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ABSTRACT 
 
Policy-based dynamic spectrum access is one of the 
spectrum access models being considered by regulators and 
researchers for regulating the behavior of cognitive radios.  
This approach to spectrum access decouples the policy-
related components (i.e., policy management, provisioning, 
and reasoning) from the radio platform. In policy-based 
spectrum access, the policy reasoner plays a critical role—it 
assists in policy enforcement and carries out a number of 
tasks related to policy analysis and processing.  One of the 
most crucial tasks performed by the policy reasoner is 
evaluating radio transmission requests in relation to a set of 
active policies. This paper describes the design process and 
architecture of a policy reasoner.  Key features of the 
proposed policy reasoner include: (1) policy conflict 
detection and resolution; and (2) ability to process under-
specified transmission requests and compute the 
corresponding constraints. 
 

1. INTRODUCTION 
 
In current radios, policies are programmed or hardwired into 
the radio as part of its firmware. This approach has a lot of 
drawbacks, for example any change in policies requires 
reimplementation and reaccreditation of radio’s firmware. 
Further, it is not scalable or flexible enough to deal with 
policies that are written by different authorities. 
 Cognitive radios [1] need to consider a wide variety of 
operating dimensions such as frequencies, waveforms, and 
power levels. On the other hand they should be designed 
and implemented to work with the ever-changing nature of 
regulatory environments and application requirements. To 
make these requirements feasible, a flexible mechanism 
must be provided to support spectrum sharing in addition to 
regulatory policy issues. The DARPA’s neXt Generation 
(XG) communication program [2] has proposed a policy-
based solution that is able to adapt to changes in policies, 
applications and radio technology. 

 In cognitive radio technology, policies are used to 
describe the preferences and constraints on parameters. For 
instance what level of detected spectral density is 
considered as presence of primary users or in which 
frequency bands transmission is allowed? Each XG radio is 
equipped with a Policy Engine that is able to understand 
machine-readable policies and apply them to particular 
problem domain. The Policy Reasoner (PR) is the main 
inference component of a policy engine. The System 
Strategy Reasoner (SSR) part of a cognitive radio provides 
the PR with facts about the cognitive radio and its 
environment and the PR tells the radio whether or not it can 
transmit. Two policy reasoners have been proposed in [4, 5].  
 There are many benefits in using a policy-based 
approach to cognitive radios: certification effort delays are 
significantly reduced, policy engines and radios can be 
accredited separately, radio behavior can quickly adapt to a 
changing situation, policy changes can be done easily and so 
forth. 
 In this paper, we propose a new policy reasoner based 
on Multi Terminal Binary Decision Diagrams (MTBDDs), 
which detects conflicts and resolves them in addition to 
processing under-specified transmission requests and 
computing the corresponding constraints. Our policy 
reasoner uses new algorithms to compute appropriate 
constraints for denied or incomplete transmission requests 
in a more systematic and guided way (in comparison with 
other policy reasoners). 
 The rest of this paper is organized as follows: we 
provide technical background knowledge in Section 2. In 
Section 3, we describe the architecture of our proposed 
policy reasoner and the algorithms that we use for 
reasoning. Finally, Section 4 concludes the paper. 
 

2. TECHNICAL BACKGROUND 
 
In this section, we introduce some background knowledge 
for subsequent discussions. 
 



 

2.1. XG Radio Architecture 
  
The neXt Generation (XG) program is a technology 
development project sponsored by DARPA's Strategic 
Technology Office, with the goal of developing both the 
enabling technologies and system concepts to dynamically 
redistribute allocated spectrum [2]. An XG radio has four 

main components [6]: 
• Sensors:   An XG radio needs sensors to sense its 

environment and discover the unused spectrum. 
• Radio Frequency (RF): The RF part of an XG radio 

is used to transmit and receive various signals. 
• System Strategy Reasoner (SSR): The SSR 

controls the radio's transmission. It builds optimal 
transmission request based on sensor data and its 
current strategies. 

