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ABSTRACT 

 

A primary appeal of Field Programmable Gate Arrays 

(FPGAs) is their high computational performance, but there 

has been a challenge to integrate FPGAs into the SDR 

hardware and software co-design 

process. The addition of FPGAs into the design process 

requires a logical representation of the FPGA as well as an 

interface to the General Purpose Processor (GPP). Current 

approaches for interfacing with FPGAs include the use 

of kernel-level drivers or standardized interfaces. This paper 

presents an example interface to FPGAs through the use of 

memory-mapped I/O. This interface is encapsulated as a 

logical software representation of the FPGA in order to 

enhance portability across platforms. We will target a Xilinx 

ML403, where the FPGA is collocated with a PowerPC core 

and leverage the use of memory-mapped I/O to interface 

with the FPGA and demonstrate the portable nature of our 

implementation. 

 

1. INTRODUCTION 

 

Using a General Purpose Processor (GPP) allows the 

developer to easily reconfigure the radio; however, the 

designer must trade flexibility versus performance. The 

limited processing power of GPPs leads to an inability to 

implement modern standards such as WiFi or WiMax. 

Additional processing power is needed to implement these 

standards; however, the solution must still fit into the 

software radio paradigm of being flexible and 

reprogrammable. Field Programmable Gate Arrays (FPGA) 

provide developers the bandwidth necessary to implement 

modern standards, while still being sufficiently flexible and 

reprogrammable to be incorporated into software radios. 

 Beyond simply integrating all of the hardware on the 

radio platform with simple logic, a software radio must have 

a software architecture used to provide command and 

control for all aspects of the system. Different software 

radio architectures exist and the targeted architecture within 

this document is the Software Communications Architecture 

(SCA). Adapters are used to interface to the Core 

Framework with devices that are not capable of running 

CORBA. This interface also acts as an abstractor, allowing 

processing to be completed on a hardware device. This 

Adapter is simply a software component which includes 

within it the interface to the hardware device. This allows a 

minimal amount of overhead to be added to the interface 

and the Core Framework can operate on the component as if 

the processing is being done on the GPP. 

 The goal of this document is to show that traditional 

methods of integrating hardware into a radio are still viable 

and provide an example implementation of how this is done 

with minimal overhead. The example implementation will 

also demonstrate that the FPGA interface is still portable 

without using CORBA and that by offloading processing to 

the FPGA, the data rate of the radio is limited by the bus 

speed and the overhead produced by the operating 

environment. A simple block diagram to demonstrate how 

the processing will be partitioned is given in Figure 1. 

 

 

Figure 1: HW/SW Partitioning 

 

2. FPGA INTERFACE 

 

 The targeted platform is a Xilinx Virtex-4 ML403 

Embedded Platform [1]. The platform has a Virtex-4 FX12 

FPGA which is clocked at 100 MHz. Within the die of the 

FPGA is a PowerPC405D5 core which is clocked at 300 

MHz. The PowerPC is running a Linux kernel and is 

connected to the FPGA through the CoreConnect Bus using 

a Processor Local Bus (PLB) IPIF (Intellectual Property 

Interface) Xilinx Core at 100 MHz. The ML403 platform 

was selected due to the ease of integration of the FPGA and 
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the PowerPC, as well as the availability of driver support for 

peripherals. Peripherals on the platform use memory 

mapped I/O, which allows the FPGA to be easily accessed 

by simply writing to and reading from memory addresses. 

The hardware support for the Ethernet and Serial Port 

peripherals are provided in XPS, while software support is 

provided in the Linux kernel distributed by Xilinx. 

 

 

Figure 2: HW/SW Interface [2] 

 

 The SCA is dependent on devices that can run CORBA 

for Inter-process Communication (IPC). Multiple software 

implementations of CORBA exist, and requiring CORBA 

typically translates to running the software on a GPP. With 

the introduction of the SCA, CORBA has been extended to 

both DSPs and FPGAs through commercial vendors such as 

Objective Interface Systems (OIS) [3]. Although this 

method of communicating with a device through CORBA 

exists, as both a design choice and an interpretation of the 

specification, this method will not be used. If a device is not 

capable of running CORBA, the SCA allows the use of an 

“adapter.” The specification states that “Adapters are 

resources or devices used to support the use of non-CORBA 

capable elements within the domain” [4]. The interface to 

the FPGA will be abstracted into a component, which will 

be running on the PowerPC and therefore have access to 

CORBA for communicating with other processes. The Core 

Framework is agnostic as to how a component is 

implemented, therefore mixing components running on the 

GPP and the FPGA with an adapter is allowed. 

