.g. multiple cognitive engines) are attached to a 
single radio, forcing the radio to make requests to the 
proper component. Additionally, in a cognitive radio with 
a non-static mission, the radio must be capable of adapting 
its use of components to achieve its mission goals. In 
order to make such a distributed system work, there must 
be a well-designed and strict API for both interfacing 
components and controlling the radio itself. Ergo, a 
distributed cognitive radio API must define both the 
networking protocol with which the components talk to 
each other, and function hooks that the client can use to 
control and interface with the radio. In distributed 
systems, this API must not require a static radio 
waveform, as the types and numbers of components 
present might vary from one radio implementation to 
another. As part of the Virginia Tech Cognitive Radio 
Open Source Systems project (VTCROSS) currently 
underway at Virginia Tech, we have designed a cognitive 
radio API that defines interfaces for all radio components 
and the component inter-communication protocol. We 
have also designed a Service Management Layer (SML) 
for managing multiple components, possibly distributed, 
for any single cognitive radio system. In this paper, we 
will present our design of component APIs and a SML for 
cognitive radio systems. We will also discuss how such a 
design can be used to create implementation-independent 
cognitive radios for any platform and mission. 
 

1. INTRODUCTION 
 
Software-Defined Radio (SDR) has become a promising 
solution to many of the primary issues confronting radio 
researchers today. One of the most heavily studied of 
these issues is the finite spectrum dilemma, which is 
certain to stagnate both wireless technology growth and 
adoption should it go unresolved. A potential solution to 
this problem is cognitive radio, which has been the focus 
of much research and discussion in recent years. 

 As a result of the large amount of attention SDR has 
received, a number of SDR frameworks, toolsets, and 
platforms have emerged – some open (e.g. [1][2]), some 
proprietary (e.g. [3][4]). Cognitive radio implementations 
are then built on top of these SDR frameworks, and are 
generally specific to that particular SDR platform and 
radio system. Ergo, collaboration and comparative 
research for cognitive radios is made difficult by a lack of 
interoperability and design compatibility. 
 To facilitate cognitive radio research, development, 
and prototyping, the Mobile & Portable Radio Research 
Group at Virginia Tech has created the Virginia Tech 
Cognitive Radio Open Source Systems project 
(VTCROSS) [5]. The goal of VTCROSS is to provide a 
distributed and modular cognitive radio system framework 
that sits atop an SDR platform. A component developed 
for one VTCROSS system will work with any other, 
regardless of what SDR or hardware platform it is 
deployed to. 
 Two major facets of this design are the interface 
between VTCROSS components and the Service 
Management Layer, which provides a service-oriented 
architecture for VTCROSS radio systems. In this paper, 
we present the VTCROSS architecture, the API we have 
designed for VTCROSS component development, and the 
communication interfaces that the components use during 
system operation. 
 

2. NAMING CONVENTIONS 
 

Due to the distributed nature of VTCROSS radios, we use 
specific naming conventions to distinguish between 
different aspects of the radio. 
 CROSS, on its own, is a framework. Using this 
framework, a client can build a complex radio. However, 
by itself, CROSS does not comprise a radio. 
 Since CROSS radios are generally distributed, simply 
referring to it as 'the radio' can be misleading. It is not 
clear whether the reference is to the radio hardware, the 
entire CROSS system, just a single CROSS component, or 
the host platform. For that reason, we refer to the working 
radio as a CROSS radio system' - the 'system' keyword 
denoting that the radio itself is comprised of many 
components, some complex and some simple. By default, 



 

a CROSS radio system is not necessarily cognitive. It only 
becomes a cognitive radio once a cognitive engine 
component is connected to the system. Once this occurs, 
we call the entire radio a CROSS cognitive radio system'. 
 We refer to the radio design that CROSS defines as 
the 'radio architecture'. A suitable illustration of the 
CROSS architecture can be seen in Figure 1 - it is the 
block diagram that describes how a CROSS system is 
connected. 
 The CROSS project itself is free and open source. 
Hence, development can occur in any group, and forks 
can be created by anyone. Hence, VTCROSS and CROSS 
are sometimes interchanged, but we use the 'VTCROSS' to 
distinguish between outside groups and the core founding 
group of developers located at Virginia Tech. 
 

