
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

INTEGRATION OF FPGAS INTO SDR VIA MEMORY-MAPPED I/O

Matt Carrick (W@VT, Blacksburg, VA, USA, mcarrick@vt.edu); Shereef Sayed

(W@VT, Blacksburg, VA, USA; ssayed@vt.edu); Dr. Carl Dietrich (W@VT,

Blacksburg, VA, USA, cdietric@vt.edu); Dr. Jeff Reed (W@VT, Blacksburg, VA, USA,

reedjh@vt.edu)

ABSTRACT

A primary appeal of Field Programmable Gate Arrays

(FPGAs) is their high computational performance, but there

has been a challenge to integrate FPGAs into the SDR

hardware and software co-design

process. The addition of FPGAs into the design process

requires a logical representation of the FPGA as well as an

interface to the General Purpose Processor (GPP). Current

approaches for interfacing with FPGAs include the use

of kernel-level drivers or standardized interfaces. This paper

presents an example interface to FPGAs through the use of

memory-mapped I/O. This interface is encapsulated as a

logical software representation of the FPGA in order to

enhance portability across platforms. We will target a Xilinx

ML403, where the FPGA is collocated with a PowerPC core

and leverage the use of memory-mapped I/O to interface

with the FPGA and demonstrate the portable nature of our

implementation.

1. INTRODUCTION

Using a General Purpose Processor (GPP) allows the

developer to easily reconfigure the radio; however, the

designer must trade flexibility versus performance. The

limited processing power of GPPs leads to an inability to

implement modern standards such as WiFi or WiMax.

Additional processing power is needed to implement these

standards; however, the solution must still fit into the

software radio paradigm of being flexible and

reprogrammable. Field Programmable Gate Arrays (FPGA)

provide developers the bandwidth necessary to implement

modern standards, while still being sufficiently flexible and

reprogrammable to be incorporated into software radios.

 Beyond simply integrating all of the hardware on the

radio platform with simple logic, a software radio must have

a software architecture used to provide command and

control for all aspects of the system. Different software

radio architectures exist and the targeted architecture within

this document is the Software Communications Architecture

(SCA). Adapters are used to interface to the Core

Framework with devices that are not capable of running

CORBA. This interface also acts as an abstractor, allowing

processing to be completed on a hardware device. This

Adapter is simply a software component which includes

within it the interface to the hardware device. This allows a

minimal amount of overhead to be added to the interface

and the Core Framework can operate on the component as if

the processing is being done on the GPP.

 The goal of this document is to show that traditional

methods of integrating hardware into a radio are still viable

and provide an example implementation of how this is done

with minimal overhead. The example implementation will

also demonstrate that the FPGA interface is still portable

without using CORBA and that by offloading processing to

the FPGA, the data rate of the radio is limited by the bus

speed and the overhead produced by the operating

environment. A simple block diagram to demonstrate how

the processing will be partitioned is given in Figure 1.

Figure 1: HW/SW Partitioning

2. FPGA INTERFACE

 The targeted platform is a Xilinx Virtex-4 ML403

Embedded Platform [1]. The platform has a Virtex-4 FX12

FPGA which is clocked at 100 MHz. Within the die of the

FPGA is a PowerPC405D5 core which is clocked at 300

MHz. The PowerPC is running a Linux kernel and is

connected to the FPGA through the CoreConnect Bus using

a Processor Local Bus (PLB) IPIF (Intellectual Property

Interface) Xilinx Core at 100 MHz. The ML403 platform

was selected due to the ease of integration of the FPGA and

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

the PowerPC, as well as the availability of driver support for

peripherals. Peripherals on the platform use memory

mapped I/O, which allows the FPGA to be easily accessed

by simply writing to and reading from memory addresses.

The hardware support for the Ethernet and Serial Port

peripherals are provided in XPS, while software support is

provided in the Linux kernel distributed by Xilinx.

Figure 2: HW/SW Interface [2]

 The SCA is dependent on devices that can run CORBA

for Inter-process Communication (IPC). Multiple software

implementations of CORBA exist, and requiring CORBA

typically translates to running the software on a GPP. With

the introduction of the SCA, CORBA has been extended to

both DSPs and FPGAs through commercial vendors such as

Objective Interface Systems (OIS) [3]. Although this

method of communicating with a device through CORBA

exists, as both a design choice and an interpretation of the

specification, this method will not be used. If a device is not

capable of running CORBA, the SCA allows the use of an

“adapter.” The specification states that “Adapters are

resources or devices used to support the use of non-CORBA

capable elements within the domain” [4]. The interface to

the FPGA will be abstracted into a component, which will

be running on the PowerPC and therefore have access to

CORBA for communicating with other processes. The Core

Framework is agnostic as to how a component is

implemented, therefore mixing components running on the

GPP and the FPGA with an adapter is allowed.