The PowerPC and the FPGA are connected over a 

CoreConnect bus, and interfaces to the bus from each device 

must be implemented. An interface from the PowerPC to the 

PLB may be written by the developer or the Xilinx IPIF 

interface may be used. The IPIF interface is a Xilinx core 

which “provides a bi-directional interface between a User IP 

core and the PLB 64-bit bus standard” [5]. Interactions with 

the PLB including toggling the correct bus lines during read 

and write cycles are abstracted with the use of this core. 

Interaction with the PLB is further abstracted through the 

use of Memory Mapped I/O. Memory Mapped I/O allows 

peripherals to be accessed very easily using just a simple 

read or write to memory command. During a read cycle the 

operating system accepts the command to read from 

memory, which must then be translated into a physical 

memory address by the Memory Management Unit (MMU). 

Once this address has been determined, it is sent to the IPIF 

interface which interacts with the PLB. The various 

software interfaces written to interface with the FPGA were 

derived from the driver from [6]. The interface first opens 

the /dev/mem device, and maps the requested memory 

into user space. Then memory can then be read from using a 

single line in C: 

 
unsigned long value = *((unsigned long 
*) (BASE_ADDR + REG0_OFFSET)); 

 

This instruction has several operations embedded within it. 

The address to read from is calculated by adding the register 

offset to the base memory address. This address is then type 

cast as a pointer, so the memory can be accessed. Finally, 

the pointer is then de-referenced which starts the read cycle. 

The operating system determines that the software is 

requesting a memory read, the hardware decodes the 

address, retrieves the value from the FPGA and ultimately is 

returned to the variable. 

 

Writing to the address is accomplished in a similar fashion: 

 
*((unsigned long *) (BASE_ADDR + 
REG0_OFFSET)) = someValue; 

 

The hardware interface to the CoreConnect bus can be fully 

implemented by a developer however in this work it was 

built using the Create or Import Peripheral Wizard in XPS. 

Settings such as the number of registers and which bus lines 

are available can be selected in the wizard. Once the settings 

are selected, the skeleton VHDL or Verilog code is 

generated. 

The FPGA does not posses any ability to abstract 

the operation of accessing memory as the PowerPC does 

with the operating system.  The developer is left to interface 

directly with the CoreConnect bus and toggle the necessary 

bus lines when appropriate. While this may add additional 

lines of code, it provides the developer more flexibility 

regarding how and when information is transferred over the 

bus. 

 While specific implementations of reading and writing 

to the bus may differ, the skeleton code generated by XPS 

provides the developer the ability to read and write from 

registers on the FPGA. The instructions from the bus are 

then decoded on the FPGA and the appropriate actions are 

taken. For example, if the line requesting a read cycle is 

toggled high, the bus must also specify which register is 

being read from. The developer must provide the necessary 

logic to check for the read cycle, decode the register 

address, and then transfer the information back over the bus.  
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3. FPGA INTEGRATION 

 

Two waveforms were developed to demonstrate the 

integration of an FPGA into the OSSIE software. These 

waveforms are ml403_ossie_demo and 

FIRFilterDemo. These waveforms are dependent on the 

software devices GPP and XilinxFPGA, as well as the 

default_ml403_node node. These waveforms are 

dependent on the logical representation of the PowerPC 

processor and the Virtex-4 FPGA. Both of these devices 

must be started through a Device Manager, and this 

information will be stored in the node 

default_ml403_node. 

 The integration of an FPGA circuit into the OSSIE 

software requires two interfaces. The first interface is the 

FPGA controller component. This interface will contain the 

protocol for reading and writing to the FPGA as well as 

converting the data to the appropriate format. The second 

interface that is needed is the interface to the OSSIE 

software. This second interface is simply a software wrapper 

generated by the OSSIE tool suite which calls the FPGA 

controller component within it. The OSSIE software will be 

unaware and agnostic to the fact that the processing is done 

on the FPGA due to the software wrapper. The OSSIE 

component wrapper will interface with the OSSIE Core 

Framework, register with the naming service, and interact 

with other OSSIE software components in the domain. 

Generally this interaction will be limited to receiving and 

transmitting data between components. 