• Policy Reasoner (PR): The PR loads and stores 
policies. It receives the transmission requests that 
the SSR builds and evaluates them using the 
currently active set of policies, checking them for 
policy conformance. 

 These components are shown in Figure 1. Our focus in 
this paper is policy reasoner component. XG needs that 
radios be able to vacate channels within 500 ms, which 
results in the requirement that the PR must evaluate 
transmission request in less than 500 ms [2], so we have 
designed our policy reasoner to operate in a fast and 
efficient way. A more detailed description of XG radio 
architecture and implementation efforts can be found in [2-
6]. 

 
2.2. Multi Terminal Binary Decision Diagrams 
 
A Binary Decision Diagram (BDD) is a data structure that is 
used to represent a Boolean function [10]. A Boolean 
function can be represented as a rooted, directed, and 
acyclic graph, which consists of decision nodes and two 
terminal nodes called 0-terminal and 1-terminal that have 
zero out-degree. Each decision node u is labeled by a 
Boolean variable (var(u)) and has two child nodes called 
low child (low(u)) and high child (high(u)). An edge from a 

node to a low (high) child represents an assignment of the 
variable to 0 (1). In a figurative representation of a BDD, 
these are shown as dotted and solid lines, respectively. Such 
a BDD is called “ordered” if different variables appear in 
the same order on all paths from the root. A BDD is said to 
be “reduced” if the following two rules have been applied to 
its graph: 

• Uniqueness: no two distinct nodes u and v have the 
same variable name and low- and high-successor, 
i.e., low(u)=low(v) , high(u)=high(v) , 
var(u)=var(v) implies that u=v. 

• Non-redundant tests: no variable node u has 
identical low- and high-successor, i.e. 
high(u)≠low(u) 
 

In popular usage, the term BDD almost always refers to 
Reduced Ordered Binary Decision Diagram (ROBDD). The 
advantage of an ROBDD is that it is unique for a particular 
functionality. The size of the BDD is determined both by 
the function being represented and the chosen ordering of 
the variables.  
 Multi terminal BDDs [8] (a.k.a algebraic decision 
diagrams) extend BDDs such that they can represent 
functions of an arbitrary range, while their domain is still a 
multidimensional Boolean space, i.e., an MTBDD provides 
a compact representation of functions of the form 

� 

P :Bn → E  which maps bit vectors over a set of variables 

� 

Bn  to a finite set of results (E). So the structure of an 
MTBDD is the same as BDDs with the difference that 
MTBDDs have more than two terminal nodes. In this paper, 
we use MTBDDs with three terminal nodes.  
 We also use the following explicit representation of 
MTBDDs. Nodes will be represented as numbers 0, 1, 2, … 
with 0, 1 and 2 reserved for terminal nodes ‘N’, ‘Y’ and 
‘NA’. The variables in the ordering 

� 

x0 < x1 < ...< xn  are 
represented by their indices 0, 1, 2, …, n. The MTBDD is 
stored in a table 

� 

T : u→ (i, l,h)  which maps a node u to its 
three attributes var(u)=i, Low(u)=l and high(u)=h. 
 
2.3. XML Policy Algebra 
 
In this paper, we use the XML policy algebra from [7]. 
Before we introduce the algebra, we need to find a suitable 
definition of cognitive radio policy semantics and 
transmission requests that the SSR sends to a cognitive 
radio. We assume the existence of a finite set A of names. 
Each attribute, characterizing an object in policies, has a 
name a in A. For cognitive radio policies, some of these 
attributes can be power level, frequency band, peak sensed 
power, location and time. All transmission requests are 
formally represented by definition 1. 
 

Figure 1. XG architecture [4]. 



 

DEFINITION 1. Let 

� 

a1, a2 , ..., ak be attribute names, and let 

� 

vi  be a value for attribute 

� 

ai , then 
  

� 

r = {(a1 , v1),…, (ak , vk )}  
is a request. 
 
DEFINITION 2. Let P be a 2-valued cognitive radio policy. 
We define the semantics of P as a 2-tuple 

� 

RY
P , RN

P where  

� 

RY
P and 

� 

RN
P  is the set of requests that are permitted (Y) and 

denied (N) by P respectively, and the requests that are 
neither in 

� 

RY
P  nor in 

� 

RN
P , are Not Applicable (NA). 