3. CROSS ARCHITECTURE 
 

The CROSS project implements a modular cognitive radio 
framework that provides portability and interoperability 
between components that may be independently 
developed for different platforms with different 
programming languages. This allows for flexible 
development of the cognitive radio system and allows 
developers to focus entirely on their radio component of 
choice without the need to spend time developing or 
modifying components that have no relevance to their 
specific focus of research or testing. 

Figure 1. Overall CROSS system block diagram showing all mandatory 
and optional components and the associated API layers between them. 

 
3.1. Cross Components 
The current CROSS component library consists of five 
categories of components, several of which are optional in 
a radio system. The five primary components of a CROSS 
radio system are as follows: 
 

• Cognitive Radio Shell (CRS) 
• Cognitive Engine (CE) 

• Policy Engine (PE) 
• Service Management Layer (SML) 
• Software-Defined Radio Host Platform 

 
Figure 1 shows the general CROSS system block diagram, 
including all mandatory and optional components. The 
following sections provide more detail on each of the 
system components. 
 
3.1.1. Software-Defined Radio Host Platform 
The SDR host platform is not a component included in the 
CROSS source code, but it is a necessary component of a 
CROSS radio system. The host platform is where the 
client application (sometimes referred to as the 'host 
application') that calls CROSS library functions is 
running. Typically, this is also where the radio hardware is 
located, although this is not a requirement. Without the 
host application and platform, the CROSS radio system 
will sit idle without operating instructions. 
 The most important aspect of the host application is 
that it works with a specific SDR framework. Within the 
application running on the SDR, the client code interfaces 
the CROSS radio system via the CROSS library. The host 
application can be anything from a standard TCP/IP stack 
that uses CROSS to optimize network parameters, to a 
DSA application that is capable of gathering information 
about current spectrum use and adapting accordingly. 
 
3.1.2. Cognitive Radio Shell 
The CRS has several core functions that are integral to 
component communication and integration within the 
radio system. It acts as a message passer, configuration 
parser, and as an interface from the application to the rest 
of the radio system. 
 Initially, the CRS parses the Radio XML configuration 
file that specifies the operating parameters, environmental 
parameters, and objectives of the current radio 
application. It passes this parsed information about the 
capabilities of the radios onto other components in the 
system such as the various cognitive engines or policy 
engines that may be connected.  
 The primary function of the CRS is to act as a gateway 
between the host application and the rest of the CROSS 
system. The CROSS library interfaces with the CRS and 
allows the host applications to issue commands to the 
system. This single interface makes accessing a CROSS 
system extremely simple. 
 
3.1.3. Cognitive Engine 
Cognitive engines can come in many shapes and sizes. A 
primary goal in the development of the CROSS 
framework was to create an architecture that would work 
with any type of CE implementation. Cognitive engines 
have been developed with genetic algorithms (GA), case-
based reasoning (CBR), and other mathematical models. 



 

Each cognitive engine implementation has its own benefits 
and weaknesses, and some might be more appropriate for 
a certain radio system or mission than others. In the event 
that multiple CEs of different types are connected to the 
same CROSS radio system, the CROSS radio can 
selectively use the one that best fits the current 
environment. 
 A major difference between the CROSS system and 
other systems with more integrated cognitive engines is 
that the host application dictates when CROSS cognitive 
engines generate new parameters. We do not require the 
system to constantly generate parameters and push them to 
the radio. This decision is left up to the host application. 
Since a CROSS radio system is typically distributed over 
a network (although this isn't necessary), this keeps 
network bandwidth open when it isn't needed, and allows 
for more flexible implementation models. 
 The host application, using the CROSS library, 
invokes CROSS system hooks to optimize some set of 
parameters. The CE returns the optimized parameters set 
according to its internal.  
 As long as a cognitive engine has an interface that 
accepts the CROSS component interface commands as 
defined by the CROSS API, the internal operation of the 
CE could be anything.  
 