 The specific operation of both FPGA controllers will be 

different, although they follow a similar form. The 

controllers have three major functions; opening the interface 

to the FPGA, reading and writing to the FPGA, and closing 

the interface. Opening and closing the interface is standard 

among the three controllers as it requires mounting and un-

mounting /dev/mem, respectively. The reading and 

writing operations are specific to the FPGA circuit that the 

controller is interacting with. 

 

4. EXAMPLE APPLICATIONS 

 

A very basic demonstration of the integration of an FPGA 

with the OSSIE software is the ml403_ossie_demo 

waveform.  This waveform is very similar to the 

ossie_demo waveform, however it is targeted for the 

PowerPC processor and Virtex-4 FPGA. This waveform 

includes three components, TxDemo, ChannelDemo, and 

RxDemo. The first component, TxDemo, generates 

Quadrature Phase Shift Keying (QPSK) symbols, while the 

ChannelDemo component adds Gaussian noise, and 

finally RxDemo decodes the symbols and determines the Bit 

Error Rate (BER). 

 The basic nature of the ml403_ossie_demo 

waveform does not lend itself to a meaningful signal 

processing application, instead it provides a basic 

application to demonstrate the capabilities of the OSSIE 

software and in this case the FPGA integration. 

The TxDemo component is a data source which 

generates 512 QPSK in-phase and quadrature symbols and 

transmits them using the complexShort port type. The 
data generation is done by reading out two arrays; one array 

for symbols to be modulated against the in-phase carrier and 

another for the quadrature carrier. The order of the symbols 

must be maintained as the RxDemo component is using the 

same order to compare the incoming symbols against and 

determine the BER. The FPGA implementation of the 

TxDemo component operates in the same manner as the 

software implementation, however the data generation is 

done on the FPGA. The OSSIE software wrapper passes 

two empty vectors to the FPGA driver which will ultimately 

be returned with the QPSK symbols. The FPGA driver then 

iterates through 64 read cycles to get the symbols from the 

FPGA. 

 The IPIF interface supports 32 bit data transfers, 

however 512 in-phase and 512 quadrature symbols need to 

be transferred. This multiple stage transfer is done by 

transmitting 8 in-phase symbols, 8 quadrature symbols and 

additional protocol information over the bus 64 times. When 

the FPGA controller component requests a read, a 6 bit 

counter on the FPGA is incremented by 1. The value of the 

counter is then used to access two Look Up Tables (LUT) 

containing the in-phase and quadrature symbols. These 

symbols from the LUTs and the counter value are then 

transmitted over the bus back to the FPGA controller. The 

FPGA controller then uses the counter value to load the 

symbols in the correct position in the two arrays, which are 

finally sent back to the OSSIE software component after all 

64 transfers are completed. The OSSIE software component 

then converts the data to be used by the complexShort port 

type and sends the information to the next component. 

The next waveform developed is an FIR filter. 

Embedded multipliers are common on FPGAs in the Xilinx 

Virtex-4, Virtex-5 and Virtex-6 series and can operate much 

faster than the multiplication implemented on a GPP. 

Although by themselves the multipliers will operate faster 

on the FPGA than the GPP, the overhead for interfacing 

with the FPGA must also be taken into account. 

 The FIR filter uses a very basic waveform, 

FIRFilterDemo, consisting of the 

CarrierDataSource component and the FIR_filter 

component. The CarrierDataSource component 

provides a carrier which the FIR_filter processes with a 

FIR filter on the FPGA. 
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Figure 3: FIR Filter on the Xilinx ML403 

 

 Since the data being processed by the FPGA is stream-

based, the protocol for interfacing with the FPGA is very 

simple. The OSSIE software wrapper receives data from a 

source component and the data is then iterated through. In 

each iteration, a sample of data from the OSSIE software 

wrapper is passed to the FPGA controller which in turn 

writes this value to the FPGA. When the FPGA receives the 

write request, the sample is then registered and filtered. 

After the sample is filtered, it is then stored in a First In 

First Out (FIFO) buffer of depth 512. The FPGA controller 

then polls the FPGA to determine if the filtered value can be 

read. The value is presented on the bus when both a read 

request is being made and the FIFO is not empty. One of 

these conditions is not true a code word is presented on the 

bus stating that the FPGA is not ready for a read cycle. 

