
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

CROSS - A DISTRIBUTED AND MODULAR COGNITIVE RADIO
FRAMEWORK

Benjamin Hilburn (MPRG: VT, Blacksburg, VA, USA; bhilburn@vt.edu); Warren
Rodgers (Georgia Tech, Atlanta, GA, USA; wrodgers3@gatech.edu); Timothy R.

Newman (MPRG: VT, Blacksburg, VA, USA; trnewman@vt.edu) and Tamal Bose
(MPRG: VT, Blacksburg, VA, USA; tbose@vt.edu)

ABSTRACT

In cognitive radio systems with multiple components, the
radio must possess a way to manage, control, and properly
use the services provided to it by these components. This
scenario grows more complex as components of the same
type (e.g. multiple cognitive engines) are attached to a
single radio, forcing the radio to make requests to the
proper component. Additionally, in a cognitive radio with
a non-static mission, the radio must be capable of adapting
its use of components to achieve its mission goals. In
order to make such a distributed system work, there must
be a well-designed and strict API for both interfacing
components and controlling the radio itself. Ergo, a
distributed cognitive radio API must define both the
networking protocol with which the components talk to
each other, and function hooks that the client can use to
control and interface with the radio. In distributed
systems, this API must not require a static radio
waveform, as the types and numbers of components
present might vary from one radio implementation to
another. As part of the Virginia Tech Cognitive Radio
Open Source Systems project (VTCROSS) currently
underway at Virginia Tech, we have designed a cognitive
radio API that defines interfaces for all radio components
and the component inter-communication protocol. We
have also designed a Service Management Layer (SML)
for managing multiple components, possibly distributed,
for any single cognitive radio system. In this paper, we
will present our design of component APIs and a SML for
cognitive radio systems. We will also discuss how such a
design can be used to create implementation-independent
cognitive radios for any platform and mission.

1. INTRODUCTION

Software-Defined Radio (SDR) has become a promising
solution to many of the primary issues confronting radio
researchers today. One of the most heavily studied of
these issues is the finite spectrum dilemma, which is
certain to stagnate both wireless technology growth and
adoption should it go unresolved. A potential solution to
this problem is cognitive radio, which has been the focus
of much research and discussion in recent years.

 As a result of the large amount of attention SDR has
received, a number of SDR frameworks, toolsets, and
platforms have emerged – some open (e.g. [1][2]), some
proprietary (e.g. [3][4]). Cognitive radio implementations
are then built on top of these SDR frameworks, and are
generally specific to that particular SDR platform and
radio system. Ergo, collaboration and comparative
research for cognitive radios is made difficult by a lack of
interoperability and design compatibility.
 To facilitate cognitive radio research, development,
and prototyping, the Mobile & Portable Radio Research
Group at Virginia Tech has created the Virginia Tech
Cognitive Radio Open Source Systems project
(VTCROSS) [5]. The goal of VTCROSS is to provide a
distributed and modular cognitive radio system framework
that sits atop an SDR platform. A component developed
for one VTCROSS system will work with any other,
regardless of what SDR or hardware platform it is
deployed to.
 Two major facets of this design are the interface
between VTCROSS components and the Service
Management Layer, which provides a service-oriented
architecture for VTCROSS radio systems. In this paper,
we present the VTCROSS architecture, the API we have
designed for VTCROSS component development, and the
communication interfaces that the components use during
system operation.

2. NAMING CONVENTIONS

Due to the distributed nature of VTCROSS radios, we use
specific naming conventions to distinguish between
different aspects of the radio.
 CROSS, on its own, is a framework. Using this
framework, a client can build a complex radio. However,
by itself, CROSS does not comprise a radio.
 Since CROSS radios are generally distributed, simply
referring to it as 'the radio' can be misleading. It is not
clear whether the reference is to the radio hardware, the
entire CROSS system, just a single CROSS component, or
the host platform. For that reason, we refer to the working
radio as a CROSS radio system' - the 'system' keyword
denoting that the radio itself is comprised of many
components, some complex and some simple. By default,

a CROSS radio system is not necessarily cognitive. It only
becomes a cognitive radio once a cognitive engine
component is connected to the system. Once this occurs,
we call the entire radio a CROSS cognitive radio system'.
 We refer to the radio design that CROSS defines as
the 'radio architecture'. A suitable illustration of the
CROSS architecture can be seen in Figure 1 - it is the
block diagram that describes how a CROSS system is
connected.
 The CROSS project itself is free and open source.
Hence, development can occur in any group, and forks
can be created by anyone. Hence, VTCROSS and CROSS
are sometimes interchanged, but we use the 'VTCROSS' to
distinguish between outside groups and the core founding
group of developers located at Virginia Tech.

