
ON THE HARDWARE DESIGN OF FRONT-END
PROCESSING IN THE SDR SYSTEMS

Najam-ul-Islam Muhammad, Raymond Knopp (Institute Eurecom, Sophia-Antipolis - France,
{muhamman, Raymond.Knopp}@eurecom.fr);

Renaud Pacalet (TELECOM ParisTech, Sophia-Antipolis - France,
Renaud.Pacalet@TELECOM-ParisTech.fr)

Abstract— A hardware accelerator capable of carrying out
the air-interface processing inside a baseband architecture is
presented. The architecture is not only flexible to adopt to the
different environments but also carries out the operations quite
efficiently. The memory scheme to realize the different set of
operations with the same organization is also discussed along
with its management by the proposed processor. The performance
analysis with respect to the current target technology (FPGA) is
described along with a critical analysis describing the limitations
of the designed air-interface processor.

I. INTRODUCTION

The emergence of different applications working at differ-
ent frequencies and using different mechanisms was one of
the key reasons leading to Software Defined Radio (SDR)
based systems. The proliferation of wireless communication
standards has made sure that the SDR systems are an integral
part of wireless communication world. The daily life wireless
appliances are on the way of adding multiple services on
the single device, thus integrating more and more standards
to the already wide range. The mobile devices today and in
future have to cater the different air-interfaces ranging from
2G to 3GPP LTE standards. This, in turn, requires the need
of flexible architectures that can cater the increasing demands
in an efficient manner.

In this article, we first discuss the proposed flexible base-
band prototype plateform by Institute Eurecom in collabora-
tion with TELECOM ParisTech. We focus on the air-interface
processing inside the baseband architecture, and explain the
design approach and the flexibility our design offers for variety
of operations. The generic parameterizable baseband board is
aimed to address the SDR applications and fulfills the process-
ing requirements of 2G, 3G, 4G, broadcast communication and
wireless LAN standards. The goal of the baseband prototype
architecture is to investigate the different possible solutions for
the SDR applications, hence the target technology chosen is
FPGAs. This reduces the design cycle and cost, and provides
the flexibility as well. Later on, the finalized architecture will
be adapted to the System on Chip technology.

The baseband architecture is composed of two FPGAs; a
high level control module (the Interface and Control FPGA)
and a digital signal processing engine (Processing Engine
FPGA). The designed baseband prototype is shown in figure
1 [10]. Both the FPGAs are Xilinx Virtex-5; the control
FPGA is LX110T while the DSP Processing Engine FPGA

is LX330 [9]. The control module is based on a SPARC
CPU (LEON3 from Gaisler Research), and it manages the
processing engines in the other FPGA.

The architecture is designed by assigning a set of sim-
ilar tasks to different hardware accelerators; each of these
accelerators is designed independently while considering the
requirements of all the wireless communications standards.
For example, the channel decoder takes care of trellis-based
decoding algorithms: namely Viterbi and Turbo; and the design
is in compliance with the wireless communications standards
including: IEEE 802.11a/g (WLAN), IEEE 802.16 (WiMAX),
3GPP UMTS and 3GPP UMTS-LTE. The design of each
hardware accelerator or Intellectual Property (IP) follows a
generic pattern for the benefits such as: Ease of communication
among the IPs, Coherence of the design across the baseband
board, Facilitate the debugging process, and addition of the
functionalities in future etc.

The nucleus of this article is the design, internal archi-
tecture and performance analysis of one of the IPs of our
baseband design; the Front End Processor (FEP). The FEP
is responsible for air-interface level computations in the SDR
systems. The different air-interfaces for the SDR applications
include: Orthogonal frequency-division multiplexing/multiple-
access (OFDM/A), Single Carrier FDMA (SC-FDMA), Space-
division multiple access (SDMA), and Wideband Code Divi-
sion Multiple Access (W-CDMA). The set of operations to
be performed at these air-interface are: Channel Estimation,
Data Detection, Synchronization, and Carrier Phase Offset
Estimation etc.

