

A POLICY REASONER FOR POLICY-BASED DYNAMIC SPECTRUM

ACCESS1
Behnam Bahrak, Amol Deshpande and Jung-Min “Jerry” Park

Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

 Email: {bahrak, amoldesh, jungmin}@vt.edu

1 This research was supported in part by the National Science Foundation under grants CNS-0627436, CNS-0716208, and
CNS-0746925.

ABSTRACT

Policy-based dynamic spectrum access is one of the
spectrum access models being considered by regulators and
researchers for regulating the behavior of cognitive radios.
This approach to spectrum access decouples the policy-
related components (i.e., policy management, provisioning,
and reasoning) from the radio platform. In policy-based
spectrum access, the policy reasoner plays a critical role—it
assists in policy enforcement and carries out a number of
tasks related to policy analysis and processing. One of the
most crucial tasks performed by the policy reasoner is
evaluating radio transmission requests in relation to a set of
active policies. This paper describes the design process and
architecture of a policy reasoner. Key features of the
proposed policy reasoner include: (1) policy conflict
detection and resolution; and (2) ability to process under-
specified transmission requests and compute the
corresponding constraints.

1. INTRODUCTION

In current radios, policies are programmed or hardwired into
the radio as part of its firmware. This approach has a lot of
drawbacks, for example any change in policies requires
reimplementation and reaccreditation of radio’s firmware.
Further, it is not scalable or flexible enough to deal with
policies that are written by different authorities.
 Cognitive radios [1] need to consider a wide variety of
operating dimensions such as frequencies, waveforms, and
power levels. On the other hand they should be designed
and implemented to work with the ever-changing nature of
regulatory environments and application requirements. To
make these requirements feasible, a flexible mechanism
must be provided to support spectrum sharing in addition to
regulatory policy issues. The DARPA’s neXt Generation
(XG) communication program [2] has proposed a policy-
based solution that is able to adapt to changes in policies,
applications and radio technology.

 In cognitive radio technology, policies are used to
describe the preferences and constraints on parameters. For
instance what level of detected spectral density is
considered as presence of primary users or in which
frequency bands transmission is allowed? Each XG radio is
equipped with a Policy Engine that is able to understand
machine-readable policies and apply them to particular
problem domain. The Policy Reasoner (PR) is the main
inference component of a policy engine. The System
Strategy Reasoner (SSR) part of a cognitive radio provides
the PR with facts about the cognitive radio and its
environment and the PR tells the radio whether or not it can
transmit. Two policy reasoners have been proposed in [4, 5].
 There are many benefits in using a policy-based
approach to cognitive radios: certification effort delays are
significantly reduced, policy engines and radios can be
accredited separately, radio behavior can quickly adapt to a
changing situation, policy changes can be done easily and so
forth.
 In this paper, we propose a new policy reasoner based
on Multi Terminal Binary Decision Diagrams (MTBDDs),
which detects conflicts and resolves them in addition to
processing under-specified transmission requests and
computing the corresponding constraints. Our policy
reasoner uses new algorithms to compute appropriate
constraints for denied or incomplete transmission requests
in a more systematic and guided way (in comparison with
other policy reasoners).
 The rest of this paper is organized as follows: we
provide technical background knowledge in Section 2. In
Section 3, we describe the architecture of our proposed
policy reasoner and the algorithms that we use for
reasoning. Finally, Section 4 concludes the paper.

2. TECHNICAL BACKGROUND

In this section, we introduce some background knowledge
for subsequent discussions.

2.1. XG Radio Architecture

The neXt Generation (XG) program is a technology
development project sponsored by DARPA's Strategic
Technology Office, with the goal of developing both the
enabling technologies and system concepts to dynamically
redistribute allocated spectrum [2]. An XG radio has four

main components [6]:
• Sensors: An XG radio needs sensors to sense its

environment and discover the unused spectrum.
• Radio Frequency (RF): The RF part of an XG radio

is used to transmit and receive various signals.
• System Strategy Reasoner (SSR): The SSR

controls the radio's transmission. It builds optimal
transmission request based on sensor data and its
current strategies.

