

A DSP MICRO-FRAMEWORK (DSP µF) FOR OMG SWRADIO

SPECIFICATION EXTENSION

Frederic Lafaye, Eric Nicollet
Thales Communications, 160 boulevard de Valmy, BP 82,92704 Colombes Cedex, France

e-Mail: { frederic.lafaye,eric.nicollet}@fr.thalesgroup.com
Phone: +33(0) 1 46{132 481, 132 132}; Fax: +33(0)1 46 132 555)

.

ABSTRACT

The paper begin with the impact of Software Defined Radio
on DSP Operating Environment with a focus on the
technical services.
 It aims at describing the specification of the DSP µF. A
focus is made on the dynamic loading and the connection
process.
 It will also describe its implementation in the Flexible
Base Station Demonstration works made during the E2R
European project.
 The paper then gives metrics concerning the footprint
of the solution in comparison with others related solutions.

1. INTRODUCTION

Most of today radio equipments try to offer more flexibility
in terms of deploying several Waveforms (a.k.a RAT: radio
access technologies) on a given set of hardware base band
boards .The OMG Software Radio Spec[3] or The SCA[2]
gives a reference unified approach for every Waveform no
matter their components distribution. Nevertheless, in
processors not supporting CORBA, these standards have to
face low footprint and real-time constraints requirement.
Following common usage, processors not supporting
CORBA are denoted DSP in this paper whatever are their
nature (General Purpose or Signal Processing one).
 The DSP µF we describe in compliant with OMG
Software Radio Spec requirements. Those are the resource
deployment through the Executable Device Interface, the
access to the resource through the Resource interface and
last but not least the connection of Ports via any
connectivity technology. This connection capability also
applies to any Device Port available on the DSP.

2. WAVEFORM DEPLOYMENT IMPACT

2.1. DSP Operating Environment

A Waveform Implementation is deployed and configured by
a Core Framework that take the information from an XML
descriptors database.
 The Core Framework and the Assembly Controller use
a set of operations specified by the OMG Software Radio
Spec in order to create a Resource in the Processing Unit,
make the assembly with the other components constituting
the Waveform Implementation and configure it.
 Those Operations must be supported by the Operating
Environment of the Processing Unit which is the resident
software of the Platform.

Processing Unit B Processing Unit A

Resource 1 Resource 3

Device 1 Resource 2

Core Framework
Assembly Controller

1. Create
2. Connect (to R2&R3)
3. Configure

XML
Waveform
Descriptors

1. Create
2. Connect (to R1&R3)
3. Configure

1. Create
2. Connect (to R2&D1)
3. Configure

Connect to R3

Read

Figure 1 : Waveform Deployment by a Core Framework

2.2. Ports

Ports are Implementation artifacts supporting the connection
needs. They depends on the available Connectivity
Mechanisms. CORBA is the reference Connectivity to
realize ports connections thanks to IDL description of
interfaces between the component.
 The formal description of ports and the code generation
it can drive is one of the principles we keep in our approach.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Processing Unit B Processing Unit A

Resource 1 Resource 3

Device 1 Resource 2

Core Framework
Assembly Controller

Figure 2 : Ports

 Ports can support functional interface between
Resources or between a Resource an a Device.
 Ports also support management interface. Two of them
are mandatory for access by a Core Framework : the
Resource interface and the Device interface.

2.3 Resource component

A component that realize the Resource interface must
support the LifeCycle, PropertySet, PortSupplier and
PortConnector features:
The ControllableComponent and TestableObject features
are not considered in our scope.
Those features lead to structure a Resource into :

• The Golden Source which is Independent from the
Platform. That means no interaction with outside
code is permitted.

• The Ports that enable the Access To/from the
Golden Source through the Technical Services
provided in the Processing Unit.

2.4. Device component

For a Device component only the PortSupplier and
PortConnector features are mandatory. A Port code is to be
defined for each Device component. The difference between
a Device component and a Resource component is that the
Business Code of the Device is tied to the Platform
Hardware and for that reason is not a Golden Source which
can be easily ported.
The Device component can also include some Waveform
specific code. The goal is evidently to reduce them for the
sake of the Waveform Application portability.
A Device has capacities that can be allocated and a State
Management Feature.

2.5. Executable Device interface

The Executable Device is the interface that enable the
creation of Resource component inside a given Processing
Unit through load and execute method usage. The DSP µF

implements this interface because it is mandatory in SCA to
communicate with the Core Framework.