 
The Fine-grained Integration Algebra (FIA) is given by 

� 

Σ, PY , PN ,+, &,¬,Πdc  where 

� 

Σ  is a vocabulary of 
attribute names and their domains, 

� 

PY  and 

� 

PN  are two 
policy constants, + and & are two binary operators, and

� 

¬ 
and 

� 

Πdc are two unary operators.  
We now describe the policy constants and operators in FIA. 
In what follows, 

� 

P1 = RY
P1 ,RN

P1  and 

� 

P2 = RY
P2 ,RN

P2  denote 

two policies to be combined, and

� 

PI = RY
PI ,RN

PI  denotes the 
policy obtained from the combination. Operators on policies 
are described as set operations. 

• Permit Policy (

� 

PY ) is a policy constant that permits 
everything. 

• Deny Policy (

� 

PN ) is a policy constant that denies 
everything. 

• Addition (+): Addition of policies 

� 

P1  and 

� 

P2  results 
in a combined policy

� 

PI  in which requests that are 
permitted by either

� 

P1  or

� 

P2  are permitted, requests 
that are denied by one policy and is not permitted 
by the other are denied. 

• Intersection (&): Given two policies 

� 

P1  and 

� 

P2 , the 
intersection operator returns a policy

� 

PI  in which 
requests that are not permitted by neither 

� 

P1 nor 

� 

P2 
are denied, requests that are permitted by one 
policy and is not denied by the other are permitted. 

• Negation (¬): Given a policy P, ¬P returns a policy, 
which permits (denies) all requests denied 
(permitted) by P. The negation operator does not 
affect those requests that are not applicable to the 
policy. 

• Domain projection (

� 

Πdc): The domain projection 
operator takes a parameter, the domain constraint 
dc, and restricts the policy only to the set of 
requests identified by dc. 
 

DEFINITION 3. Domain Constraint (dc) takes the form 
{(

� 

a1 , 

� 

range1), (

� 

a2 , 

� 

range2), … , (

� 

ak , 

� 

rangek )}, where 

� 

a1 , 

� 

a2 , ..., 

� 

ak  are attribute names, and 

� 

rangei  (1 ≤ i ≤ k) are 
sets of values from the vocabulary Σ. Given a request r = 
{(

� 

ar1 , 

� 

vr1), … , (

� 

arm , 

� 

vrm )}, We say r satisfies dc if the 
following condition holds: for each (

� 

arj , 

� 

vrj ) 

� 

∈  r (1 ≤ j ≤ 
m), if there exists (

� 

ar1 , 

� 

rangei) in dc, then

� 

vrj  is in

� 

rangei . 

 

DEFINITION 4. Given two policies 

� 

P1 and 

� 

P2 , the 
subtraction operator returns a policy 

� 

PI  that is obtained by 
starting from 

� 

P1 and limiting the requests that the integrated 
policy applies only to those that 

� 

P2 does not apply to. The 
subtraction operator is defined as:  

� 

P1 − P2 = (PY & (¬(¬P1 + P2 + ¬P2)))+ (PN & (P1 + P2 + ¬P2)) 
 

3. THE POLICY REASONER 
 
There are several different algorithms for combining 
policies in FIA; we introduce two of them in here. For 
cognitive radio policies, the ‘Deny-overrides’ combining 
algorithm has been chosen by BBN technologies [2]. This 
algorithm states that the combined result is deny if any 
policy evaluates to deny, regardless of the evaluation result 
of other policies. If no policy evaluates to deny and at least 
one policy evaluates to permit, the combined result is 
permit.  
 The proposed policy reasoner consists of four 
different components: policy converter, transmission request 
interpreter, policy merger and reasoner. Figure 2 illustrates 
the architecture of our policy reasoner. In what follows, we 
will describe these components and their operation.  
 