• Policy Reasoner (PR): The PR loads and stores
policies. It receives the transmission requests that
the SSR builds and evaluates them using the
currently active set of policies, checking them for
policy conformance.

 These components are shown in Figure 1. Our focus in
this paper is policy reasoner component. XG needs that
radios be able to vacate channels within 500 ms, which
results in the requirement that the PR must evaluate
transmission request in less than 500 ms [2], so we have
designed our policy reasoner to operate in a fast and
efficient way. A more detailed description of XG radio
architecture and implementation efforts can be found in [2-
6].

2.2. Multi Terminal Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a data structure that is
used to represent a Boolean function [10]. A Boolean
function can be represented as a rooted, directed, and
acyclic graph, which consists of decision nodes and two
terminal nodes called 0-terminal and 1-terminal that have
zero out-degree. Each decision node u is labeled by a
Boolean variable (var(u)) and has two child nodes called
low child (low(u)) and high child (high(u)). An edge from a

node to a low (high) child represents an assignment of the
variable to 0 (1). In a figurative representation of a BDD,
these are shown as dotted and solid lines, respectively. Such
a BDD is called “ordered” if different variables appear in
the same order on all paths from the root. A BDD is said to
be “reduced” if the following two rules have been applied to
its graph:

• Uniqueness: no two distinct nodes u and v have the
same variable name and low- and high-successor,
i.e., low(u)=low(v) , high(u)=high(v) ,
var(u)=var(v) implies that u=v.

• Non-redundant tests: no variable node u has
identical low- and high-successor, i.e.
high(u)≠low(u)

In popular usage, the term BDD almost always refers to
Reduced Ordered Binary Decision Diagram (ROBDD). The
advantage of an ROBDD is that it is unique for a particular
functionality. The size of the BDD is determined both by
the function being represented and the chosen ordering of
the variables.
 Multi terminal BDDs [8] (a.k.a algebraic decision
diagrams) extend BDDs such that they can represent
functions of an arbitrary range, while their domain is still a
multidimensional Boolean space, i.e., an MTBDD provides
a compact representation of functions of the form

�

P :Bn → E which maps bit vectors over a set of variables

�

Bn to a finite set of results (E). So the structure of an
MTBDD is the same as BDDs with the difference that
MTBDDs have more than two terminal nodes. In this paper,
we use MTBDDs with three terminal nodes.
 We also use the following explicit representation of
MTBDDs. Nodes will be represented as numbers 0, 1, 2, …
with 0, 1 and 2 reserved for terminal nodes ‘N’, ‘Y’ and
‘NA’. The variables in the ordering

�

x0 < x1 < ...< xn are
represented by their indices 0, 1, 2, …, n. The MTBDD is
stored in a table

�

T : u→ (i, l,h) which maps a node u to its
three attributes var(u)=i, Low(u)=l and high(u)=h.

2.3. XML Policy Algebra

In this paper, we use the XML policy algebra from [7].
Before we introduce the algebra, we need to find a suitable
definition of cognitive radio policy semantics and
transmission requests that the SSR sends to a cognitive
radio. We assume the existence of a finite set A of names.
Each attribute, characterizing an object in policies, has a
name a in A. For cognitive radio policies, some of these
attributes can be power level, frequency band, peak sensed
power, location and time. All transmission requests are
formally represented by definition 1.

Figure 1. XG architecture [4].

DEFINITION 1. Let

�

a1, a2 , ..., ak be attribute names, and let

�

vi be a value for attribute

�

ai , then

�

r = {(a1 , v1),…, (ak , vk)}
is a request.

DEFINITION 2. Let P be a 2-valued cognitive radio policy.
We define the semantics of P as a 2-tuple

�

RY
P , RN

P where

�

RY
P and

�

RN
P is the set of requests that are permitted (Y) and

denied (N) by P respectively, and the requests that are
neither in

�

RY
P nor in

�

RN
P , are Not Applicable (NA).