The approach adopted by us for the hardware design of
the FEP is based on frequency domain computations. The
Discrete Fourier Transform (DFT) based approach for different
individual air-interface systems has been well documented.
The receiver architectures based on the DFT have been pro-
posed for OFDM based systems [2], [3], while the DFT based
receivers for HSDPA [4], WCDMA [5] and GSM [6] can also
be found in the literature.

In the following section, we describe the Front End Pro-
cessor, then move to its functional specifications in section-3.
The memory subsystem of the FEP is discussed in setion 4,
before presenting a performance analysis of the IP in the last
section.

Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g

e
A

H
B

/C
u

st
o

mC
u

sto
m

/V
C

I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Interface & Control FPGA

Processing Engine FPGA

AHB

Fig. 1. Baseband Processing Architectural Overview

II. FRONT END PROCESSOR

Our design is an effort to build a processing block for all
the different air-interfaces based on the DFT. The processor
is highly flexible, parameterizable and caters all the different
operations for the standards discussed in the previous section.
The FEP itself is composed of different macro computational
blocks, which were pointed out during the analysis of the air-
interfaces. These macro blocks perform all the tasks at the
air-interface of the SDR system. The functions are:
• Discrete Fourier Transform (DFT), Inverse DFT (IDFT)
• Operations over sub-band level (Energy Calculations,

Maximum, arg-max Calculations, Dot Product)
• Component-wise-Operations (addition, product, division)
The IP structure of the FEP conforms to the generic

structure described in [10]. It consists of the VCI-Interface,
the micro-controller (6502), the DMA engine, the FEP core,
and FEP Memory Subsystem. The IP is controlled by the
micro-controller, the local processor also performs low level
transactions among IPs, transfers data inside IP, and processes
commands. The VCI Interface is used for the communication
between the IP and the VCI compliant Interconnect (AVCI
Crossbar) [8] shown in figure 1. The DMA engine is re-
sponsible for data trafficking between the IP and the outside
world, i.e. other IPs and the Global Memory. The Memory
Subsystem of the FEP is described later in the article along
with its interface with the FEP Core. An overview of the IP
shell is depicted in figure 2. The FEP module is controlled
by the main processor (LEON3), which passes the command
words to the VCI-Interface, main processor governs the local
micro-controller (6502) and has access to memory subsystem.

III. FEP FUNCTIONAL SPECIFICATIONS

A. DFT

The Discrete Fourier Transform (DFT) supported
by the FEP is for the input vector sizes of

Command Words

Parameters

Memory

Twd − In

Memory

Space

Interface
VCI

Twiddles

F E P

Core
Memory

Results
Intermediate

Data Out

Data In

Input − Output

 Interface

LEON − 3

Global Memory
Mapped to

DMA

LEON−3

Fig. 2. FEP Block Diagram

{8, 16, 32, 64, 128, 256, 512, 1024, 4096}. This is based
on the analysis of requirements for different standards in
question. The DFT of an input vector X is given by:

DFTN (X[k]) =
1√
N

N−1∑
n=0

X[n].e−
2πjnk

N , k ∈ [0, N − 1] (1)

In the FEP, the Inverse Discrete Fourier Transform (IDFT) is
calculated by IDFT (Y) = DFT (Y). This leads to addition
of conjugate function in the FEP, which is used for few other
operations as well. As all the input vector sizes for DFT are
power-of-2, and few are power-of-4 as well; the famous Radix-
4 algorithm and the Split-Radix algorithm are utilized. The
algorithms are based on butterfly operation and run over data
samples for multiple number of stages. The number of stages
is based on the input vector size. The number of stages for an
input vector size of X are log4X when input vector size is
pow-of-4, and number of stages are log4X/2 + 1 when input
vector size is power-of-2 but not power-of-4. The split-radix
algorithm in one stage, either first or last, uses the Radix-2

butterfly algorithm. The input and output data is represented
by 32 bits with both real and imaginary parts in Q1.15 format,
while the intermediate results are stored in 50 bits with real
and imaginary parts in Q9.15 format [7].

