
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 COVERSHEET

Copyright Transfer Agreement: The following
Copyright Transfer Agreement must be included on
the cover sheet for the paper (either email or fax)—
not on the paper itself.

“The authors represent that the work is original and
they are the author or authors of the work, except for
material quoted and referenced as text passages.
Authors acknowledge that they are willing to
transfer the copyright of the abstract and the
completed paper to the SDR Forum for purposes of

publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR
Forum Web pages, and compilations and derivative
works related to this conference, should the paper be
accepted for the conference. Authors are permitted
to reproduce their work, and to reuse material in
whole or in part from their work; for derivative
works, however, such authors may not grant third
party requests for reprints or republishing.”

Government employees whose work is not subject to
copyright should so certify. For work performed
under a U.S. Government contract, the U.S.
Government has royalty-free permission to
reproduce the author's work for official U.S.
Government purposes.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

PERFORMANCE OF SELECT BASEBAND PROCESSING LTE UE BLOCKS

ON A FLEXIBLE SOFTWARE BASED BASEBAND PROCESSOR
Babak Beheshti (Sandbridge Technologies, Tarrytown, NY; b.beheshti@ieee.org);

Saurabh Lahoti (Sandbridge Technologies, Tarrytown, NY); Sitij Agrawal (Sandbridge
Technologies, Tarrytown, NY); John Glossner (Sandbridge Technologies, Lowell, MA)

ABSTRACT

In this paper novel approaches to implementation of several
processing blocks required in the LTE standards are
analyzed and benchmarked. In particular, implementation of
the algorithms is assumed to be based on a flexible software
based baseband processor. The blocks discussed in this
paper are the FFT, the DFT and the Viterbi Decoder.

This platform therefore requires the implementation to be
completely in software. This poses an important constraint,
as typical hardware based implementations use very specific
hardware architectural features to minimize the
computational latencies. On the other hand a software
implementation requires utilization of the general purpose
(i.e. load/store) instructions of a processor, as well as its
specialized instructions (e.g. butterfly and complex
multiplications). Software based platforms have typically
limited on chip (fast) memory, that may restrict storage of
operating parameters required to set up an algorithm.
Therefore novel techniques to maintain all time critical data
in the fast memory become necessary in these
implementations.

The Third Generation Partnership Project (3GPP) has been
defining the Long Term Evolution (LTE) for 3G radio
access. LTE project aims to ensure the continued
competitiveness of the 3GPP technologies for the future
LTE focuses on download rates of 100 Mbit/s, upload rates
of 50 Mbit/s per 20 MHz of bandwidth, increased spectrum
efficiency, and sub-5ms latency for small IP packets.

1. INTRODUCTION

Reconfigurable radio systems are radios that can change to
different communication protocols as they move between
different radio environments. An example would be moving
from a wireless LAN 802.11b to 802.11a and then to EV-
DO (Evolution Data – Optimized). Researching the
development of a Reconfigurable Radio Architecture that
will concurrently support multiple radio protocols over
multiple frequency bands across multiple wireless
networking environments is an active area of R&D in the
industry. The Reconfigurable radio realizes the convergence
of computing and communications by allowing a flexible

communications for any handheld computing device. As
more digital processing is applied to the radio system, the
promise of software based digital baseband processors
controlling a reconfigurable RF front end approaches
reality.

Software Defined Radios (SDRs) have the potential of
changing the fundamental usage model of wireless
communications devices. These transceivers are often
conceptually divided into two major sections: the Baseband
Processing Section and the RF Front End. This division is
simply a matter of convenience as the technological states
of the two sections are at different stages. The baseband
section which is responsible for all symbol level and bit
level computations is typically implemented as
reconfigurable hardware architecture or a digital signal
processor (DSP).