The Fine-grained Integration Algebra (FIA) is given by

�

Σ, PY , PN ,+, &,¬,Πdc where

�

Σ is a vocabulary of
attribute names and their domains,

�

PY and

�

PN are two
policy constants, + and & are two binary operators, and

�

¬
and

�

Πdc are two unary operators.
We now describe the policy constants and operators in FIA.
In what follows,

�

P1 = RY
P1 ,RN

P1 and

�

P2 = RY
P2 ,RN

P2 denote

two policies to be combined, and

�

PI = RY
PI ,RN

PI denotes the
policy obtained from the combination. Operators on policies
are described as set operations.

• Permit Policy (

�

PY) is a policy constant that permits
everything.

• Deny Policy (

�

PN) is a policy constant that denies
everything.

• Addition (+): Addition of policies

�

P1 and

�

P2 results
in a combined policy

�

PI in which requests that are
permitted by either

�

P1 or

�

P2 are permitted, requests
that are denied by one policy and is not permitted
by the other are denied.

• Intersection (&): Given two policies

�

P1 and

�

P2 , the
intersection operator returns a policy

�

PI in which
requests that are not permitted by neither

�

P1 nor

�

P2
are denied, requests that are permitted by one
policy and is not denied by the other are permitted.

• Negation (¬): Given a policy P, ¬P returns a policy,
which permits (denies) all requests denied
(permitted) by P. The negation operator does not
affect those requests that are not applicable to the
policy.

• Domain projection (

�

Πdc): The domain projection
operator takes a parameter, the domain constraint
dc, and restricts the policy only to the set of
requests identified by dc.

DEFINITION 3. Domain Constraint (dc) takes the form
{(

�

a1 ,

�

range1), (

�

a2 ,

�

range2), … , (

�

ak ,

�

rangek)}, where

�

a1 ,

�

a2 , ...,

�

ak are attribute names, and

�

rangei (1 ≤ i ≤ k) are
sets of values from the vocabulary Σ. Given a request r =
{(

�

ar1 ,

�

vr1), … , (

�

arm ,

�

vrm)}, We say r satisfies dc if the
following condition holds: for each (

�

arj ,

�

vrj)

�

∈ r (1 ≤ j ≤
m), if there exists (

�

ar1 ,

�

rangei) in dc, then

�

vrj is in

�

rangei .

DEFINITION 4. Given two policies

�

P1 and

�

P2 , the
subtraction operator returns a policy

�

PI that is obtained by
starting from

�

P1 and limiting the requests that the integrated
policy applies only to those that

�

P2 does not apply to. The
subtraction operator is defined as:

�

P1 − P2 = (PY & (¬(¬P1 + P2 + ¬P2)))+ (PN & (P1 + P2 + ¬P2))

3. THE POLICY REASONER

There are several different algorithms for combining
policies in FIA; we introduce two of them in here. For
cognitive radio policies, the ‘Deny-overrides’ combining
algorithm has been chosen by BBN technologies [2]. This
algorithm states that the combined result is deny if any
policy evaluates to deny, regardless of the evaluation result
of other policies. If no policy evaluates to deny and at least
one policy evaluates to permit, the combined result is
permit.
 The proposed policy reasoner consists of four
different components: policy converter, transmission request
interpreter, policy merger and reasoner. Figure 2 illustrates
the architecture of our policy reasoner. In what follows, we
will describe these components and their operation.

3.1. Policy Converter

The Policy Converter converts the XML cognitive radio
policies into MTBDDs. As mentioned in Section 2, we can
define policy P as a function

�

P :R→ E from the domain of
requests R onto the domain of effects E, where E={Y, N,
NA}. A cognitive radio policy in XML format can be
transformed into a Boolean expression. A Boolean
expression is composed of atomic Boolean expressions
(AE) combined using the logical operations

�

∧ and

�

∨ .