3.153.303.15

I1

I2

n.15 n+2.15 n+2.30 n+2.15

I0(Q1.15)

I3

T1(Q1.15)

T2

T3

Truncation

Fig. 3. Basic Radix-4 Operation

The figure 3 depicts the radix-4 butterfly operations. The
four complex input vectors (I0 to I3) are first added in different
combinations before being multiplied by twiddle factors (T1 to
T3, T0 is always 1). The twiddle factors are roots of unity circle
and stored in the FEP memory. From the figure 3, it is evident
that the addition operation over ’4’ complex vectors adds up
’2’ significant bits for each resultant, and a multiplication
adds another ’15’ bits. The ’15’ LSBs of the multiplication
result can be discarded without much loss of the accuracy. The
truncation operation at the end limits each element of butterfly
to be Q3.15, if input was Q1.15. Thus during the intermediate
stages of the DFT/IDFT operation, the size of the data samples
increases by ’2’ bits in each stage. Considering the maximum
input vector size and the simulation results for a low bit error
rates, the intermediate results of the DFT operation are stored
as ’50’ bits with real and imaginary part as ’25’ bits [7].

The global throughput for the FEP block is set to be at
least 1-sample/cycle, the processing requirements inside the
FEP are based on the intended throughput and the maximum
input vector size. This results in the processing of 8 samples
per cycle for DFT/IDFT operations i.e. both reading 8-samples
and writing 8-samples in one clock cycle. This implies that in
our case two butterfly operations are to be performed in one
clock cycle. The processing unit of the DFT block (with one
butterfly operation) is shown in figure 4. The matrix operation
is explained in the memory subsystem section of the paper.

B. Operations over sub-band level

The sub-band level operations include Energy Calculations,
Maximum, arg-max Calculations, Dot Product over input
vector(s) with a maximum input size of 4096. The sub-band
operation over a vector is described by the number of sub-
bands nsb, size of each sub-band ssb, and starting index of
first sub-band inside the vector a. The FEP also supports the
operations inside sub-band over skipped input samples (sub-
sampled operation with sub-sampling factor m) , which for
example may be used for pilots that appear in the symbols

spaced at a particular distance. The functions are described in
the following equations.

Esb(U) =
1

ssb

ssb−1∑
i=0

|U [i]|2 (2)

E(U) = E0(U)E1(U) . . . Ensb−1(U) (3)
max(Usb) = max

0≤i≤ssb

(|Usb[i]|2) (4)

Dsb = U.V =
ssb∑
i=0

U [mi + a]× V [mi + a] (5)

The equations describe the functionality of each of the
macro block, the results over consecutive sub-bands are stored
in the memory space contiguously as shown for energy calcu-
lations in equation 3.. The complex multiplications inside each
of sub-band operations results in an increase of output vector
size, and all the results are stored in sign-extended Q17.15
format to cater the maximum possible bit additions to the
resultant. For each complex multiplication in these operation,
the ’15’ LSBs are discarded without much loss of the accuracy.

C. Component-wise Operations

The component-wise operations include the four basic arith-
metic operations between the two input vectors, i.e. addition,
subtraction, multiplication, and division. The component-wise
product and division blocks can be operated between a vector
and a scalar. The component-wise division is performed by
using the product module and look up table (LUT) and is
given by:

U ÷ V = U [i] ∗ V̂ [i] ≈ U [i]÷ V [i] (6)

V̂ [i] represents the inverse value of V [i] stored in LUT.
The results for all the component-wise operations are stored
back in 32 bits with real and imaginary parts in Q2.14 format.
This causes a truncation of ’16’ LSBs for product operations,
and ’1’ bit in case of addition operations.