3.1.4. Policy Engine 
The CROSS framework also provides for policy engine 
components. In general, PEs within the CROSS 
architecture act as a validation phase for the output of the 
CE. When a PE connects to the radio system, the CRS will 
then check all parameter outputs from CEs with the PE. 
 The PE then determines whether the parameters 
conform to the active policies and returns a decision array 
denoting the invalid parameter values (if any) and the 
reason they were denied. The decision array allows a more 
fine-tuned approach to policy feedback. Instead of a 
simple yes-or-no result, the PE informs the system which 
values were not acceptable and why. 
 Policy-managed radio is an area of research unto itself, 
and there exist many sources of further information - e.g. 
[8] and [9]. 
 As with all other components in the CROSS system, 
the PE can be implemented any way the developer 
chooses. It could be a custom PE with a small policy 
database and simple decision engine, or a PE could 
implement the XG policy engine and use policies written 
in OWL. The only requirement is that the PE implements 
the CROSS component communication API. 
 
3.1.5. Service Management Layer 
The Service Management Layer (SML) gives the system 
the capability to perform complex missions that may 
depend on numerous smaller services. More complex 

cognitive radio systems may need to execute several 
different tasks, with the output of one task determining the 
next task to execute. These more complex systems can be 
created using the SML and building an SML XML 
configuration file that describes the decision models of the 
SML. We go into much more detail regarding the SML in 
Section 3. 
 

4. THE SERVICE MANAGEMENT LAYER 
 
The Service Management Layer (SML) is an optional 
component that is provided with CROSS. When the SML 
is introduced into a CROSS radio system, it takes control 
of the system’s operation and turns the radio architecture 
into a Service-Oriented Architecture (SOA). The SOA 
operating model has a lot of benefits that apply to 
distributed systems like CROSS. 
 
4.1. Service Oriented Architecture Basics 
The basic concept behind a SOA is that a system can be 
comprised of independent (or very loosely associated) 
components which each provide a service to the system as 
a whole. These services can be grouped or reused as 
necessary to achieve the system’s objectives. As long as 
the different components know how to talk to each other, 
the components themselves can be completely different in 
terms of implementation. 
 The architecture is therefore designed to be 
distributed and modular. The components can be 
developed with entirely different models, in different 
programming languages, for different platforms, and as 
long as they have a network over which to communicate it 
doesn’t matter where they are located (assuming, of 
course, that the network has the necessary bandwidth and 
reliability).  
 
4.2. The SML Missions 
In addition to facilitating distributed and modular 
component design, the SML provides CROSS with 
another very useful functionality.  By configuring SML 
with ‘missions’, or radio operating objectives, the SML 
can delegate tasks to the various components comprising 
the radio system in pursuit of accomplishing that 
objective. In effect, the SML is able to use many, perhaps 
fundamentally different services, to achieve a higher-level 
radio objective. Each service can be executed based on 
feedback from the previous service. 
 During radio operation, the SML is told which pre-
configured mission it should pursue. This can be changed 
on-the-fly via the CROSS system library, as long as the 
SML has been configured for the desired mission (see the 
following sub-section). 
 
4.2.1. Configuring the SML Missions 



 

All SML configuration is done via XML files, including 
configuration of the SML missions. The XML files 
describe what services are used to accomplish the mission, 
and what the data flow should be depending on feedback 
from the various services. 
 An example of an SML mission configuration can be 
seen in Figure 2. 

Figure 2. Example SML Mission configuration. 
 
In this example, the mission is “CovertJamEnemy”. 
During operation, the first service the radio will use is 
“ClassifyEnemySignals”. The component that provides 
this particular service returns feedback to the radio, which 
the SML then uses to decide which service to use next – in 
this case, the radio takes different actions depending on 
whether WiFi, Bluetooth, or both were detected. 
 The SML can be configured with as many missions as 
the user wishes, as long as the services listed in the 
missions are provided to the radio by a component. If the 
necessary services are currently available to the SML, it 
will avoid that mission functionality. 
 