3. CROSS ARCHITECTURE

The CROSS project implements a modular cognitive radio
framework that provides portability and interoperability
between components that may be independently
developed for different platforms with different
programming languages. This allows for flexible
development of the cognitive radio system and allows
developers to focus entirely on their radio component of
choice without the need to spend time developing or
modifying components that have no relevance to their
specific focus of research or testing.

Figure 1. Overall CROSS system block diagram showing all mandatory
and optional components and the associated API layers between them.

3.1. Cross Components
The current CROSS component library consists of five
categories of components, several of which are optional in
a radio system. The five primary components of a CROSS
radio system are as follows:

• Cognitive Radio Shell (CRS)
• Cognitive Engine (CE)

• Policy Engine (PE)
• Service Management Layer (SML)
• Software-Defined Radio Host Platform

Figure 1 shows the general CROSS system block diagram,
including all mandatory and optional components. The
following sections provide more detail on each of the
system components.

3.1.1. Software-Defined Radio Host Platform
The SDR host platform is not a component included in the
CROSS source code, but it is a necessary component of a
CROSS radio system. The host platform is where the
client application (sometimes referred to as the 'host
application') that calls CROSS library functions is
running. Typically, this is also where the radio hardware is
located, although this is not a requirement. Without the
host application and platform, the CROSS radio system
will sit idle without operating instructions.
 The most important aspect of the host application is
that it works with a specific SDR framework. Within the
application running on the SDR, the client code interfaces
the CROSS radio system via the CROSS library. The host
application can be anything from a standard TCP/IP stack
that uses CROSS to optimize network parameters, to a
DSA application that is capable of gathering information
about current spectrum use and adapting accordingly.

3.1.2. Cognitive Radio Shell
The CRS has several core functions that are integral to
component communication and integration within the
radio system. It acts as a message passer, configuration
parser, and as an interface from the application to the rest
of the radio system.
 Initially, the CRS parses the Radio XML configuration
file that specifies the operating parameters, environmental
parameters, and objectives of the current radio
application. It passes this parsed information about the
capabilities of the radios onto other components in the
system such as the various cognitive engines or policy
engines that may be connected.
 The primary function of the CRS is to act as a gateway
between the host application and the rest of the CROSS
system. The CROSS library interfaces with the CRS and
allows the host applications to issue commands to the
system. This single interface makes accessing a CROSS
system extremely simple.

3.1.3. Cognitive Engine
Cognitive engines can come in many shapes and sizes. A
primary goal in the development of the CROSS
framework was to create an architecture that would work
with any type of CE implementation. Cognitive engines
have been developed with genetic algorithms (GA), case-
based reasoning (CBR), and other mathematical models.

Each cognitive engine implementation has its own benefits
and weaknesses, and some might be more appropriate for
a certain radio system or mission than others. In the event
that multiple CEs of different types are connected to the
same CROSS radio system, the CROSS radio can
selectively use the one that best fits the current
environment.
 A major difference between the CROSS system and
other systems with more integrated cognitive engines is
that the host application dictates when CROSS cognitive
engines generate new parameters. We do not require the
system to constantly generate parameters and push them to
the radio. This decision is left up to the host application.
Since a CROSS radio system is typically distributed over
a network (although this isn't necessary), this keeps
network bandwidth open when it isn't needed, and allows
for more flexible implementation models.
 The host application, using the CROSS library,
invokes CROSS system hooks to optimize some set of
parameters. The CE returns the optimized parameters set
according to its internal.
 As long as a cognitive engine has an interface that
accepts the CROSS component interface commands as
defined by the CROSS API, the internal operation of the
CE could be anything.

3.1.4. Policy Engine
The CROSS framework also provides for policy engine
components. In general, PEs within the CROSS
architecture act as a validation phase for the output of the
CE. When a PE connects to the radio system, the CRS will
then check all parameter outputs from CEs with the PE.
 The PE then determines whether the parameters
conform to the active policies and returns a decision array
denoting the invalid parameter values (if any) and the
reason they were denied. The decision array allows a more
fine-tuned approach to policy feedback. Instead of a
simple yes-or-no result, the PE informs the system which
values were not acceptable and why.
 Policy-managed radio is an area of research unto itself,
and there exist many sources of further information - e.g.
[8] and [9].
 As with all other components in the CROSS system,
the PE can be implemented any way the developer
chooses. It could be a custom PE with a small policy
database and simple decision engine, or a PE could
implement the XG policy engine and use policies written
in OWL. The only requirement is that the PE implements
the CROSS component communication API.