3.1. Policy Converter  
 
The Policy Converter converts the XML cognitive radio 
policies into MTBDDs. As mentioned in Section 2, we can 
define policy P as a function 

� 

P :R→ E  from the domain of 
requests R onto the domain of effects E, where E={Y, N, 
NA}. A cognitive radio policy in XML format can be 
transformed into a Boolean expression. A Boolean 
expression is composed of atomic Boolean expressions 
(AE) combined using the logical operations 

� 

∧  and 

� 

∨ . 
 
EXAMPLE 1. Consider the following cognitive radio 

Figure 2. Architecture of the proposed policy reasoner  



 

policy. P1: Allow transmission in [255, 328] or [2200, 
2290] frequency bands, if the mode is “Day to Day” or 
“Special Event” and the power level is less than 115 dB. 
Deny transmission if the mode is “Day to Day”, between 11 
a.m. and 2 p.m. Policy P1 can be defined as a function:  

� 

P1 =
N if (Mode = D2D)∧ (11< time < 14)
Y if ((255< f < 328)∨ (2200 < f < 2290))∧ ...
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 

We now encode each unique atomic Boolean expression 

� 

AEi  in the policy into a Boolean variable 

� 

xi  such that: 
 

� 

xi  = 0 if 

� 

AEi  is false; 

� 

xi  = 1 if 

� 

AEi  is true: 

� 

x0 :Mode = Special Event  

� 

x1 :Mode = Day toDay  

� 

x2 :Power < 115dB  

� 

x3 :11< time < 14  

� 

x4 : 255MHz < f < 328MHz   

� 

x5 : 2200MHz < f < 2290MHz  
Using the above Boolean encoding, a policy P can be 
transformed into a function 

� 

P :Bn → E , over a vector of 
Boolean variables, 

  

� 

 x = (x0, x1,… , xn ) , onto the finite set of 
effects E = {Y, N, NA}, where n is the number of unique 
atomic Boolean expressions in policy P. A request r 
corresponds to an assignment of the Boolean vector 
  

� 

 x = (x0, x1,… , xn ) , which is derived by evaluating the 
atomic Boolean expressions with attribute values specified 
in the request. After Boolean encoding, the policy P1 is 
transformed into the following function: 

  

� 

P1 (
 x ) =

Y if (x0 ∨ x1)∧ x2 ∧ (x4 ∨ x5)
N if x1 ∧ x3

⎧ 
⎨ 
⎩ 

 

 
PROPERTY 1.  In a Boolean representation of a cognitive 
radio policy, each literal appears only once, and all literals 
are positive, i.e. their complements do not appear in the 
Boolean expression. 
 
A straightforward Boolean representation of an arbitrary 
cognitive radio policy may not satisfy Property 1. However, 
the proposed policy reasoner was designed under the 
assumption that the Boolean representation of any policy 
satisfies it. Hence any representation of a policy needs to be 
translated into a Boolean representation satisfying Property 
1 before the PR can begin processing the policies. 
After transforming an XML policy into a Boolean function, 
the policy can be represented as an MTBDD [8]. The 
internal (or non-terminal) nodes represent Boolean variables 
and the terminal nodes represent values in a finite set. Thus 
when a policy is represented using an MTBDD, the non-
terminal nodes correspond to the unique atomic Boolean 
expressions and the terminal nodes correspond to the 
effects. Each path in the MTBDD represents an assignment 
for the Boolean variables along the path, thus representing a 
request r. 
      The terminal node on a path represents the effect of the 

policy for the request represented by that path. Note that a 
different ordering on the variables may result in a different 
MTBDD representation, possibly of different size. In this 
paper, we use the variable ordering 

� 

x0 < x1 < ...< xn . The 
MTBDD of policy P1 is shown in Figure 3, where the 
dashed lines are 0-edges and solid lines are 1-edges. 
 The reasons for using MTBDDs for representing 
policies are: (i) MTBDDs have proven to be a simple and 
efficient representation for XML policies [7] and (ii) 
operators in FIA can be mapped to efficient operations on  

 
Figure 3. The MTBDD representation of Policy P1. 

 
the underlying policy MTBDDs. 