However since both of these conditions are true, the sample 

is presented on the bus and received by the FPGA 

controller. Finally, the FPGA controller sends the filtered 

sample back to the OSSIE software wrapper which 

continues to iterate through all of the samples. 

 

5. PROFILING AND RESULTS 

 

The motivation for the integration of FPGAs into software 

radio is the ability to offload computationally complex 

signal processing algorithms from the GPP to the FPGA to 

improve the maximum data rates. Performance metrics were 

taken to determine the maximum data rate when interfacing 

with the FPGA, doing type conversions to a CORBA 

ShortSequence, and for the full waveform. These 

results were profiled for the FIRFilterDemo waveform. 

Timing measurements were taken using the 

gettimeofday()and getrusage() [7] functions. The 

gettimeofday() function is used to determine the 

overall time difference for a process to run and may be 

referred to as the “wall clock” time. This measurement will 

be used to determine the maximum data rate possible for a 

waveform. The getrusage() function is used to 

determine the amount of time the processor has dedicated to 

running a specific user process and the amount of time used 

for running other system level processes. This measurement 

will be used to show the amount of processor usage of a 

waveform. Additionally, this metric shows how much 

impact the rest of the operating environment has on the rates 

the process is running at. As the usage percentages for the 

process increases towards 100%, the less impact the 

operating system or Core Framework has on the rate of the 

process.  

 To obtain the data rates, both timing functions are 

called to get a start time and the process is then run in a for 

loop of limited length. After the for loop completes, the 

two timing functions are then called again to obtain the end 

times. The wall clock time is calculated to determine the 

maximum date rate, and then the user time and system time 

are calculated to determine the processor utilization. 

 The results of the FIR filter interfacing with the FPGA 

show that simply reading and writing to the FPGA can be 

done at a rate of 10.134 MHz. The drawback to this value is 

the amount of processor utilization. The process uses 

98.91% of the processor when executing these cycles, and 

only allows the processor 0.30% of the time to run system 

processes. Since the processor usage is very large, the effect 

of the operating system and Core Framework on the process 

is negligible and the values are near the maximum values 

possible. 

 When performing the same benchmark, but adding the 

process of converting the data of the FIR filter to a sequence 

of CORBA short type, the results show that the operating 

frequency has been reduced from 10.134 MHz to 8.456 

MHz due to the data conversion. The processor utilization is 

still very high at 99.16% and the system utilization is low at 

0.19%. Similar to the previous result, the processor 

utilization is very large, therefore the results are near the 

maximum values and the operating system and Core 

Framework are providing very little overhead. 

 The third measurement is to determine the maximum 

rate at which the entire FIR filter waveform can be run. The 

measurement is taken within the ProcessData() 

function of the FIR_filter component. The 

measurement includes all of the processing overhead of the 

component interacting with the OSSIE Core Framework as 

well as the CarrierDataSource component generating 

and transmitting its data. The results from the 

FIRFilterDemo waveform show that the maximum rate 

possible is 116.849 kHz. This value is substantially less than 
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the previous operating frequency of 8.456 MHz. This is due 

to the processor allocating clock cycles to system processes, 

components within the OSSIE Core Framework and its 

dependencies.  This can be seen in the utilization, which has 

also dropped from 99.16% to 25.26% while the system 

utilization has increased from 0.19% to 30.59%. 

 

FIR_filter interfacing with FPGA directly 

Measurement Time (sec) Frequency (MHz) 

Wall Clock 0.987 10.134 

User Time 0.976 Processor 

Utilization System Time 0.003 98.91% 

Iterations 1.00E+07 System Utilization 

Samples 1 0.30% 

FIR_filter component interfacing with FPGA 

and conversion to CORBA  

Measurement Time (sec) Frequency (MHz) 

Wall Clock 36.3287 8.456 

User Time 36.024 Processor 

Utilization System Time 0.068 99.16% 

Iterations 6.00E+05 System Utilization 

Samples 512 0.19% 

FIRFilterDemo Waveform 

Measurement Time (sec) Frequency (kHz) 

Wall Clock 13.1452 116.849 

User Time 3.321 Processor 

Utilization System Time 4.021 25.26% 

Iterations 3.00E+03 System Utilization 

Samples 512 30.59% 

Table 1: Profiling Results of FIR filter 

The introduction of the Core Framework into the 

profiling results decreases the operating rates for the 

FIRFilterDemo waveform by a factor of 87. To 

determine what kind of overhead the Core Framework was 

providing, it was removed and additional measurements 

were taken. The results for the FIRFilterDemo 

waveform after removing the Core Framework show similar 

performance as the initial component benchmarks with 

10.407 MHz. The processor utilization is similar, as well, 

with 99.83%. 