3.1.5. Service Management Layer
The Service Management Layer (SML) gives the system
the capability to perform complex missions that may
depend on numerous smaller services. More complex

cognitive radio systems may need to execute several
different tasks, with the output of one task determining the
next task to execute. These more complex systems can be
created using the SML and building an SML XML
configuration file that describes the decision models of the
SML. We go into much more detail regarding the SML in
Section 3.

4. THE SERVICE MANAGEMENT LAYER

The Service Management Layer (SML) is an optional
component that is provided with CROSS. When the SML
is introduced into a CROSS radio system, it takes control
of the system’s operation and turns the radio architecture
into a Service-Oriented Architecture (SOA). The SOA
operating model has a lot of benefits that apply to
distributed systems like CROSS.

4.1. Service Oriented Architecture Basics
The basic concept behind a SOA is that a system can be
comprised of independent (or very loosely associated)
components which each provide a service to the system as
a whole. These services can be grouped or reused as
necessary to achieve the system’s objectives. As long as
the different components know how to talk to each other,
the components themselves can be completely different in
terms of implementation.
 The architecture is therefore designed to be
distributed and modular. The components can be
developed with entirely different models, in different
programming languages, for different platforms, and as
long as they have a network over which to communicate it
doesn’t matter where they are located (assuming, of
course, that the network has the necessary bandwidth and
reliability).

4.2. The SML Missions
In addition to facilitating distributed and modular
component design, the SML provides CROSS with
another very useful functionality. By configuring SML
with ‘missions’, or radio operating objectives, the SML
can delegate tasks to the various components comprising
the radio system in pursuit of accomplishing that
objective. In effect, the SML is able to use many, perhaps
fundamentally different services, to achieve a higher-level
radio objective. Each service can be executed based on
feedback from the previous service.
 During radio operation, the SML is told which pre-
configured mission it should pursue. This can be changed
on-the-fly via the CROSS system library, as long as the
SML has been configured for the desired mission (see the
following sub-section).

4.2.1. Configuring the SML Missions

All SML configuration is done via XML files, including
configuration of the SML missions. The XML files
describe what services are used to accomplish the mission,
and what the data flow should be depending on feedback
from the various services.
 An example of an SML mission configuration can be
seen in Figure 2.

Figure 2. Example SML Mission configuration.

In this example, the mission is “CovertJamEnemy”.
During operation, the first service the radio will use is
“ClassifyEnemySignals”. The component that provides
this particular service returns feedback to the radio, which
the SML then uses to decide which service to use next – in
this case, the radio takes different actions depending on
whether WiFi, Bluetooth, or both were detected.
 The SML can be configured with as many missions as
the user wishes, as long as the services listed in the
missions are provided to the radio by a component. If the
necessary services are currently available to the SML, it
will avoid that mission functionality.

4.3. SML Operation
The SML can connect and become a part of a CROSS
system at any time – the radio does not need to be
‘restarted’ or ‘turned on’ with the SML present in order
for it to work.
 When activated, the SML first reads its configuration
file and builds a database of missions and the required
services to execute those missions. It then reaches out to
the CROSS shell component and registers itself with the
radio system.
 The CRS then notifies all other CROSS components
of the SML’s network location, and cedes control of the
radio to the SML. The rest of the components then register
the services they can provide with the SML, and wait for
instructions.
 An in-depth example of the radio’s operation from
this point forward is provided in Section 6 of this paper.
 At any point, if the SML is pulled out of the system or
becomes unavailable (e.g. if the network becomes
disrupted), the CRS will re-assume control of the radio
system.

4.4. Requirements of the SML Design

Clearly, if the SML is present, it plays a very central role
in the system operation. As such, weaknesses in the SML
implementation could severely hinder the radio’s
operation.
 Speed is a top priority for the SML. Since each
components' operation is essentially controlled by the
SML delegating tasks to it, slow SML operations would
bottleneck the radio’s operation as a whole. SML database
access, decision speed, and message passing must all be
fast enough to keep up with the speed required for proper
cognitive radio functionality.
 In addition, the distributed modularity provided by
SOA is useless if developers are not given well-defined
APIs and communication interfaces. Without such
interfaces, third-party development is impossible, which
completely defeats the purpose of CROSS.