 
3.2. Transmission Request Interpreter 
 
The PR assumes that the transmission request submitted by 
the SSR is in the format of Definition 1. For example, a 
request that conforms to policy P1 of Example 1 may take 
the form {(frequency,

� 

v1), (mode,

� 

v2 ), (power,

� 

v3 ), 
(time,

� 

v4 )}. In order to respond to the transmission request, 
the Reasoner requires the transmission request to be 
compatible with the meta-policy MTBDD (the output of 
Policy Merger that is the combination of all active policy 
MTBDDs). The transmission request interpreter evaluates 
the transmission request and assigns a value to each of the 
Boolean variables of the meta-policy BDD such that the 
reasoner can use these values to respond to the transmission 
request. Each complete request corresponds to one path 
from the source node (the first node in the ordering) to one 
of the terminal nodes. The Reasoner will use this path to 
give an appropriate response to the transmission request. 
 
EXAMPLE 2. Consider policy P1 and the following 
transmission request: R1 = {(mode, D2D), (power, 80), 



 

(time, 6), (frequency, 300)}. The variables will have the 
following values: 

� 

x0 = 0, x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0. The path for 
this request is shown in Figure 4 with blue lines. It can be 
seen that the response to this request is “Yes”. 
 
3.3. Policy Merger 
 
Policy merger combines all the active policy MTBDDs that 
policy converter has made to build a single meta-policy 
MTBDD. All the binary and unary operations on policies  

 
Figure 4. The path corresponding to a transmission request.  

 
can be expressed as operations on the corresponding policy 
MTBDDs. There are many efficient operations for 
MTBDDs in the literature. In this paper, we use the Apply 
operation [8] to perform the FIA binary operations {+, -, &} 
and the not operation [7] for the FIA unary negation 
operation ¬. The Apply operation combines two MTBDDs 
by using a specified binary arithmetic operation. The Apply 
operation traverses each of the MTBDDs simultaneously 
starting from the root node. When the terminal nodes of 
both MTBDDs are reached, the operation is applied on the 
terminal nodes to obtain the terminal node for the resulting 
combined MTBDD.  
After integrating cognitive radio policies into a single 
MTBDD, the policy reasoner only needs to follow the path 
that the transmission request specifies to determine a 
response to the transmission request. If this path ends in the 
‘Y’ terminal node, the policy reasoner should permit the 
transmission, but if it ends in the ‘N’ or the ‘NA’ nodes, the 
policy reasoner should deny the transmission. 
 The policy merger in our policy reasoner uses the deny-
override rule to resolve conflicts. A conflict occurs when 
the respective responses of two different policies to a single 
request are different. Deny-override rule denies a request if 
the request is denied by any of the currently active policies. 

For instance, if the path of a request ends with the N 
terminal node in one policy MTBDD, then the path of the 
same request in the meta-policy MTBDD will also end with 
the N terminal node (of the meta-policy MTBDD); note that 
this meta-policy MTBDD is the integration of all the 
MTBDDs of the currently active policies. 
To combine cognitive radio policies, we need ‘NA’ terminal 
nodes because in cases when a policy permits a transmission 
request and a second policy neither prohibits nor permits 
that request, the final response to the request is a Yes, but 
when the second policy prohibits the transmission request 
the response is a ‘No’; we need to separate these two cases. 
However, when we integrate all active policies into a single 
meta-policy, there is no difference between NA and N 
terminal nodes because the paths of all the transmission 
requests that end with either N or NA will be denied by the 
policy reasoner. Hence, we can combine the N and NA 
nodes when creating a representation of the meta-policy. 
This means that we can use a BDD instead of a MTBDD to 
represent a meta-policy. The use of a BDD as opposed to a 
MTBDD is advantageous because it enables us to decrease 
the size of the meta-policy representation (i.e., smaller 
number of nodes) and makes available a number of 
algorithms that work only on BDDs. 
 