EXAMPLE 1. Consider the following cognitive radio

Figure 2. Architecture of the proposed policy reasoner

policy. P1: Allow transmission in [255, 328] or [2200,
2290] frequency bands, if the mode is “Day to Day” or
“Special Event” and the power level is less than 115 dB.
Deny transmission if the mode is “Day to Day”, between 11
a.m. and 2 p.m. Policy P1 can be defined as a function:

�

P1 =
N if (Mode = D2D)∧ (11< time < 14)
Y if ((255< f < 328)∨ (2200 < f < 2290))∧ ...
⎧
⎨
⎩

⎫
⎬
⎭

We now encode each unique atomic Boolean expression

�

AEi in the policy into a Boolean variable

�

xi such that:

�

xi = 0 if

�

AEi is false;

�

xi = 1 if

�

AEi is true:

�

x0 :Mode = Special Event

�

x1 :Mode = Day toDay

�

x2 :Power < 115dB

�

x3 :11< time < 14

�

x4 : 255MHz < f < 328MHz

�

x5 : 2200MHz < f < 2290MHz
Using the above Boolean encoding, a policy P can be
transformed into a function

�

P :Bn → E , over a vector of
Boolean variables,

�

 x = (x0, x1,… , xn) , onto the finite set of
effects E = {Y, N, NA}, where n is the number of unique
atomic Boolean expressions in policy P. A request r
corresponds to an assignment of the Boolean vector

�

 x = (x0, x1,… , xn) , which is derived by evaluating the
atomic Boolean expressions with attribute values specified
in the request. After Boolean encoding, the policy P1 is
transformed into the following function:

�

P1 (
 x) =

Y if (x0 ∨ x1)∧ x2 ∧ (x4 ∨ x5)
N if x1 ∧ x3

⎧
⎨
⎩

PROPERTY 1. In a Boolean representation of a cognitive
radio policy, each literal appears only once, and all literals
are positive, i.e. their complements do not appear in the
Boolean expression.

A straightforward Boolean representation of an arbitrary
cognitive radio policy may not satisfy Property 1. However,
the proposed policy reasoner was designed under the
assumption that the Boolean representation of any policy
satisfies it. Hence any representation of a policy needs to be
translated into a Boolean representation satisfying Property
1 before the PR can begin processing the policies.
After transforming an XML policy into a Boolean function,
the policy can be represented as an MTBDD [8]. The
internal (or non-terminal) nodes represent Boolean variables
and the terminal nodes represent values in a finite set. Thus
when a policy is represented using an MTBDD, the non-
terminal nodes correspond to the unique atomic Boolean
expressions and the terminal nodes correspond to the
effects. Each path in the MTBDD represents an assignment
for the Boolean variables along the path, thus representing a
request r.
 The terminal node on a path represents the effect of the

policy for the request represented by that path. Note that a
different ordering on the variables may result in a different
MTBDD representation, possibly of different size. In this
paper, we use the variable ordering

�

x0 < x1 < ...< xn . The
MTBDD of policy P1 is shown in Figure 3, where the
dashed lines are 0-edges and solid lines are 1-edges.
 The reasons for using MTBDDs for representing
policies are: (i) MTBDDs have proven to be a simple and
efficient representation for XML policies [7] and (ii)
operators in FIA can be mapped to efficient operations on

Figure 3. The MTBDD representation of Policy P1.

the underlying policy MTBDDs.

3.2. Transmission Request Interpreter

The PR assumes that the transmission request submitted by
the SSR is in the format of Definition 1. For example, a
request that conforms to policy P1 of Example 1 may take
the form {(frequency,

�

v1), (mode,

�

v2), (power,

�

v3),
(time,

�

v4)}. In order to respond to the transmission request,
the Reasoner requires the transmission request to be
compatible with the meta-policy MTBDD (the output of
Policy Merger that is the combination of all active policy
MTBDDs). The transmission request interpreter evaluates
the transmission request and assigns a value to each of the
Boolean variables of the meta-policy BDD such that the
reasoner can use these values to respond to the transmission
request. Each complete request corresponds to one path
from the source node (the first node in the ordering) to one
of the terminal nodes. The Reasoner will use this path to
give an appropriate response to the transmission request.

EXAMPLE 2. Consider policy P1 and the following
transmission request: R1 = {(mode, D2D), (power, 80),

(time, 6), (frequency, 300)}. The variables will have the
following values:

�

x0 = 0, x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0. The path for
this request is shown in Figure 4 with blue lines. It can be
seen that the response to this request is “Yes”.