The PowerPC and the FPGA are connected over a

CoreConnect bus, and interfaces to the bus from each device

must be implemented. An interface from the PowerPC to the

PLB may be written by the developer or the Xilinx IPIF

interface may be used. The IPIF interface is a Xilinx core

which “provides a bi-directional interface between a User IP

core and the PLB 64-bit bus standard” [5]. Interactions with

the PLB including toggling the correct bus lines during read

and write cycles are abstracted with the use of this core.

Interaction with the PLB is further abstracted through the

use of Memory Mapped I/O. Memory Mapped I/O allows

peripherals to be accessed very easily using just a simple

read or write to memory command. During a read cycle the

operating system accepts the command to read from

memory, which must then be translated into a physical

memory address by the Memory Management Unit (MMU).

Once this address has been determined, it is sent to the IPIF

interface which interacts with the PLB. The various

software interfaces written to interface with the FPGA were

derived from the driver from [6]. The interface first opens

the /dev/mem device, and maps the requested memory

into user space. Then memory can then be read from using a

single line in C:

unsigned long value = *((unsigned long
*) (BASE_ADDR + REG0_OFFSET));

This instruction has several operations embedded within it.

The address to read from is calculated by adding the register

offset to the base memory address. This address is then type

cast as a pointer, so the memory can be accessed. Finally,

the pointer is then de-referenced which starts the read cycle.

The operating system determines that the software is

requesting a memory read, the hardware decodes the

address, retrieves the value from the FPGA and ultimately is

returned to the variable.

Writing to the address is accomplished in a similar fashion:

*((unsigned long *) (BASE_ADDR +
REG0_OFFSET)) = someValue;

The hardware interface to the CoreConnect bus can be fully

implemented by a developer however in this work it was

built using the Create or Import Peripheral Wizard in XPS.

Settings such as the number of registers and which bus lines

are available can be selected in the wizard. Once the settings

are selected, the skeleton VHDL or Verilog code is

generated.

The FPGA does not posses any ability to abstract

the operation of accessing memory as the PowerPC does

with the operating system. The developer is left to interface

directly with the CoreConnect bus and toggle the necessary

bus lines when appropriate. While this may add additional

lines of code, it provides the developer more flexibility

regarding how and when information is transferred over the

bus.

 While specific implementations of reading and writing

to the bus may differ, the skeleton code generated by XPS

provides the developer the ability to read and write from

registers on the FPGA. The instructions from the bus are

then decoded on the FPGA and the appropriate actions are

taken. For example, if the line requesting a read cycle is

toggled high, the bus must also specify which register is

being read from. The developer must provide the necessary

logic to check for the read cycle, decode the register

address, and then transfer the information back over the bus.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

3. FPGA INTEGRATION

Two waveforms were developed to demonstrate the

integration of an FPGA into the OSSIE software. These

waveforms are ml403_ossie_demo and

FIRFilterDemo. These waveforms are dependent on the

software devices GPP and XilinxFPGA, as well as the

default_ml403_node node. These waveforms are

dependent on the logical representation of the PowerPC

processor and the Virtex-4 FPGA. Both of these devices

must be started through a Device Manager, and this

information will be stored in the node

default_ml403_node.

 The integration of an FPGA circuit into the OSSIE

software requires two interfaces. The first interface is the

FPGA controller component. This interface will contain the

protocol for reading and writing to the FPGA as well as

converting the data to the appropriate format. The second

interface that is needed is the interface to the OSSIE

software. This second interface is simply a software wrapper

generated by the OSSIE tool suite which calls the FPGA

controller component within it. The OSSIE software will be

unaware and agnostic to the fact that the processing is done

on the FPGA due to the software wrapper. The OSSIE

component wrapper will interface with the OSSIE Core

Framework, register with the naming service, and interact

with other OSSIE software components in the domain.

Generally this interaction will be limited to receiving and

transmitting data between components.

 The specific operation of both FPGA controllers will be

different, although they follow a similar form. The

controllers have three major functions; opening the interface

to the FPGA, reading and writing to the FPGA, and closing

the interface. Opening and closing the interface is standard

among the three controllers as it requires mounting and un-

mounting /dev/mem, respectively. The reading and

writing operations are specific to the FPGA circuit that the

controller is interacting with.