The FEP micro-controller takes care of chain of operations
to be performed inside the FEP. To illustrate how the higher
level functions are implemented in the FEP, the process
chain for normalized channel estimation in the single antenna
for OFDM based systems is shown in the figure 5. In the
figure, pref and prec represent the reference and received
pilot symbols respectively, � represents the component-wise-
product between the two vectors, | |2 represents the Energy
calculation module of the FEP, and ÷ is the division of a
vector by a scalar quantity.

DFT

DFT

Prec

Pref

Pref � Prec

pref

prec ÷

| |2

Fig. 5. Process Chain of Channel Estimation for OFDM based System

Operations

Output

Buffer

Matrix

N
o

Operations
Butterfly

Y
es

Truncate

Conjugate

Matrix

Memory

3 Twiddles for butterfly − 2

DFT
Yes

(Samples)

Generator

Twiddle

4
 S

a
m

p
les fo

r b
u

tterfly
 −

 2

Address

Generator

Last
Stage No

Twiddle

Memory

DFT

No

Conjugate

Yes

Input BufferSpace
DIO Memory

TMP

In
te

rm
ed

ia
te

 S
ta

g
es

First Stage

DIO Memory
Space

Fig. 4. The DFT / IDFT Processing Unit

IV. MEMORY SUBSYSTEM (MSS)

The internal memory of the FEP is used to store the input
data, intermediate and final results, and the twiddle factors.
From the external point of view it is a contiguous memory
space accessible to all the peripherals. The memory is
accessed by the VCI-Interface, DMA engine, micro-controller
and by the IP core itself; hence it is a shared memory. The
core is always given the highest priority followed by 6502, the
DMA engine and the VCI-Interface. It is the responsibility of
the control software to take care of data / result over-writings
by any of the peripheries accessing the memory subsystem.

The FEP memory subsystem is composed of three main
chunks, namely:

1) Input - Output data space (DIO)
2) Twiddle factors memory space (TWD)
3) Internal data processing memory space (TMP)

The FEP memory sub-system is composed of ram blocks
RAMB36, RAMB18 (Configurable Synchronous True Dual Port
Block RAMs) available in XilinxVirtex 5 FPGA devices [9]
each of size 36 k-bits and 18 k-bits respectively. For FEP
utility, these are configured as a 32-bit wide by 1-K deep
(using one RAMB36) and 54-bit wide by 1-K deep (using one
RAMB36 and one RAMB18) true dual port RAMs.

The size of each of three areas of the FEP memory
subsystem is based on input-output data storage, intermediate
results storage, and the number of memory-accesses and
processing per cycle (i.e. the over-all performance requirement
of the processing block) for all the computationally different
operations. The input-output (DIO) memory space is allocated
in such a manner that two successive tasks for IP-core can be
processed without any delay / lag between them. The memory
requirement for component-wise-operations - CWO (addition,
product, division, subtraction) is more than any other operation
in FEP block as it requires 2 input, and 1 output vectors to be
stored.

• Maximum input vector size = 4096 samples

• Memory requirement for 2 Input vectors = 2 × 4096 ×
32 = 256 k-bits

• Memory requirement for the output vector = 128 k-bits
• Memory requirement for one CWO = 256 + 128 = 384

k-bits
• Total memory requirement for two CWO operations =

2× 384 = 764 k-bits
Some other results like energy, maximum and dot-products

over sub-bands may be required over multiple operations.
Keeping this in view, we assign a total of 1 M-bits of memory
for input-out data space. This is accomplished by using 32
memory blocks of RAMB36. The 8-bit micro-controller has
an access to almost one half of this memory (byte by byte).