3. FOCUS ON TECHNICAL SERVICES
DESCRIPTION

The Technical Services are defined as the Hardware and
Software part of the Processing Unit that enables Software
component to communicate with each other and with
Hardware.
 The functionality enabling that are

• the Board Support Package (BSP) for access to the
hardware

• the Operating System (OS) for the Scheduling
features

• the Inner Connectivity for communication between
component inside the Processing Unit

• the Cross Connectivity for communication with
component outside the Processing Unit.

 If CORBA is a requirement of the Processing Unit, the
Inner and Cross Connectivity must be realized by an ORB.
If not, every solution even the most simple direct call could
be envisaged.
 The Device components are the part of the Technical
Services that provided a “Port” Interface to the Resources.

Processing Unit B

Inner Connectivity Cross Connectivity

OS

BSP

HW

Device B1

Business CodeGolden Source

Resource 3

To Processing
 Unit A

Figure 3 : Interaction between Resource, Device and
Technical Services

 One can note in the previous figure that the Business
Code of the Device can have interaction with all the layers
of the Technical Services whereas the Golden Source of the
Resource can only communicate through the Ports of the
resource he belongs to.
 In other words, The separation of concerns is
materialized in a Waveform that consists only of Resource
Component and the Platform that consists of the
Connectivity, OS, BSP and HW layers on which we add the
Device Components.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

4. EMBEDDED EXECUTABLE DEVICE SUB-

SYSTEM

4.1. Definition

The “Embedded Executable Device” is the sub-system
responsible for the Installation and Configuration of
Resource components on a non-CORBA processor. It is
also responsible for connecting those Resource components
to other Components that can be :

• Resources residing in the same sub-system.
• Device Façade in the same sub-system.
• Resource outside the sub-system accessible with

CORBA.
 This sub-system is distributed on several processor:
The DSP Executable Device (shorten in ExeDevice) give
the access to the DSP execution environment
 The DSP µF is the part of the sub-system residing in
the non-CORBA processor.

GPP (CORBA) DSP (Non CORBA)

Embedded Executable Device

 DSP µF DSP ExeDevice

CORBA

OS & BSP

HW

Connectivity

OS & BSP

HW

Core
Framework

 Figure 4 : Embbeded Executable Device distribution

 Note that each component of the “Embedded
Executable Device” relies on “Technical Services”
described in section 3.
 On the GPP, the software belonging to the “Embedded
Executable Device” sub-system are based on Technical
Services including CORBA
 The DSP µF belongs to the Operating Environment of
the non-CORBA processor. It is based on Technical
Services with no CORBA requirement.

4.2. Relation with OMG Software Radio Spec

The following diagram show the involvement of the
Embedded Executable Device in realizing the Waveform
Deployment as described in paragraph 1 and implementing
the OMG Software Radio Spec interfaces.

Processing Unit A

Resource 1

Core Framework
Assembly Controller

1. Create (Resource 1) 2.Connect (to R2&R3)
3.Configure

Embedded Executable Device

ExecutableDevice
(load,execute)

OMG SW Radio Spec interface

Resource

1. Create
2.Connect (to R2&R3)
3.Configure

 Figure 5 : Realization of Resource Deployment in
compliance with OMG SW Radio Spec

5. DSP µF SPECIFICATION

The following diagram depicts the interfaces of the DSP µF
with its actors.
 The GPP_Resource is a component which realizes the
SCA Resource interface on a Processor supporting CORBA.
 The Cpp_ResourceComponent is a component that run
on a non-CORBA processor. It realize ICpp_Resource wich
is an Embedded implementation of the SCA Resource
interface
 The functional PIM interface toto between them is
implemented by the ICpp_toto using the DSP µF.

 Cpp_ResourceComponent

Core Framework GPP_Resource

Cpp_Device

SCA interface

ICpp_Resource

ExecutableDevice
Resource

ICpp_PortConnector

Resource

Functionnal interface

Technical interface

toto

ICpp_toto

IDsp_CrossConnectivity

XConnectivity
IProxy_CrossConnectivity

Non-CORBA
(C++ interface)

CORBA
(PIM interface)

Create

Event
Register

DSP µF

DSP ExeDevice

IDsp_InnerConnectivity

IConnectivity

IDsp_Loader
IDsp_ExecutionController
IDsp_ResourceManagement
IDsp_ConnectionFactory
IDsp_DeviceManagement

IDsp_DeviceSignaling

 Figure 6 : DSP µF interfaces

Note that in CORBA space , the diagram show the Interface
with the PIM name whereas in the Non-CORBA space, the
interface are the C++ implementation of the OMG Software
Radio Spec interface.