“The SDR Forum, working in collaboration with the
Institute of Electrical and Electronic Engineers (IEEE)
P1900.1 group, has worked to establish a definition of SDR
that provides consistency and a clear overview of the
technology and its associated benefits. Simply put Software
Defined Radio is defined as : "Radio in which some or all of
the physical layer functions are software defined"

2. THE TARGET BASEBAND PROCESSOR

The SB3500 is the second generation of SandBlaster-based
low power, high performance System on a Chip (SoC)
products developed to serve the Software Defined Radio
(SDR) modem applications space. As was the case for the
prior generation product (the SB3011), it too is a multi-core
device, however containing 3 'SBX' DSP cores (as opposed
to 4), and an ARM926 processor, all interconnected by a
high speed network (HSN). The ARM is intended to
support protocol stacks and OS function, in addition to all
the peripheral device support (such as SDIO, LCD, Camera,
USB, PS/2, Smart Card, UART, DMA, AC-97/I2S, Vector
Interrupt Controller, GPIO's) and external memory
interfaces (Static & Dynamic Memory Controllers). The
SBX DSP's each support a high rate Parallel Streaming Data
(PSD) interface for the IQ baseband data, and possess the
control interfaces (SPI, I2C, interrupt/timer functions,
GPIO's) that are typically seen in most radio Front Ends;

they are intended to serve the primary function of Mbps
wireless radio baseband data processing in software, making
for a 'standards agnostic' radio platform.

Of notable improvements in this generation of the
Sandblaster™ core one should cite a flexible 16-wide vector
processing unit that could execute all the identified
algorithms at the desired performances. The key kernels
used to drive the design of this SIMD (Single Instruction
Multiple Data) unit were derived from the various 3.5G and
4G standards/proposals and includes FIR, Pilot search,
Descrambling, Despreading, Derotation, Complex
Correlation, complex FFT (256 - 8192 points), Viterbi
(constraint length 7 & 9), Turbo, and LDPC.

Each core delivers a peak of 9.6Gmacs/s once operated at
600MHz. The SB3500 therefore is capable of triple this
amount or 28.8Gmacs/sec. The element-wise operations
supported in this SIMD unit include common operations
such as logical, shift and arithmetic operations that read 2
registers, which perform 16 short or 8 integer operations in
parallel, and write the results back to a third register.

3. DISCRETE FOURIER TRANSFORM

This code is a set of functions which perform variable-size
DFT's on 16 bit I/Q data. This is performed by utilizing the
generalized Cooley-Tooky factorization method in which a
DFT input block (which is not a power of two in size) can
be decomposed into radix-2 FFT's and then reassembled to
obtain the correct output. The radix-2 FFT's in this case are
performed using the existing 4,8,16,32,64, and 256 RPU
FFT blocks. The reassembly is performed by utilizing RPU
complex multiply instructions to multiply the radix-2 FFT
outputs by specialized DFT twiddle factors. To reduce code
size and complexity, only branch-3 and branch-5
factorizations were utilized. For example, to perform a 360-
sized DFT, the complex-valued input block would be
factorized as follows:
360 DFT = 5 * 72 DFT's = 5 * (3 * 24 DFT's) =
 5 * [3 * (3 * 8 FFT's)]

Each factorization step would constitute one additional
depth in the factorization tree and would require
multiplication with twiddle factors. The Cooley-Tooky
method dictates that the DFT be evaluated as a tree structure
where each depth of the tree constitutes evaluating a series
of sub-DFT's. One solution is purely recursive, composed of
mutually recursive functions, each of which go down one
branch of the tree and spawn off different branches. This
solution was attempted but resulted in higher cycles counts
(due to greater function call overhead). The new, and
enhanced, solution involves an iterative approach in which
every sub-DFT, at every depth of the tree, is evaluated

sequentially in a loop by just one function. Since the tree
structure, and types of sub-DFT's, are different for each
DFT size, the best way to encapsulate such a break-down
for each DFT is to place the dissolution in a C-style table
which each sub-DFT function is represented by a function
pointer to an appropriate handle. This table allows the user
to select the appropriate trade-offs between speed and
memory. Since this enhanced version of the DFT
implementation also allows for the dynamic, vectorized,
creation of twiddle factors, the user can edit this table to
decide which twiddle factors they would like the DFT
functionality to dynamically create and which ones should
be statically defined. The table maintains pointers to the
twiddle factors for each sub-DFT and also pointers to the
handler functions which would dynamically evaluate these
twiddle factors.

A single DFT function is called by the user which then calls
each handler, in a tight loop, to evaluate the sub-DFT's for
the entire level of the DFT tree in one single uninterrupted
flow. This reduces the massive function call overhead
encountered in the standard implementation and also
reduces code size. As a result, this particular
implementation is more suited for use with applications
under tighter memory and cycle controls.