The size for Internal data processing memory space (called
TMP) is based on the intermediate computation during dif-
ferent operations like DFT, Dot-product, Energy / Max calcu-
lations etc. We take the most computation intensive task i.e.
DFT for maximum input vector size as the basis to decide the
size of internal memory. As per algorithmic implementation
of our DFT scheme, the intermediate samples (results) are
stored as 50 bits instead of 32 bits (which is the case for input
and output samples). The DFT implementation is a pipeline
based to meet the throughput and delay requirements; thus
few intermediate results are being read while some others are
being written in the same clock cycle. This dictates to reserve
twice the maximum intermediate samples size memory for
internal results / processing. We make use of the 4 parity bits
of RAMB36 and the 2 of RAMB18 to achieve a total efficient
memory subsystem size. The 4 MSBs of the 54 bits words are
not used. Therefore, each of the intermediate results of 50 bits
is stored using one RAMB36 and one RAMB18 simultaneously.
• Maximum input vector size for DFT = 4096
• Intermediate Results Memory requirement = 2× 4096×

50 = 400 k-bits
Thus, a total of 8 blocks each of RAMB36 and RAMB18 are
used for Internal data processing memory.

The ’N’ twiddle factors, being the roots of unity, can be
computed from ’N/8’ twiddle factors. Using this property of

twiddle factors, a good amount of memory space is saved.
One by eight of maximum size DFT i.e. 512 twiddle factors
are stored inside FEP memory. These twiddle factors are
written every time FEP is initialized. The DFT operation
with two butterflies requires access of ’6’ twiddle factors per
cycle, however the implementation scheme of DFT requires
an access of 3 twiddle factors in each cycle. The rest of the
twiddles are calculated using the ’twiddle generator’ (shown in
figure 4). The twiddle factors are stored (duplicated) in three
different physical rams RAMB36 with one port access to IP-
core for twiddle factors while the other port and one-half of
the memory space for future usage and/or storing some vectors
during debugging of IP-core. Twiddle factor memory is written
by VCI-Interface and IP core can only read from it. The
twiddle factors are stored either in the upper half or the lower
half of all three RAMB36 blocks, and this information is passed
in the command word for DFT operations to facilitate the
internal address calculations. Memory requirement for Twiddle
factors = 3×1024×32 = 96 k-bits. Thus total size of memory
sub-system = 1024 + 400 + 96 = 1520 k-bits = 190 k-bytes,
and physically 41 blocks RAMB36 and 8 blocks of RAMB18
are used.

The size of the memory subsystem is a bottleneck for the
future ASIC proposal. For the ASIC development, we propose
to move the big chunk of the memory as external Double Data
Rate Dynamic Random Access Memory (DDR DRAM).

A. Memory Access Scheme

The IP core reads out and writes in the DIO area. The DIO
area is implemented as a four rows times eight columns array
of 1k×32 RAMs. In the following, columns are numbered
from 0 for the leftmost to 7 for the rightmost and rows are
numbered from 0 for the top to 3 for the bottom. IP core
accesses DIO through eight read-write channels, plus a mode
indicator. The mode indicator selects between two operating
modes:

• Fourier Transform mode - FT
• Pre-Post Processing Mode - PP (All Operations except

FT)

When in FT mode the eight read-write channels (between
the IP-Core and MSS) are configured as eight read and eight
write channels, one read-write pair per column. The addresses
are 32 bits words addresses in the column, that is 12 bits (4k)
only. The unused MSBs are discarded. The read addresses
of the eight columns are considered as equal. Only the read
address of the first channel is used, the others are ignored. The
write addresses of the eight columns are considered as equal.
Only the write address of the first channel is used, the others
are ignored. The read and the write address are not necessarily
equal. Address 0 points to the topmost 32 bits word of the
column, that is, the first 32 bits word of the top RAM of the
column (the RAM in row number 0). Address 4095 (0xfff)
points to the bottom 32 bits word of the column, that is, the
last 32 bits word of the bottom RAM of the column (the RAM
in row number 3).

When in PP mode the eight read-write channels are con-
figured as eight read or write channels, two per row. Each
channel can be used either to read or to write but not both
(exclusive, read-xor-write). The read or write addresses are 32
bits words addresses in the row, that is 13 bits (8k).