4. EXAMPLE APPLICATIONS

A very basic demonstration of the integration of an FPGA

with the OSSIE software is the ml403_ossie_demo

waveform. This waveform is very similar to the

ossie_demo waveform, however it is targeted for the

PowerPC processor and Virtex-4 FPGA. This waveform

includes three components, TxDemo, ChannelDemo, and

RxDemo. The first component, TxDemo, generates

Quadrature Phase Shift Keying (QPSK) symbols, while the

ChannelDemo component adds Gaussian noise, and

finally RxDemo decodes the symbols and determines the Bit

Error Rate (BER).

 The basic nature of the ml403_ossie_demo

waveform does not lend itself to a meaningful signal

processing application, instead it provides a basic

application to demonstrate the capabilities of the OSSIE

software and in this case the FPGA integration.

The TxDemo component is a data source which

generates 512 QPSK in-phase and quadrature symbols and

transmits them using the complexShort port type. The
data generation is done by reading out two arrays; one array

for symbols to be modulated against the in-phase carrier and

another for the quadrature carrier. The order of the symbols

must be maintained as the RxDemo component is using the

same order to compare the incoming symbols against and

determine the BER. The FPGA implementation of the

TxDemo component operates in the same manner as the

software implementation, however the data generation is

done on the FPGA. The OSSIE software wrapper passes

two empty vectors to the FPGA driver which will ultimately

be returned with the QPSK symbols. The FPGA driver then

iterates through 64 read cycles to get the symbols from the

FPGA.

 The IPIF interface supports 32 bit data transfers,

however 512 in-phase and 512 quadrature symbols need to

be transferred. This multiple stage transfer is done by

transmitting 8 in-phase symbols, 8 quadrature symbols and

additional protocol information over the bus 64 times. When

the FPGA controller component requests a read, a 6 bit

counter on the FPGA is incremented by 1. The value of the

counter is then used to access two Look Up Tables (LUT)

containing the in-phase and quadrature symbols. These

symbols from the LUTs and the counter value are then

transmitted over the bus back to the FPGA controller. The

FPGA controller then uses the counter value to load the

symbols in the correct position in the two arrays, which are

finally sent back to the OSSIE software component after all

64 transfers are completed. The OSSIE software component

then converts the data to be used by the complexShort port

type and sends the information to the next component.

The next waveform developed is an FIR filter.

Embedded multipliers are common on FPGAs in the Xilinx

Virtex-4, Virtex-5 and Virtex-6 series and can operate much

faster than the multiplication implemented on a GPP.

Although by themselves the multipliers will operate faster

on the FPGA than the GPP, the overhead for interfacing

with the FPGA must also be taken into account.

 The FIR filter uses a very basic waveform,

FIRFilterDemo, consisting of the

CarrierDataSource component and the FIR_filter

component. The CarrierDataSource component

provides a carrier which the FIR_filter processes with a

FIR filter on the FPGA.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Figure 3: FIR Filter on the Xilinx ML403

 Since the data being processed by the FPGA is stream-

based, the protocol for interfacing with the FPGA is very

simple. The OSSIE software wrapper receives data from a

source component and the data is then iterated through. In

each iteration, a sample of data from the OSSIE software

wrapper is passed to the FPGA controller which in turn

writes this value to the FPGA. When the FPGA receives the

write request, the sample is then registered and filtered.

After the sample is filtered, it is then stored in a First In

First Out (FIFO) buffer of depth 512. The FPGA controller

then polls the FPGA to determine if the filtered value can be

read. The value is presented on the bus when both a read

request is being made and the FIFO is not empty. One of

these conditions is not true a code word is presented on the

bus stating that the FPGA is not ready for a read cycle.

However since both of these conditions are true, the sample

is presented on the bus and received by the FPGA

controller. Finally, the FPGA controller sends the filtered

sample back to the OSSIE software wrapper which

continues to iterate through all of the samples.

5. PROFILING AND RESULTS

The motivation for the integration of FPGAs into software

radio is the ability to offload computationally complex

signal processing algorithms from the GPP to the FPGA to

improve the maximum data rates. Performance metrics were

taken to determine the maximum data rate when interfacing

with the FPGA, doing type conversions to a CORBA

ShortSequence, and for the full waveform. These

results were profiled for the FIRFilterDemo waveform.

Timing measurements were taken using the

gettimeofday()and getrusage() [7] functions. The

gettimeofday() function is used to determine the

overall time difference for a process to run and may be

referred to as the “wall clock” time. This measurement will

be used to determine the maximum data rate possible for a

waveform. The getrusage() function is used to

determine the amount of time the processor has dedicated to

running a specific user process and the amount of time used

for running other system level processes. This measurement

will be used to show the amount of processor usage of a

waveform. Additionally, this metric shows how much

impact the rest of the operating environment has on the rates

the process is running at. As the usage percentages for the

process increases towards 100%, the less impact the

operating system or Core Framework has on the rate of the

process.