4.3. SML Operation 
The SML can connect and become a part of a CROSS 
system at any time – the radio does not need to be 
‘restarted’ or ‘turned on’ with the SML present in order 
for it to work. 
 When activated, the SML first reads its configuration 
file and builds a database of missions and the required 
services to execute those missions. It then reaches out to 
the CROSS shell component and registers itself with the 
radio system. 
 The CRS then notifies all other CROSS components 
of the SML’s network location, and cedes control of the 
radio to the SML. The rest of the components then register 
the services they can provide with the SML, and wait for 
instructions. 
 An in-depth example of the radio’s operation from 
this point forward is provided in Section 6 of this paper. 
 At any point, if the SML is pulled out of the system or 
becomes unavailable (e.g. if the network becomes 
disrupted), the CRS will re-assume control of the radio 
system. 
 
 
4.4. Requirements of the SML Design 

Clearly, if the SML is present, it plays a very central role 
in the system operation. As such, weaknesses in the SML 
implementation could severely hinder the radio’s 
operation. 
 Speed is a top priority for the SML. Since each 
components' operation is essentially controlled by the 
SML delegating tasks to it, slow SML operations would 
bottleneck the radio’s operation as a whole. SML database 
access, decision speed, and message passing must all be 
fast enough to keep up with the speed required for proper 
cognitive radio functionality. 
 In addition, the distributed modularity provided by 
SOA is useless if developers are not given well-defined 
APIs and communication interfaces. Without such 
interfaces, third-party development is impossible, which 
completely defeats the purpose of CROSS. 
 

5. CROSS APPLICATION PROGRAMMING 
INTERFACES 

 
The term 'CROSS API' can refer to a number of things: 
the component communication protocol that the CROSS 
API defines (via which components receive commands 
and information and return output), the component API 
that is used to create new CROSS components, or the 
CROSS library API which the host application uses to 
communicate with the CROSS radio system.  This section 
will discuss all of these aspects of the CROSS API. 
 
5.1. Component Communication Interface 
All inter-component communication in a CROSS radio 
system occurs via socket connections over a standard 
TCP/IP network.  The only requirement of any radio 
component regarding communication with the rest of the 
radio system is that it implement the CROSS component 
interface. 
 Currently, all messages sent to and from components 
are constructed of pure ASCII.  VTCROSS plans to create 
a more optimized and efficient protocol consisting of 
specially designed CROSS packets, but this work has not 
yet been completed. 
 Each component possesses component-specific 
registration and de-registration (both for the component 
and the services each component provides in the event a 
SML is present).  In addition, all components can interpret 
some standard commands critical to a CROSS radio - such 
as notification that an SML has joined the radio system 
and where it is located, or that the entire radio system is 
being shut down and that the component should cease 
operation. 
 Finally, each type of component implements 
messages specific to its particular duty in the radio system.  
A CE must be able to receive a parameter set to optimize, 
just as a PE must be able to receive an optimized 



 

parameter set to validate against active policies. 
 Communication interfaces for each component are 
well documented in the code and on the VTCROSS 
website [5]. 
 
5.2. The CROSS Component API 
The CROSS component API is something that VTCROSS 
provides for easy component development, but is not at all 
necessary to create a new CROSS component.  As 
previously mentioned, as long as a new component 
properly implements the communication interface 
described in the previous section, the internal operation of 
the component are abstracted away from the radio 
operation. 
 However, VTCROSS provides a structured object-
oriented framework for creating new components should 
you want to build upon code and functionality we have 
already provided.   
 All existing CROSS components exist within a strict 
class hierarchy, most of which serve as parent classes 
within the object-oriented class tree.  This enables a 
developer to quickly develop a new component without 
re-implementing  the functionality that already exists in 
other components. 
 For example, a cognitive radio researcher, Sally, 
wants to create a new cognitive engine component with a 
case-based reasoning (CBR) backend.  Luckily for Sally, 
the CE component is a core component of CROSS, and 
CROSS provides a CBR class.  Sally will create new 
classes for her cognitive engine and CBR that inherit from 
the default CROSS CE and CBR, and re-implement a 
couple of functions for each.  Afterwards, her component 
will be fully operational and ready to connect to a CROSS 
radio system.  All of the other interal functionality and 
CROSS component interface is provided to her class via 
the inheritance structure. 
 For more information, see the numerous teaching 
references regarding obect-oriented programming, and the 
CROSS component API on the VTCROSS website [5]. 
 