3.3. Policy Merger

Policy merger combines all the active policy MTBDDs that
policy converter has made to build a single meta-policy
MTBDD. All the binary and unary operations on policies

Figure 4. The path corresponding to a transmission request.

can be expressed as operations on the corresponding policy
MTBDDs. There are many efficient operations for
MTBDDs in the literature. In this paper, we use the Apply
operation [8] to perform the FIA binary operations {+, -, &}
and the not operation [7] for the FIA unary negation
operation ¬. The Apply operation combines two MTBDDs
by using a specified binary arithmetic operation. The Apply
operation traverses each of the MTBDDs simultaneously
starting from the root node. When the terminal nodes of
both MTBDDs are reached, the operation is applied on the
terminal nodes to obtain the terminal node for the resulting
combined MTBDD.
After integrating cognitive radio policies into a single
MTBDD, the policy reasoner only needs to follow the path
that the transmission request specifies to determine a
response to the transmission request. If this path ends in the
‘Y’ terminal node, the policy reasoner should permit the
transmission, but if it ends in the ‘N’ or the ‘NA’ nodes, the
policy reasoner should deny the transmission.
 The policy merger in our policy reasoner uses the deny-
override rule to resolve conflicts. A conflict occurs when
the respective responses of two different policies to a single
request are different. Deny-override rule denies a request if
the request is denied by any of the currently active policies.

For instance, if the path of a request ends with the N
terminal node in one policy MTBDD, then the path of the
same request in the meta-policy MTBDD will also end with
the N terminal node (of the meta-policy MTBDD); note that
this meta-policy MTBDD is the integration of all the
MTBDDs of the currently active policies.
To combine cognitive radio policies, we need ‘NA’ terminal
nodes because in cases when a policy permits a transmission
request and a second policy neither prohibits nor permits
that request, the final response to the request is a Yes, but
when the second policy prohibits the transmission request
the response is a ‘No’; we need to separate these two cases.
However, when we integrate all active policies into a single
meta-policy, there is no difference between NA and N
terminal nodes because the paths of all the transmission
requests that end with either N or NA will be denied by the
policy reasoner. Hence, we can combine the N and NA
nodes when creating a representation of the meta-policy.
This means that we can use a BDD instead of a MTBDD to
represent a meta-policy. The use of a BDD as opposed to a
MTBDD is advantageous because it enables us to decrease
the size of the meta-policy representation (i.e., smaller
number of nodes) and makes available a number of
algorithms that work only on BDDs.

3.4. The Reasoner

To respond to a transmission request, the Reasoner uses the
meta-policy BDD and the Boolean interpretation of the
transmission request. The Reasoner sends one of the
following responses to the SSR:

• Yes: The transmission is allowed. The SSR cannot
transmit unless it receives such a message.

• No: The transmission is not allowed, but if the SSR
applies a set of appropriate changes to its
transmission request, the transmission will be
allowed. These changes are called opportunity
constraints.

• Incomplete: The transmission request is incomplete,
but will be allowed if the SSR applies the
appropriate opportunity constraints to its
transmission request.

If the transmission request is incomplete, the transmission
request interpreter will assign values to AEs that are
specified in the transmission request and the reasoner
simplifies the meta-policy BDD via the RESTRICT
algorithm [10] and those values. After simplifying the meta-
policy BDD, the Reasoner uses the FindPath function to
find an opportunity constraint such that if the SSR satisfies
that constraint in its transmission request, the policy
reasoner will permit the transmission request. Algorithm 1
provides the pseudo code of the FindPath algorithm.
 The FindPath algorithm is a direct result of the
observation that in BDDs, if a node is not the N terminal
node, it has at least one path leading to the Y terminal node.