 To obtain the data rates, both timing functions are

called to get a start time and the process is then run in a for

loop of limited length. After the for loop completes, the

two timing functions are then called again to obtain the end

times. The wall clock time is calculated to determine the

maximum date rate, and then the user time and system time

are calculated to determine the processor utilization.

 The results of the FIR filter interfacing with the FPGA

show that simply reading and writing to the FPGA can be

done at a rate of 10.134 MHz. The drawback to this value is

the amount of processor utilization. The process uses

98.91% of the processor when executing these cycles, and

only allows the processor 0.30% of the time to run system

processes. Since the processor usage is very large, the effect

of the operating system and Core Framework on the process

is negligible and the values are near the maximum values

possible.

 When performing the same benchmark, but adding the

process of converting the data of the FIR filter to a sequence

of CORBA short type, the results show that the operating

frequency has been reduced from 10.134 MHz to 8.456

MHz due to the data conversion. The processor utilization is

still very high at 99.16% and the system utilization is low at

0.19%. Similar to the previous result, the processor

utilization is very large, therefore the results are near the

maximum values and the operating system and Core

Framework are providing very little overhead.

 The third measurement is to determine the maximum

rate at which the entire FIR filter waveform can be run. The

measurement is taken within the ProcessData()

function of the FIR_filter component. The

measurement includes all of the processing overhead of the

component interacting with the OSSIE Core Framework as

well as the CarrierDataSource component generating

and transmitting its data. The results from the

FIRFilterDemo waveform show that the maximum rate

possible is 116.849 kHz. This value is substantially less than

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

the previous operating frequency of 8.456 MHz. This is due

to the processor allocating clock cycles to system processes,

components within the OSSIE Core Framework and its

dependencies. This can be seen in the utilization, which has

also dropped from 99.16% to 25.26% while the system

utilization has increased from 0.19% to 30.59%.

FIR_filter interfacing with FPGA directly

Measurement Time (sec) Frequency (MHz)

Wall Clock 0.987 10.134

User Time 0.976 Processor

Utilization System Time 0.003 98.91%

Iterations 1.00E+07 System Utilization

Samples 1 0.30%

FIR_filter component interfacing with FPGA

and conversion to CORBA

Measurement Time (sec) Frequency (MHz)

Wall Clock 36.3287 8.456

User Time 36.024 Processor

Utilization System Time 0.068 99.16%

Iterations 6.00E+05 System Utilization

Samples 512 0.19%

FIRFilterDemo Waveform

Measurement Time (sec) Frequency (kHz)

Wall Clock 13.1452 116.849

User Time 3.321 Processor

Utilization System Time 4.021 25.26%

Iterations 3.00E+03 System Utilization

Samples 512 30.59%

Table 1: Profiling Results of FIR filter

The introduction of the Core Framework into the

profiling results decreases the operating rates for the

FIRFilterDemo waveform by a factor of 87. To

determine what kind of overhead the Core Framework was

providing, it was removed and additional measurements

were taken. The results for the FIRFilterDemo

waveform after removing the Core Framework show similar

performance as the initial component benchmarks with

10.407 MHz. The processor utilization is similar, as well,

with 99.83%.

These profiling results are very close to the original

FIRFilterDemo waveform. The significant drop in

operating frequency in the FIRFilterDemo waveform

from 10.143 MHz to 116.849 kHz comes from the

transmission of data through CORBA instead of simply

reading the values out of the memory locally. Once the Core

Framework is removed, the value is very close to the

original profiling result for both waveforms where the Core

Framework is not interacted with. Referring back to the

initial benchmarks for the FIR filter on the PowerPC, the

maximum data rate was 2.43 MHz. This value includes no

overhead from an operating system, a software radio

architecture or additional signal processing components.

This benchmark is best compared against the frequency

measurements of interfacing with the FPGA in the

FIR_filter component which operates at 10.134 MHz.

The FPGA interface operates more than 4 times faster than

performing the filtering on the PowerPC, including the

overhead from the operating system and the OSSIE Core

Framework.

6. CONCLUSIONS

The integration of FPGAs into the SCA has been done with

the goal of minimizing overhead. Concepts that work well

for software or processing at the enterprise level do not

always translate well to embedded systems and hardware;

therefore they have been left out of the design. Two

examples of this are CORBA-on-a-chip and standard

interfaces for FPGA circuits.