5.3. The CROSS Library API 
The CROSS library API is what the host application uses 
to hook into the CROSS radio system.  When CROSS is 
compiled for the host platform (on which the host 
application is running), a shared library is generated which 
can be used from applications on that system.  This library 
defines functions, or 'hooks', that communicate with the 
CROSS radio via the CRS component. 
 For example, when an applicatio2n wishes to change 
the active mission of the SML, it calls a function to that 
effect from the CROSS library, passing in as an argument 
the new mission number. The library interprets this, and 
sends a series of socket communications to the CRS (one 
telling the system what this message is, another containing 

the mission number). When the CRS receives these 
command messages, it will route them to the appropriate 
component which will respond accordingly. 
 

6. SYSTEM OPERATION 
 

In this section we provide an example that details the 
operation of a CROSS radio system using the SML 
component. Dynamic Spectrum Access (DSA) has, over 
the past few years, become the primary application for 
cognitive radio systems commercially and in military 
systems. A DSA system typically observes its 
environment and determines the appropriate frequency 
channel to operate on, with the objective of minimizing 
interference to the primary user and other signals in the 
nearby frequency domain.  
 The example we detail consists of two primary 
cognitive engine jobs, or services, that will be performed 
each time the host application determines that a change in 
frequency may be required: 1) Determine the new 
frequency band, and 2) Determine the optimal parameters 
for the new frequency band.  
 Figure 3 shows the block diagram of the CROSS 
system using our example services. The system consists of 
two different cognitive engines, each performing a 
different service. Both are connected to the SML which 
requests and routes information between them as needed. 

Figure 3. CROSS system block diagram showing two cognitive engines 
connected to the Service Management Layer component. 
 
 The host application sets the active mission that the 
SML is to perform by calling the SetActiveMission 
function provided by the CROSS C++ library. In our 
example we only have a single mission - dynamic 
spectrum access.  
 Once the CRS receives the GetOptimalParameters 
command from the host application, it forwards the 
command to the SML. The SML then requests parameter 
optimization from the CE that has the OptimalFrequency 
service registered by sending it input arguments and the 
name of the service to perform.   
  



 

Figure 4. Example optimization protocol flow for the Dynamic Spectrum Access CROSS example with multiple services. 
 
 The output of the CE, as defined in the SML 
configuration file, should be a specific frequency channel. 
Once the CE provides this output, the SML invokes the 
OptimalParameter service from the CE that registered it, 
and passes the output of the previous service (the 
frequency channel) as an input to that CE. The output of 
the second service and the output of the first service are 
then passed back to the host application. Figure 4 shows 
this communication flow visually.  
 The  system described above is able to determine the 
proper frequency channel to operate on and the optimal 
parameters for that band. This solution is found in a 
modular manner, so that multiple components can focus 
on a single task allowing for a more heterogeneous 
component environment. 
 

7. CONCLUSION 
 
The VTCROSS project is working to provide a distributed 
and modular cognitive radio system framework for which 
it is easy to design, develop, and test radio components, 
regardless of the target SDR platform. The SML allows 
for a service-oriented architecture, that further facilitates 
independent component development and deployment. 
 Unlike many cognitive radio implementations 
available today, improvement or adaptations to the 
CROSS system are not simply limited to one development 
group or even to one programming language. Indeed, the 
system is open to any developer to replace any component 
in any language that supports socket communications 
(Java, Perl, Python, C++, just to name a few).  
 To enable this design, VTCROSS provides a well-
defined API and component communication interface, 
which can be used to develop CROSS components in a 
language of the designer's choosing. In addition, 
VTCROSS is constructed in an object-oriented class 
hierarchy, making it simple to inherit from existing classes 

- further simplifying component development. 
 The target testbed for VTCROSS is the Virginia Tech 
COgnitive Radio NEtwork Testbed (VTCORNET), which 
will consist of 48 SDR nodes deployed throughout a 
building on the Virginia Tech campus [7]. The 
combination of VTCROSS and VTCORNET provides a 
unique system that is openly available for SDR and 
cognitive radio research and testing.  
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