5.1. DSP ExeDevice

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

The ExeDevice is the proxy of the DSP_µF for the
CoreFramework. It translate CoreFramework Interface to
the following on the given CrossConnectivity.
 The OMG SWR Spec Load/Unload is translate into the
IDsp_Loader interface thanks to the BOFF format.
 The OMG SWR Spec Execute/Terminate is translate
into the IDsp_ExecutionController interface in order to
create a Cpp_ResourceComponent that has been loaded and
Terminate its execution
 The OMG SWR Spec Initialize/ReleaseObject,
Configure/Query, Start/Stop are translate into the
IDsp_ResourceManagement.
 The OMG SWR Spec GetProvidedPorts, and
Connect/Disconnect are translate into the
IDsp_ConnectionFactory.
 The OMG SWR Spec
AllocateCapacity/DeallocateCapacity is translate into the
IDsp_DeviceManagement interface.
The IDsp_DeviceSignaling interface enable Auto-
Registration and Signal State Transition to the ExeDevice.

5.2. Dynamic Load and Link of Resource Component.

The Core Framework uses the Load to dynamic load of new
ResourceComponent in the Execution Environment. The
DSP µF enable to load the Resource Component and
dynamic link the Waveform code to the Platform code
during the creation of the Resource Instance. a.k.a
Cpp_ResourceComponent.
 In order for the DSP µF to manage the execution of the
Resource, the Cpp_ResourceComponent must implement an
operation that return an Instance of himself and an operation
that delete himself. like displayed in figure 11.

Golden Source

Cpp_ResourceComponent

ICpp_Resource realize

getRscComponent
TerminateRscComponent

realize

New and delete himself

Initialize
ReleaseObject
Configure
Query
RunTest
GetProvidedPorts
Connect
Start
Stop

Figure 11 : Cpp_ResourceComponent Interface

requirement

 The Cpp_ResourceComponent is given by the
CoreFramework as an Object File in a proprietary format
called BOFF (Basic Object File Format). This file contain
the object code that will be copy in the internal memory of
the processing using. It also contains the raddress of the
mandatory operations in order for the DSP µF to call them.

5.3. Establishing Connections

5.3.1 difference between Inner and Cross connectivity

For each Input Port, the DSP µF define an
InternalChannelId which is a reference that can be used for
Connection inside the same Address Space and an
ExternalChannelId which is a reference passed through the
CrossConnectivity.
The I_DSP_ConnectionFactory interface consist of :

• GetProvidedPorts that return for each import, the
InternalChannelId and the ExternalChannelId.

• ConnectExternalPorts that enable to Connect a
Resource to another residing in a different Adress
Space.

• Disconnect that enable to disconnect a Resource
from another (no matter their Adress Space is).

Processing Unit A Processing Unit B

Golden Source

Resource 3

Golden Source

Resource 1

Golden Source

Resource 2

Connect
(InternalChannelId)

ConnectExternal
(ExternalChannelId)

DSP ExeDevice

GetProvidedPorts

Figure 7 : difference between Connect and

ConnectExternal

The IDsp_CrossConnectivity interface is born from the
TechnicalServices requirements towards the realization of
the I_DSP_ConnectionFactory .
IDsp_CrossConnectivity enable a standard access from the
DSP µF point of vue by defining a Cross serializer and a
Cross Initializer.

CORBA (OMG SWR spec compliance) Non CORBA

Embedded Executable Device

DSP µF DSP ExeDevice

Technical Services

Cross Connectivity Capacity

Connect
Disconnect
GetProvidedPort

I_DSP_ConnectionFactory

I_DSP_CrossConnectivity

Figure 8 : requirement towards the Technical Services

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5.3.2. Cross serializer

The cross connectivity for transmitting information could be
modelized has an CrossSerializer with operation:

• SerializerRef CreateCrossSerializer
(ParamCrossSerializer) for creating the mean to
send data.

• DeleteCrossSerializer (SerializerRef) for killing
the Serializer created before.

• InvocateSerializer (SerializerRef, Data) for sending
data through the Serializer.

On reception of a ConnectExternal, a Cross Serializer is
created and connected to the Output Port of the Embedded
Resource.

5.3.3 Cross initializer

The cross connectivity for receiving information could be
modelized has an CrossInitializer with operations:

• InitalizerRef CreateCrossInitializer
(ParamCrossInitializer) for Creating the mean to
receive data.

• DeleteCrossInitializer(InitializerRef) for killing
the Initializer created before.

• SubscribeInitializer(InitializerRef, PortIn) for
enabling the reception of Data in the InputPort.