3.4. The Reasoner  
 
To respond to a transmission request, the Reasoner uses the 
meta-policy BDD and the Boolean interpretation of the 
transmission request. The Reasoner sends one of the 
following responses to the SSR:  

• Yes: The transmission is allowed. The SSR cannot 
transmit unless it receives such a message. 

• No: The transmission is not allowed, but if the SSR 
applies a set of appropriate changes to its 
transmission request, the transmission will be 
allowed. These changes are called opportunity 
constraints. 

• Incomplete: The transmission request is incomplete, 
but will be allowed if the SSR applies the 
appropriate opportunity constraints to its 
transmission request. 

If the transmission request is incomplete, the transmission 
request interpreter will assign values to AEs that are 
specified in the transmission request and the reasoner 
simplifies the meta-policy BDD via the RESTRICT 
algorithm [10] and those values. After simplifying the meta-
policy BDD, the Reasoner uses the FindPath function to 
find an opportunity constraint such that if the SSR satisfies 
that constraint in its transmission request, the policy 
reasoner will permit the transmission request. Algorithm 1 
provides the pseudo code of the FindPath algorithm. 
 The FindPath algorithm is a direct result of the 
observation that in BDDs, if a node is not the N terminal 
node, it has at least one path leading to the Y terminal node.  



 

 
Algorithm 1 FindPath Algorithm  
1:   t = Source Node  
2:   FindPath(t)  
3:   Add node t to array Path  
4:  if ( high(t) = 1 or low(t) = 1) then  
5:    return True  
6:  else  
7:    if ( low(t) = 0 ) then  
8:     return FindPath( high(t) )  
9:     end if  
10: else  
11:    return FindPath( low(t) )  
12: end if  
When the transmission request is denied, the policy reasoner 
needs to compute an opportunity constraint that is returned 
to the SSR. The policy reasoner computes the opportunity 
constraint by finding a path in the meta-policy BDD that 
satisfies two requirements: (1) it terminates with the Y 
terminal node and (2) shares the maximum number of edges 
with the transmission request’s path ( XTx ). The second 
requirement is needed because the PR needs to be cognizant 
of the fact that the transmission request produced by the 
SSR is already optimized for optimal radio performance. 
Therefore, the PR needs to make as few changes as possible 
to the transmission request’s path when computing the 
opportunity constraint. The FindBestPath algorithm, shown 
as pseudo code in Algorithm 2, is used to compute the 
opportunity constraint.  
 
Algorithm 2 FindBestPath Algorithm  
     t = p[m-1]  
2:  FindBestPath(t)  
     Add node t to array Path  
4:  if ( high(t) = 1 or low(t) = 1) then  
        return True  
6:  else if Xvar(t )

Tx  = 0 then  
   if ( low(t) = 0 ) then  
8:       return FindBestPath( high(t) )   
         else  
10:  return FindBestPath( low(t) )  
         end if  
12: else if ( high(t) = 0 ) then  
  return FindBestPath( low(t) )   
14: else  
        return FindBestPath(high(t) )  
16: end if  
The FindBestPath algorithm cannot have more than n 
iterations, where n is the number of variables. So the 
complexity of this algorithm is O(n). 
 

4. CONCLUSION & FUTURE WORK 
 
In this paper, we described the architecture of a new policy 
reasoner. Our device-independent policy reasoner processes 

policies represented as MTBDDs. It detects and resolves 
policy conflicts. The policy reasoner also has the ability to 
process under-specified or invalid transmission requests—
i.e., it computes the appropriate opportunity constraints for 
such transmission requests. We have contrived two new 
algorithms for computing the opportunity constraints.  
 As part of our future work, we plan to extend the policy 
reasoner architecture to include additional modules and 
functionalities. One module we plan to add is a policy 
preprocessing module that removes invalid paths within the 
meta-policy BDD. Invalid paths within the meta-policy can 
lead to illogical opportunity constraints. We also plan to 
devise an algorithm for computing opportunity constraints 
that can process weighted transmission request parameters. 
The implementation of our policy reasoner is ongoing and 
we plan to carry out a quantitative analysis of the policy 
reasoner once the implementation is finished. 
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