For each DFT size, interleaving is done once on the input
data. The interleaving performs both decimation (by 3 or by
5 depending on the factorization) as well as the necessary
bit reversal (always done for any FFT) all in one. For each
DFT there is a specific interleaving required depending on
how the DFT is factored. The SB3500 scatter DMA is used
to speed up interleaving.

In accordance with the LTE standard, the following DFT
sizes were implemented and tested on the SB3500
hardware: 12,
24,36,48,60,72,96,108,120,144,180,192,216,240,288,300,3
24,360,384,432,480,540,576,600,648,720,768,864,900,960,
972,1080,1152,1200, and.1296

The following 3500 hardware cycle counts were achieved
(including the scatter DMA's). In each case, the amount of
time to perform the actual DFT is less than the LTE real-
time constraint for the SB3500 (~10700 thread cycles) when
sampling at 30.72 Mhz. Furthermore, note that the DMA
can be performed concurrently with other operations and so
its latency can be completely hidden and absorbed.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

12 60 12
0

21
6

32
4

48
0

64
8

90
0

11
52

Cycle count for
dynamic twiddle factor
table generation
Cycle count for only
the DMA

Cycle count for only
DFT

Figure 1 - DFT Cycle Counts

4. FAST FOURIER TRANSFORM

The FFT class of instructions all perform 4 complex
butterflies. The instructions rfft0s, rfft1s, and rfft2s use 3
vector unit’s registers in the following manner: one output
(vt), one input (va), and one weights (vb). A butterfly
involves a pair of complex inputs used with one complex
weight to compute a pair of complex outputs. The three
instructions differ in which input, output, and weight indices
are used. The instruction rfft0s uses consecutive pairs of
inputs and writes to consecutive pairs of outputs. It should
be used for the first FFT stage. The instruction rfft1s uses
alternate pairs of inputs and writes to alternate pairs of
outputs. It should be used for the second FFT stage. The
instruction rfft2s uses pairs of inputs with a stride of 4 and
writes to pairs of outputs with a stride of 4. It should be
used for the third FFT stage.
The instructions rfftls and rffths should be used for all
subsequent FFT stages. They use 3 vector registers in the
following manner: two input/output (vt, va), one weights
(vb). For each butterfly, one complex input is used from vt
and one complex input is used from va, and the complex
outputs are written back to same locations in vt and va. The
instruction rfftls uses the lower half of vt and va for inputs
and outputs, while the instruction rffths uses the upper half
of those vectors.

For an N point FFT, each stage requires N/2 complex
butterflies, and there are log2N stages in total. Since each
FFT instruction performs 4 complex butterflies, each stage
requires N/8 FFT instructions. For the first 4 stages, there
are no additional load/store penalties. For all subsequent
stages, it takes 11 cycles per 8 FFT instructions for a total of
11N/64 cycles per stage (approximately N/6 cycles).

Therefore a good estimate for the total number of cycles for
an N point FFT is (N/8)*logN for N <= 16 and

(N/8)*log(16) + (N/6)*(logN - 4) = (N/2) + (N/6)*(logN -
4) = (N/6)*logN - (N/6) for N > 16.

Note that this does not include bit reversal which must be
performed before the main FFT algorithm. Bit reversal takes
20 cycles per 64 complex elements shuffled, or 20N/64 for
an N point FFT (approximately N/3 cycles). The final
formula for cycles in an N point FFT is:
(N/8)*logN + (N/3), N <= 16
(N/6)*(logN + 1), N > 16

For the examples coded up that yields:
64 point : 75 cycles
256 point : 384 cycles
512 point: 853 cycles
1024 point: 1878 cycles
2048 point: 4096 cycles
4096 point: 8875 cycles

5. VITERBI DECODER

These functions implement different versions of a 1/3 rate,
variable-length, SIHO viterbi decoder designed for a k=7,
tail-biting code. Note that, in this case, none of the symbolic
bits are systematic (this is based upon a 100% parity code).
The optimized, pipelined, decoder is designed to be the
central piece in the LTE blind decoding process for the
PDCCH. The decoder is designed to perform decoding for
all DCI sizes specified in the standard and achieves a
performance of 6 cycles per decoder output bit. Like all SB
library kernels, it is encapsulated in an easy to used
functional format that accepts a sequential array of 16 bit
soft input bits and produces a sequential array of unpacked
hard output bits. Note that the SB3500 architecture allows
for the viterbi decoder's forward ACS stage (composed
exclusively of 16-way vectorized RPU instructions) to be
instruction pipelined with the traceback stage of a previous
decoding block (both can occupy the same instruction
packet). As a result, the latency of the traceback stage can
be completely hidden and absorbed.