Algorithm 1 FindPath Algorithm
1: t = Source Node
2: FindPath(t)
3: Add node t to array Path
4: if (high(t) = 1 or low(t) = 1) then
5: return True
6: else
7: if (low(t) = 0) then
8: return FindPath(high(t))
9: end if
10: else
11: return FindPath(low(t))
12: end if
When the transmission request is denied, the policy reasoner
needs to compute an opportunity constraint that is returned
to the SSR. The policy reasoner computes the opportunity
constraint by finding a path in the meta-policy BDD that
satisfies two requirements: (1) it terminates with the Y
terminal node and (2) shares the maximum number of edges
with the transmission request’s path (XTx). The second
requirement is needed because the PR needs to be cognizant
of the fact that the transmission request produced by the
SSR is already optimized for optimal radio performance.
Therefore, the PR needs to make as few changes as possible
to the transmission request’s path when computing the
opportunity constraint. The FindBestPath algorithm, shown
as pseudo code in Algorithm 2, is used to compute the
opportunity constraint.

Algorithm 2 FindBestPath Algorithm
 t = p[m-1]
2: FindBestPath(t)
 Add node t to array Path
4: if (high(t) = 1 or low(t) = 1) then
 return True
6: else if Xvar(t)

Tx = 0 then
 if (low(t) = 0) then
8: return FindBestPath(high(t))
 else
10: return FindBestPath(low(t))
 end if
12: else if (high(t) = 0) then
 return FindBestPath(low(t))
14: else
 return FindBestPath(high(t))
16: end if
The FindBestPath algorithm cannot have more than n
iterations, where n is the number of variables. So the
complexity of this algorithm is O(n).

4. CONCLUSION & FUTURE WORK

In this paper, we described the architecture of a new policy
reasoner. Our device-independent policy reasoner processes

policies represented as MTBDDs. It detects and resolves
policy conflicts. The policy reasoner also has the ability to
process under-specified or invalid transmission requests—
i.e., it computes the appropriate opportunity constraints for
such transmission requests. We have contrived two new
algorithms for computing the opportunity constraints.
 As part of our future work, we plan to extend the policy
reasoner architecture to include additional modules and
functionalities. One module we plan to add is a policy
preprocessing module that removes invalid paths within the
meta-policy BDD. Invalid paths within the meta-policy can
lead to illogical opportunity constraints. We also plan to
devise an algorithm for computing opportunity constraints
that can process weighted transmission request parameters.
The implementation of our policy reasoner is ongoing and
we plan to carry out a quantitative analysis of the policy
reasoner once the implementation is finished.

5. REFERENCES

 [1] J. Mitola III, Cognitive radio: an integrated agent architecture

for software defined radio, Ph.D Thesis, KTH Royal Institute
of Technology, 2000.

 [2] DARPA XG Working Group, "The XG Vision, Request for
Comments," prepared by BBN Technologies, July 2003.

 [3] F. Perich, R. Foster, P. Tenhula, and M. McHenry,
"Experimental Field Test Results on Feasibility of Declarative
Spectrum Management", 3rd IEEE International Symposium
on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN 2008), Chicago, October 2008.

 [4] D. Elenius, G. Denker, M.O. Stehr, R. Senanayake, C. Talcott,
D. Wilkins, "CoRaL - Policy Language and Reasoning
Techniques for Spectrum Policies", Policies for Distributed
Systems and Networks, 13-15 June 2007, pp. 261-265

 [5] F. Perich, M. McHenry, Policy-based spectrum access control
for dynamic spectrum access network radios,Web Semantics:
Science, Services and Agents on the World Wide Web, 2008.

 [6] D. Wilkins, G. Denker, M.-O. Stehr, D. Elenius, R.
Senanayake "Policy-based cognitive radios," IEEE Wireless
Communications Magazine, August 2007.

 [7] IP. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, "An Algebra
for Fine-Grained Integration of XACML Policies" 14th ACM
symposium on Access control models and technologies, 2009.

 [8] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. "Multi-terminal
binary decision diagrams: An efficient datastructure for
matrix representation." Formal Methods in System Design,
10(2-3):149-169, 1997.

 [9] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. "Verification and change-impact analysis of access-
control policies." In Proceedings of the 27th International
Conference on Software Engineering (ICSE), pages 196-205,
2005.

[10] H. R. Andersen "An Introduction to Binary Decision
Diagrams", Lecture Notes, 1999, IT University of
Copenhagen.

	Home
	Papers by Author
	Papers by Session