5. CROSS APPLICATION PROGRAMMING
INTERFACES

The term 'CROSS API' can refer to a number of things:
the component communication protocol that the CROSS
API defines (via which components receive commands
and information and return output), the component API
that is used to create new CROSS components, or the
CROSS library API which the host application uses to
communicate with the CROSS radio system. This section
will discuss all of these aspects of the CROSS API.

5.1. Component Communication Interface
All inter-component communication in a CROSS radio
system occurs via socket connections over a standard
TCP/IP network. The only requirement of any radio
component regarding communication with the rest of the
radio system is that it implement the CROSS component
interface.
 Currently, all messages sent to and from components
are constructed of pure ASCII. VTCROSS plans to create
a more optimized and efficient protocol consisting of
specially designed CROSS packets, but this work has not
yet been completed.
 Each component possesses component-specific
registration and de-registration (both for the component
and the services each component provides in the event a
SML is present). In addition, all components can interpret
some standard commands critical to a CROSS radio - such
as notification that an SML has joined the radio system
and where it is located, or that the entire radio system is
being shut down and that the component should cease
operation.
 Finally, each type of component implements
messages specific to its particular duty in the radio system.
A CE must be able to receive a parameter set to optimize,
just as a PE must be able to receive an optimized

parameter set to validate against active policies.
 Communication interfaces for each component are
well documented in the code and on the VTCROSS
website [5].

5.2. The CROSS Component API
The CROSS component API is something that VTCROSS
provides for easy component development, but is not at all
necessary to create a new CROSS component. As
previously mentioned, as long as a new component
properly implements the communication interface
described in the previous section, the internal operation of
the component are abstracted away from the radio
operation.
 However, VTCROSS provides a structured object-
oriented framework for creating new components should
you want to build upon code and functionality we have
already provided.
 All existing CROSS components exist within a strict
class hierarchy, most of which serve as parent classes
within the object-oriented class tree. This enables a
developer to quickly develop a new component without
re-implementing the functionality that already exists in
other components.
 For example, a cognitive radio researcher, Sally,
wants to create a new cognitive engine component with a
case-based reasoning (CBR) backend. Luckily for Sally,
the CE component is a core component of CROSS, and
CROSS provides a CBR class. Sally will create new
classes for her cognitive engine and CBR that inherit from
the default CROSS CE and CBR, and re-implement a
couple of functions for each. Afterwards, her component
will be fully operational and ready to connect to a CROSS
radio system. All of the other interal functionality and
CROSS component interface is provided to her class via
the inheritance structure.
 For more information, see the numerous teaching
references regarding obect-oriented programming, and the
CROSS component API on the VTCROSS website [5].

5.3. The CROSS Library API
The CROSS library API is what the host application uses
to hook into the CROSS radio system. When CROSS is
compiled for the host platform (on which the host
application is running), a shared library is generated which
can be used from applications on that system. This library
defines functions, or 'hooks', that communicate with the
CROSS radio via the CRS component.
 For example, when an applicatio2n wishes to change
the active mission of the SML, it calls a function to that
effect from the CROSS library, passing in as an argument
the new mission number. The library interprets this, and
sends a series of socket communications to the CRS (one
telling the system what this message is, another containing

the mission number). When the CRS receives these
command messages, it will route them to the appropriate
component which will respond accordingly.

6. SYSTEM OPERATION

In this section we provide an example that details the
operation of a CROSS radio system using the SML
component. Dynamic Spectrum Access (DSA) has, over
the past few years, become the primary application for
cognitive radio systems commercially and in military
systems. A DSA system typically observes its
environment and determines the appropriate frequency
channel to operate on, with the objective of minimizing
interference to the primary user and other signals in the
nearby frequency domain.
 The example we detail consists of two primary
cognitive engine jobs, or services, that will be performed
each time the host application determines that a change in
frequency may be required: 1) Determine the new
frequency band, and 2) Determine the optimal parameters
for the new frequency band.
 Figure 3 shows the block diagram of the CROSS
system using our example services. The system consists of
two different cognitive engines, each performing a
different service. Both are connected to the SML which
requests and routes information between them as needed.