Thanks to these two exclusive modes and to the fact that
there are at most one read and one write channel per column
(in FT mode) or two read-xor-write channels per row (in PP
mode), there are at most two accesses per RAM in the DIO
area. So, the two ports of the Xilinx block RAMs are sufficient
for the IO needs.

The IP core reads and writes in the TMP area through eight
read-write channels, one per 1k×50 RAM. Read and write
operations are independent and have independent read and
write enables and independent read and write addresses, 10
bits each (1k).

The IP core accesses the TWD area in read-only mode.
It reads in each of the three 1k×32 RAMs through three
dedicated read channels, one per RAM, wired to the A port
of the RAMs. IP core cannot write in this area. The addresses
IP core generates are 10 bits addresses (1k range).

This memory view is summarized in figure 6.

Internal Processing Data Space

Twiddle Factors Space

Input / Output Data Space

32 bits32 bits

TWD1

32 bits

TWD01k

1k

DIO30

32 bits 32 bits

DIO07

DIO37

1k

1k

4k

dio(7)

dio(6)

dio(7)

pp mode

ft mode

twd(0)

8× 50 = 400 bits

tmp(0)

TMP7TMP0

50 bits50 bits

0x1ff8

0x000

0x000 0x000 0x000

0x3ff 0x3ff 0x3ff

0x3ff

0x000

0x3ff

0x000

0x3ff

0xc00

0xfff 0xfff

0x0000 0x0007

0x1fff

0x0007

0x1ff8 0x1fff

DIO00

dio(0)

dio(0)

dio(1)

twd(1) twd(2)

tmp(7)

0x000

0x3ff

0xc00 0x0000

TWD2

8× 32 = 256 bits

Fig. 6. The memory layout from IP core point of view

B. The Matrix Operations

The DMA engine always writes in and reads out from the
FEP memory space in continuous order, and the address space
access is independent of the input or output vector sizes. The
variation in the operated vector sizes leads to some complexity
of memory access in the DIO memory space. In case of DFT
computation, the indices of samples accessed by butterfly are
input-vector-size dependent, which in FEP case ranges from
8 to 4096. The indices accessed are spaced ’N/4’ from each
other. This, in turn, means the arrangement of input / output
samples for all the possible input vector sizes in such a manner
that 8 samples can be operated in one clock cycle. The IP
core reads / writes eight samples per cycle in DIO, in FT

mode. These eight samples are eight consecutive components
of the input/output vector. It uses a small internal cache to
reorder the input samples before feeding them into its two
radix-4 units, called the matrix operation. It utilizes simple 4×
4 matrix (with each element as 32-bit sample) for each of the
two butterflies. With the help of address generation schemes,
the samples accessed are first written by IP-Core in row-wise
fashion and read by the butterfly in column-wise fashion. The
row-column access pattern is reversed after every 4-cycles. The
similar operation starting in reverse order is also followed at
the output end of the DFT macro-block. The internal cache
can also be considered as few 32-bit registers and it results in
avoiding the usage of any complex sample access schemes.

V. PERFORMANCE ANALYSIS
A. Results

Using the Xilinx Virtex-5 FPGA, 30DSP48E slices are
used. This makes 16% of the total available in the FPGA,
which is quite good considering the fact that the FEP is one of
the most computation intensive IP of the baseband processor.
The maximum achievable frequency for DFT operations is
135 M Hz, and is quite acceptable considering the throughput
of the block. The number of cycles spent to calculate the
different input vector sizes of the DFT are shown in the table
I. The implementation of the DFT macro-block is pipelined
to achieve the higher throughput and eventually higher data
rates. The higher values of cycles used for the smaller pow-of-
2 input sizes is due to the fact that in the Split-Radix algorithm
the power-of-2 input size requires log4X/2 + 1 stages for
an input vector size of X . However for the larger values,
the IP performs quite better than the anticipated throughput
of 1-sample-per-cycle. The throughput for the component-
wise-operation and sub-band-level-operations is 2-samples-
per-cycle, and is achieved in the implementation comfortably.
The maximum achieveable frequency for these modules is
around 150MHz, and the number of complex multipliers used
is 12.