On reception of a getProvidedPorts, for each Input Port of
the embedded resource, a Cross Initializer is created and the
Input Port is subscribed on it.

5.3.4 Disconnect

On reception of a Disconnect, the DSP_ConnectionFactory
capacity enable to Deleted the Serializer if the connection
was established with a ConnectExternal.
On reception of a ReleaseObject, all the Initializer Created
during GetProvidedPorts are Deleted.

6. E2R FLEXIBLE BASE STATION DEMO

6.1. Implementation description

The DSP µF has been developed and connected to a
Application on a PC for installing resource component.
In this Proof of concept , The interface between the PC
application and the DSP µF embedded on the boards is the
one specified in OMG Software Radio Spec. which is very
much like the SCA.
In the context of a Flexible Base Station Demonstration in
the scope of E2R European project [1], the Cross
Connectivity rely on UDP sockets. The inner Connectivity
is a proprietary one call BLOOD. The Processing Units are

a DSP TI C5510 on a evaluation board and a ARM926 on a
ST Microelectronic Greenside1 board. The Waveform is
decomposed into 6 simple resources that can be mapped on
every processing unit (the PC or one of the Base Band
Board). The payload is a video played at a 1 Mbyte rate.

6.2. Demo details

The DSP µF offers multi-resource capabilities inside DSP
and Multi-Application capabilities in system that used DSP.
The Proof of concept elaborated in E2R is described here.
 A Multi-mode Base Station used to compile several
Base band board, one for each mode and each new user.
With this configuration, the Need for a large number of
Waveform lead to the Need for a Large number of BB
Board.
 The DSP µF enable to reduce the number of Base-Band
board and a efficient use of the available ones.
 Furthermore, the second Waveform application can be
deployed with no interference to previous running one.

Reconfiguration
Framework

DSP µF
on ARM

DSP µF
on TI

WF1
WF2

Figure 9 : E2R FBS Demo platform

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

 7 FOOTPRINT OF THE SOLUTION

In that context, the footprint measured on the C5510x is :

ROM (in kBytes)
4,2 kB Ressource Manager
1,5 kB ExecutionController
3,2 kB Loader
1,9 kB ConnectionFactory
0,7 kB Misc
11,5 TOTAL

Table 1 : DSP µF connectivity independent footprint

Those data must be correlated to the footprint of the
connectivity needed for the µFramework

ROM (in kBytes)
2,3 kB In Port management
0,4 kB Out Port management
9,5 kB µF commands
3,7 kB µF commands init
15,9 TOTAL

Table 2 : DSP µF connectivity dependant footprint

Additionally to the ROM data, one can say that the RAM
needed is less than 1 Kbytes
Those data must be put in front of the LightWeight CCM
approach [5] which have a comparable goal but with
CORBA requirement.

E2R II mesured lwCCM typical
Management DSP µF 28 kB µCCM 12 kB
Connectivity BLOOD+UDP 60 kB ORB 85 kB
Scheduling µC-OS-II 10 kB OSEck 15 kB
OE TOTAL 98 kB 112 kB
 Table 2 : DSP µF solution compared to LightWeight
CCM

The UDP stack is not the optimum solution when the
purpose is the footprint evaluation. This remark also apply
to the lwCCM approach for which the ORB rely on TCP/IP
stack.

8. CONCLUSION

The DSP µF we described in this paper enable to extend the
very powerful concepts of the SDR inside components for
which the connectivity mechanism is usually the bottleneck.

In very constrained environment such as the one we
consider in DSP, the efficient Inner connectivity must
enable a direct call and the efficient Cross Connectivity is
usually easier than UDP. In consequence the operating
environment supporting Resource management can have
footprint far reduced compared to the one presented in this
paper.

9. ACKNOWLEDGEMENT

This work was performed in project E2R II which has
received research funding from the Community's Sixth
Framework programme. This paper reflects only the
authors' views and the Community is not liable for any use
that may be made of the information contained therein. The
contributions of colleagues from E2R II consortium are
hereby acknowledged.

10. REFERENCES

[1] IST-2005-027714 E2R II Project,

http://www.e2r.motlabs.com/.
[2] Software Communication Architecture MSRC-5000SCA

V2.x.
[3] OMG Sw Radio Spec, http://www.omg.org/
[4] W. König, K. Nolte, T.K. Lee, R.J. Jayabal., F. Lafaye,

E. Nicollet. Reconfigurable Base Station Processing
and Resource Allocation. 15th IST Mobile & Wireless
Communications Summit: Budapest, july 2006.

 [5] LightWeight CCM ,
http://www.omg.org/technology/documents/specialized_corba
.htm

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