Explicit support for FPGAs is also not required for

FPGAs within the SCA as it leads to the development of

standard interfaces and HALs which will introduce

unnecessary overhead into the radio platform. The 2.2.2

revision of the SCA provides support for any hardware

device that a designer might choose through the use of an

Adapter. By using an Adapter, the developer is able to

integrate hardware into the radio platform as they see fit,

which will allow overhead to be minimized and

performance maximized.

 Two separate examples have been provided showing

how FPGAs can be integrated into the SCA. The first

example is the waveform ml403_ossie_demo, which is

very similar to the ossie_demo waveform with the

exception that the symbols are generated on the FPGA. The

second example, FIRFilterDemo is an example which

demonstrates how signal processing can be offloaded to the

FPGA and how to interface with the FPGA using memory

mapped I/O.

 A kernel level driver would be a more efficient method

of transferring information between the FPGA and the

processor. When the FPGA has calculated a sample and is

ready to transmit over the bus, an interrupt is set and the

processor will then read from the bus. This allows the

processor to allocate clock cycles in the interim between

samples for other processing tasks or simply to idle and

reduce power consumption.

 If the data rate is large enough, a kernel driver may be

insufficient and Direct Memory Access (DMA) should be

used. Direct Memory Access would allow the FPGA to

write directly to main memory, bypassing the processor for

this task. This adds to the system’s complexity but

ultimately will make the system more efficient. Ideally the

processor should interact with the devices over the bus as

little as possible as it uses cycles that could be better used in

another process or by idling.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 One benefit of using a simple memory mapped I/O

driver is the ability to port it to other platforms. Given

shared memory between the processor and the FPGA and

memory mapped I/O, controller components for accessing

devices can be written which are agnostic to the target

platform. Having memory mapped I/O allows driver

components to simply make read and write calls to memory,

which are then translated to accessing a peripheral. By

simply passing in a base address and the offsets for

registers, the same driver can be cross-compiled for another

processor very easily.

 The problem with using a simple memory mapped I/O

driver which accesses a peripheral by polling is the large

utilization. Ideally the processor would access the peripheral

at the minimum rate required, allowing the other clock

cycles to be devoted to other processes. This utilization

could be mitigated by the use of a Real Time Operating

System (RTOS). Instead of polling to determine if a device

is ready, the RTOS would have the write and read cycles

internally scheduled. This would reduce the processor

utilization while still retaining the portability of the driver.

 All source code for the OSSIE Core Framework, FPGA

interfaces and example waveforms can be found at [8], and

further discussion on the integration of FPGAs into the Core

Framework can be found at [2].

7. REFERENCES

[1] Xilinx, “Virtex-4 ML403 Embedded Platform,” [Online

document] 1994-2008, [2009 March 25], Available at HTTP:

http://www.xilinx.com/products/devkits/HW-V4-ML403-
UNI-G.htm

[2] M. Carrick, “Logical Representation of FPGAs and FPGA
Circuits within the SCA,” M.S. Thesis, Virginia
Polytechnic Institute and State University, 2009.

 http://scholar.lib.vt.edu/theses/available/etd-07012009-
203400/

 [3] Objective Interface Systems, “ORBexpress: An Overview,”
[Online document] 1996-2009 [2009 May 06], Available at
HTTP: http://www.ois.com/Products/Communications-
Middleware.html

[4] JTRS Standards, “Software Communications Architecture
Specification,” [Online document] 2006 May, [2009 March
20], Available at HTTP:
http://sca.jpeojtrs.mil/_downloads.asp?folder=SCAv2_2_2&fi
le=SCA_version_2_2_2.pdf

[5] Xilinx, “PLB IPIF (DO-EDK),” [Online document] 1994-
2008 [2009 April 6], Available at HTTP:
http://www.xilinx.com/products/ipcenter/plb_ipif.htm

[6] Xilinx Open Source Linux Wiki, “OSL user mode pseudo
driver,” [Online document] Oct. 23, 2008 [2009 March 25],
Available at HTTP: http://xilinx.wikidot.com/osl-user-mode-
pseudo-driver

[7] The Open Group Base Specifications Issue 6, “getrusage - get
information about resource utilization,” [Online document]
[2009 May 06], Available at HTTP:
http://www.opengroup.org/onlinepubs/000095399/functions/g
etrusage.html

[8] OSSIE, “SCA-Based Open Source Software Defined Radio,”
[Online Document], [2009 October 18], Available at HTTP:
http://ossie.wireless.vt.edu/

	Home
	Papers by Author
	Papers by Session