These profiling results are very close to the original 

FIRFilterDemo waveform. The significant drop in 

operating frequency in the FIRFilterDemo waveform 

from 10.143 MHz to 116.849 kHz comes from the 

transmission of data through CORBA instead of simply 

reading the values out of the memory locally. Once the Core 

Framework is removed, the value is very close to the 

original profiling result for both waveforms where the Core 

Framework is not interacted with. Referring back to the 

initial benchmarks for the FIR filter on the PowerPC, the 

maximum data rate was 2.43 MHz. This value includes no 

overhead from an operating system, a software radio 

architecture or additional signal processing components. 

This benchmark is best compared against the frequency 

measurements of interfacing with the FPGA in the 

FIR_filter component which operates at 10.134 MHz. 

The FPGA interface operates more than 4 times faster than 

performing the filtering on the PowerPC, including the 

overhead from the operating system and the OSSIE Core 

Framework. 

 

6. CONCLUSIONS 

 

The integration of FPGAs into the SCA has been done with 

the goal of minimizing overhead. Concepts that work well 

for software or processing at the enterprise level do not 

always translate well to embedded systems and hardware; 

therefore they have been left out of the design. Two 

examples of this are CORBA-on-a-chip and standard 

interfaces for FPGA circuits.  

Explicit support for FPGAs is also not required for 

FPGAs within the SCA as it leads to the development of 

standard interfaces and HALs which will introduce 

unnecessary overhead into the radio platform. The 2.2.2 

revision of the SCA provides support for any hardware 

device that a designer might choose through the use of an 

Adapter. By using an Adapter, the developer is able to 

integrate hardware into the radio platform as they see fit, 

which will allow overhead to be minimized and 

performance maximized. 

 Two separate examples have been provided showing 

how FPGAs can be integrated into the SCA. The first 

example is the waveform ml403_ossie_demo, which is 

very similar to the ossie_demo waveform with the 

exception that the symbols are generated on the FPGA. The 

second example, FIRFilterDemo is an example which 

demonstrates how signal processing can be offloaded to the 

FPGA and how to interface with the FPGA using memory 

mapped I/O.  

 A kernel level driver would be a more efficient method 

of transferring information between the FPGA and the 

processor. When the FPGA has calculated a sample and is 

ready to transmit over the bus, an interrupt is set and the 

processor will then read from the bus. This allows the 

processor to allocate clock cycles in the interim between 

samples for other processing tasks or simply to idle and 

reduce power consumption. 

 If the data rate is large enough, a kernel driver may be 

insufficient and Direct Memory Access (DMA) should be 

used. Direct Memory Access would allow the FPGA to 

write directly to main memory, bypassing the processor for 

this task. This adds to the system’s complexity but 

ultimately will make the system more efficient. Ideally the 

processor should interact with the devices over the bus as 

little as possible as it uses cycles that could be better used in 

another process or by idling.  
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 One benefit of using a simple memory mapped I/O 

driver is the ability to port it to other platforms. Given 

shared memory between the processor and the FPGA and 

memory mapped I/O, controller components for accessing 

devices can be written which are agnostic to the target 

platform. Having memory mapped I/O allows driver 

components to simply make read and write calls to memory, 

which are then translated to accessing a peripheral. By 

simply passing in a base address and the offsets for 

registers, the same driver can be cross-compiled for another 

processor very easily. 

 The problem with using a simple memory mapped I/O 

driver which accesses a peripheral by polling is the large 

utilization. Ideally the processor would access the peripheral 

at the minimum rate required, allowing the other clock 

cycles to be devoted to other processes. This utilization 

could be mitigated by the use of a Real Time Operating 

System (RTOS). Instead of polling to determine if a device 

is ready, the RTOS would have the write and read cycles 

internally scheduled. This would reduce the processor 

utilization while still retaining the portability of the driver. 

 All source code for the OSSIE Core Framework, FPGA 

interfaces and example waveforms can be found at [8], and 

further discussion on the integration of FPGAs into the Core 

Framework can be found at [2]. 
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