The optimized 1/3 rate decoder can accept DCI sizes from 7
(1 + constraint length) to 96. Since the ACS stage consumes
75% of the cycles, performing it in parallel with the
traceback stage would yield a further 25% reduction in
cycles. The metrics given below are for the case in which
the ACS stage and the traceback stage are cascaded one
after the other.

Figure 2 - Viterbi Decoder Cycle Count

6. CONCLUSION

The important conclusion derived is that in the context of an
SDR implementation, various critical blocks of the LTE
baseband processing can indeed be implemented entirely in
software without the usage of any hardware accelerators.
This important conclusion provides for a feasible solution
for a multi-mode SDR supporting current wireless and
cellular 2G and 3G standards, as well as emerging 4G
standards.

7. REFERENCES

[1] B. Beheshti, “Analysis of a Physical Layer Wireless

Communication System Implementation on an SDR
Baseband Processor”, proceedings of the WSEAS
Conference, February, 2006, Madrid, Spain.

[2] B. Beheshti, T. Raja, ”Software Defined Radio
Implementation Considerations and Principles Using the
Sandblaster™ SDR Baseband Processor”, Proceedings of
Software Defined Radio Technical Forum, 16-18 November,
2005, Anaheim, California.

[3] D. Iancu, J. Glossner, V. Kotlyar, H. Ye, M. Moudgill, and E.
Hokenek, “Software Defined Global Positioning Satellite
Receiver”, Proceedings of the 2003 Software Defined Radio
Technical Conference (SDR’03), HW-2-001, 6 pages,
Orlando, Florida, 2003.

[4] J. Glossner, D. lancu, J. Lu, E. Hokenek, and M. Moudgill,
“A Software Defined Communications Baseband Design”,
IEEE Communications Magazine, Vol. 41, No.1, pp. 120-
128, Jan., 2003.

[5] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill, E.
Hokenek, M. Schulte, and S. Vassiliadis, “Sandbridge
Software Tools”, in Proceedings of the 3rd International
Worksop on Systems, Architectures, Modeling, and
Simulation (SAMOS.p3), July 21-23,2003, pp. 142-147,
Samos, Greece.

[6] Van Nee and Prasad, OFDM for Wireless Multimedia
Communications, Artech House Publishers,

[7] ISBN 0-890006-530-6, 2000
[8] 3. T Doc #R1-060023, Cubic Metric in 3GPP-LTE, Motorola,

Helsinki, January 2006
[9] 4. 3GPP TS 36.300 – v8.0.0, E-UTRA and E-UTRAN

Overall Description,
[10] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.300/
[11] 5. 3GPP TS 36.201 – v1.0.0, LTE Physical Layer – General

Description,
[12] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.201/
[13] 6. 3GPP TS 36.211 – v1.0.0, Physical Channels and

Modulation,
[14] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.211/
[15] 7. 3GPP TS 36.212 – Multiplexing and Channel Coding,
[16] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.212/
[17] 8. 3GPP TS 36.213 – v1.0.0, Physical Layer Procedures,
[18] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.213/
[19] 9. 3GPP TS 36.214 – v0.1.0, Physical Layer – Measurements,
[20] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.214/
[21] 10. 3GPP TS 36.300 v8.0.0, E-UTRA and E-UTRAN Overall

Description; Stage 2,
[22] http://www.3gpp.org/ftp/Specs/archive/36%5Fseries/36.300/

Viterbi Decoder Performance

0

200

400

600

800

1000

7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

Block Size

In
st

ru
ct

io
n

Cy
cl

es

	Home
	Papers by Author
	Papers by Session