Figure 3. CROSS system block diagram showing two cognitive engines
connected to the Service Management Layer component.

 The host application sets the active mission that the
SML is to perform by calling the SetActiveMission
function provided by the CROSS C++ library. In our
example we only have a single mission - dynamic
spectrum access.
 Once the CRS receives the GetOptimalParameters
command from the host application, it forwards the
command to the SML. The SML then requests parameter
optimization from the CE that has the OptimalFrequency
service registered by sending it input arguments and the
name of the service to perform.

Figure 4. Example optimization protocol flow for the Dynamic Spectrum Access CROSS example with multiple services.

 The output of the CE, as defined in the SML
configuration file, should be a specific frequency channel.
Once the CE provides this output, the SML invokes the
OptimalParameter service from the CE that registered it,
and passes the output of the previous service (the
frequency channel) as an input to that CE. The output of
the second service and the output of the first service are
then passed back to the host application. Figure 4 shows
this communication flow visually.
 The system described above is able to determine the
proper frequency channel to operate on and the optimal
parameters for that band. This solution is found in a
modular manner, so that multiple components can focus
on a single task allowing for a more heterogeneous
component environment.

7. CONCLUSION

The VTCROSS project is working to provide a distributed
and modular cognitive radio system framework for which
it is easy to design, develop, and test radio components,
regardless of the target SDR platform. The SML allows
for a service-oriented architecture, that further facilitates
independent component development and deployment.
 Unlike many cognitive radio implementations
available today, improvement or adaptations to the
CROSS system are not simply limited to one development
group or even to one programming language. Indeed, the
system is open to any developer to replace any component
in any language that supports socket communications
(Java, Perl, Python, C++, just to name a few).
 To enable this design, VTCROSS provides a well-
defined API and component communication interface,
which can be used to develop CROSS components in a
language of the designer's choosing. In addition,
VTCROSS is constructed in an object-oriented class
hierarchy, making it simple to inherit from existing classes

- further simplifying component development.
 The target testbed for VTCROSS is the Virginia Tech
COgnitive Radio NEtwork Testbed (VTCORNET), which
will consist of 48 SDR nodes deployed throughout a
building on the Virginia Tech campus [7]. The
combination of VTCROSS and VTCORNET provides a
unique system that is openly available for SDR and
cognitive radio research and testing.

10. REFERENCES

[1] Open Source SCA Implementation :: Embedded. Available
 online: http://ossie.wireless.vt.edu/
[2] GNU Radio. Available online: http://gnuradio.org/trac
[3] Harris Corporation Software Defined Radio Solutions,

Available online: http://www.govcomm.harris.com/SDR/
[4] Thales Communications Solutions, Available online:

http://www.thalescomminc.com/comm_sol.asp
[5] Virginia Tech Cognitive Radio Open Source Systems,

https://www.cornet.wireless.vt.edu/trac/wiki/Cross
[6] G.Cafaro et al.,“A 100MHz–2.5GHz Direct Conversion
 CMOS Transceiver for SDR Applications,” in Proc.
 IEEE Radio Frequency Integrated Circuits (RFIC)
 Symposium, Honolulu, Hawaii, Jun.2007, pp.189–192.
[7] Virginia Tech Cognitive Radio Network Testbed,
 https://www.cornet.wireless.vt.edu/trac/
[8] Perich, F., ”Policy-based Network Management for NeXt
 Generation Spectrum Access Control”, in IEEE DySPAN,
 April 2007
[9] Lewis, D., Feeney, K., O’Sullivan, D., ”Integrating the
 Policy Dialectic into Dynamic Spectrum Management,”
 New Frontiers in Dynamic Spectrum Access Networks,
 2007. DySPAN 2007. 2nd IEEE International
 Symposium on , vol., no., pp.390-398, 17-20 April 2007

SML Component

Cognitive Radio
Shell

2. request_optimization

Host Application

3. Observable Parameters

1. GetOptimal-
Parameters(Observables)

Optimal
Frequency CE

Optimal
Parameter CE

41 a). request_optimization_service

41 b). optimal_frequency

41 c), d). Observable Parameters

51. Transmission Parameters

42 a). request_optimization_service

42 b). optimal_parameters

42 c), d). Observable Parameters +
Transmission Parameters from 51

52. Transmission Parameters

6. Transmission Parameters

6. Transmission Parameters

	Home
	Papers by Author
	Papers by Session