DFT Size # of Cycles DFT Size # of Cycles
8 20 16 18
32 46 64 60
128 107 256 174
512 372 1024 695
2048 1597 4096 3136

TABLE I
DFT : NUMBER OF CYCLES USED FOR DIFFERENT INPUT VECTOR SIZES

B. Limitations of the Architecture

Though the FEP meets the functional specifications of its
design and also achieves good performace; there are few
limitations to its design and are listed here:

The matrix operation, small cache algorithm described
earlier, puts a condition on the way the input / output vector
is written / read in the DIO memory area by a DMA transfer
or by a direct access through the VCIInterface: the starting
sample (32 bits) address of the vector in the DIO area must

be a multiple of 8. As a consequence the starting 64 bits word
address used by the DMA engine or by the VCIInterface must
be a multiple of 4. Symmetrically, when reading an output
vector from the DIO area, the sample starting address will
always be a multiple of 8. This doesn’t require any specific
requirement at the higher control level, but still the software
has to take care of it while assigning the input and output
addresses to the FEP core.

The FEP functions are mutually exclusive i.e. only one
set of macro-blocks can run at the same time. e.g. In the
channel estimation of OFDM systems, the component-wise
product can only start once the DFT has terminated. However,
this was foreseen while designing the IP and it doesn’t cause
any performance degradation in the overall baseband receiver
design thanks to the MSS design and higher throughput of the
IP. It is also worth mentioning that there is no lag or delay
between the start of a task at the termination of the previous
task. The new tasks (commands) can always be written in the
IP and the memory space can be filled in for next task, while
the current task is in progress.

VI. CONCLUSIONS

The presented Front End Processing block is capable of
processing all the operations at the air-interface of all the
wireless schemes. The designed hardware is flexible and the
resource utilization is quite good. The maximum achieveable
frequency is good enough to process the evolving applications
as well. The future tasks include, the optimization of design to
achieve higher frequency, benchmarking with some dedicated
existing solution, and comparison of design approaches such
as tool-based ASIP designs.

REFERENCES

[1] J. Mitola, "The Software Radio Architecture", IEEE Commun. Mag.,
vol. 33, no. 5, May 1995, pp. 26-38.

[2] Yu-Wei Lin and Chen-Yi Lee, "Design of an FFT/IFFT Processor
for MIMO OFDM Systems", IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS: REGULAR PAPERS, VOL. 54, NO.4, APR 2007

[3] Wei-Hsin Chang, and Truong Nguyen, "An OFDM-Specified Lossless
FFT Architecture", IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS: REGULAR PAPERS, VOL. 53, NO. 6, JUNE 2006.

[4] D. Lo Iacono, J. Zory, E. Messina, and N. Piazzese, "Block processing
engine for high-throughput wireless communications", 2nd International
Symposium on Wireless Communication Systems, 2005.

[5] Y. Guo, J. Zhang, D. McCain, and J. R. Cavallaro, "An Efficient
CirculantMIMO Equalizer for CDMA Downlink: Algorithm and VLSI
Architecture", EURASIP Journal on Applied Signal Processing 2006

[6] Christophe Laot, Raphaël Le Bidan, "Low-Complexity MMSE Turbo
Equalization: A Possible Solution for EDGE", IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 3, MAY 2005.

[7] N.I. Muhammad, K. Khalfallah, R. Knopp, R. Pacalet, "Reconfigurable
DSP Architectures for SDR Applications", 14th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), 2007

[8] Consortium VSIA http://www.vsia.org/
[9] Virtex-5 User Guide available at http://www.xilinx.com

[10] N.I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp, K. Khalfallah,
"Flexible Baseband Architectures for Future Wireless Systems", 11th
EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN (DSD)
Architectures, Methods and Tools, 2008

	Home
	Papers by Author
	Papers by Session

