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ABSTRACT 
 
Timing and latency are critical design parameters in the 
development of a communication system. With software 
radio and packet based methods emerging as viable 
replacements for traditional static solutions, different 
approaches are necessary to analyze the timing 
characteristics of these communication environments. This 
paper presents important concepts for performing timing 
and latency profiling within the OSSIE SCA software radio 
framework operating on the Linux operating system. 
Furthermore, relevant factors and parameters pertaining to 
latency performance are measured and compared. 
Specifically, the operations of inter-component 
communication within a collocated environment are 
explored. 
 

1. INTRODUCTION 
 
Time delays are an inevitable aspect of any real world 
communication system. As radio applications and 
underlying hardware becomes increasingly complex, 
however, these latencies become more and more difficult to 
predict and understand. Predictable latencies and 
deterministic behavior are necessary in order to meet the 
requirements of a wide range of today’s communication 
needs. The advent of software defined radio and the use of 
the general purpose processor (GPP) as a suitable device for 
radio communications further complicates these issues. 
Traditionally, timing information and latency characteristics 
could be determined by examining hardware designs and 
specifications. With current software radio designs, 
however, operating system (OS) behavior, middleware, and 
multi-threaded environments are some of the issues that 
factor into latency behavior.  
 The Software Communication Architecture (SCA) [1] 
is a component based software specification developed for 
the Joint Tactical Radio System (JTRS) that seeks to 
address many design issues in developing interoperable 
software radios. In order to achieve interoperability and 
portability of applications, the specification defines a 
number of operating environment requirements for 
compliant implementations such as POSIX OS standards 

and the use of Common Object Request Broker Architecture 
(CORBA) as middleware. CORBA is a standard released by 
the industry consortium Object Management Group (OMG) 
and defines the communication between the components of 
a SCA radio waveform. The SCA and its underlying 
standards are specifications only and require appropriate 
implementations for actual use.  
 OSSIE (Open-Source Implementation::Embedded) [2] 
is an implementation of the SCA created at Virginia Tech 
for educational use as well as for research applications with 
software defined radio. OSSIE relies on a number of other 
open-source projects in order to address the standard. The 
implementation runs on Linux and utilizes omniORB [3] as 
the CORBA middleware implementation. Additionally, 
TinyXML [4] is used for parsing the XML used in SCA 
profiles. Also, OSSIE applications rely on a reusable 
interface library known as Standard Interfaces that 
simplifies the interaction of signal processing code portions 
with the implementation details of CORBA IDL. 
 This paper studies the factors that contribute to inter-
component latency in an OSSIE waveform. It is assumed 
that components reside on the same processor. Distributed 
radio applications that span multiple nodes present 
additional factors and are not examined in this study. While 
a typical Intel GPP based PC is used as a test case in this 
study, an effort is made such that the general concepts 
presented are applicable to other platforms. Section 2 of this 
paper explores previous performed in the general area of 
software radio performance evaluation and related studies 
pertaining to some of the CORBA aspects of latency 
evaluation. Section 3 covers issues relating to performing 
time measurements in the Linux environment while section 
4 introduces significant factors that contribute to the timing 
characteristics of component-to-component interactions. 
Timing measurements performed on a test system are shown 
in section 5. 
  

2. RELATED WORK 
 
Available literature directly concerning latency profiling 
within a component based SDR systems is currently limited. 
A number of studies exist pertaining to a more general case 
of software radio performance on general purpose 
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computing hardware. [5] and [6] measured overall end-to-
end transmit and receive latencies including RF hardware 
with another software radio framework, GNU Radio [7] and 
the Universal Software Radio Peripheral (USRP). These 
studies have limited application to the approach presented in 
this paper where a finer level of timing granularity is used 
for exploring the time delays of data transfers occurring 
within a single processor space. 
 The SCA defines the use of CORBA for middleware 
and services as part of the operating environment. 
Consequently, CORBA performance plays a key role in 
characterizing the interactions between components. 
Performance analysis of CORBA implementations in the 
form of benchmarking has been studied more commonly in 
networked settings [8-10]. Operating system issues and 
communications within collocated environments were 
examined in [10] and [11]. The intended application for 
some of these benchmarking studies, however, is quite 
different than the use of CORBA within software radio. 
Specifically, many applications for SDR are comprised of 
components in collocated environments where clients 
invoke numerous requests transferring a large amount of 
data samples on single long-lived connections. This 
contrasts with many other CORBA scenarios such as a 
distributed stock market application where a high number of 
short requests may be coming from a large number of 
network connection.  
 

3. MEASURING TIME 
 
Data transfer latencies between collocated software radio 
components can occur on the order of microseconds. This 
differs from network latencies often examined in distributed 
CORBA environments that may have duration times of 
milliseconds. In order to measure and examine these 
latencies, accurate clocks and precise timing procedures are 
required. The methodology used for the measurement of 
timing information should be able to provide mechanisms 
for accurate means of measurement while maintaining 
applicability to multiple platforms when possible. 
 
3.1 Processor Clocks 
 
Many CPU’s maintain internal timers that operate at the 
processor clock rate. With today’s processors running at 
frequencies in excess of 1 GHz, these internal timers are 
capable of highly accurate measurements. The Time Stamp 
Counter (TSC) is one such timer that exists on Intel x86 
processors beginning with the original Pentium. The TSC is 
a monotonically increasing time source that can be accessed 
through the assembly operation RDTSC (Read Time Stamp 
Counter). Timing information can be obtained in the form 
of a processor clock cycle count and converted to human 

units of time also known wall time by using the processor 
clock speed. 
 Changes in processor designs, however, have made the 
TSC problematic in a number of cases. Power management 
strategies that alter the processor clock frequency can skew 
times calculated from cycle counts [12]. Furthermore, the 
advent of dual-core and multi-core computing has made 
TSC based timing measurements particularly difficult [13]. 
Multi-core machines maintain separate TSC for each 
particular core and while each counter is guaranteed to be 
monotonically increasing, clock drift among cores is a 
significant issue. Consequently, successive RDTSC calls are 
not guaranteed to produce monotonic values creating the 
possibility of backward moving time. TSC drift and 
synchronization issues are non-trivial to solve and are 
currently active areas of development with the Linux kernel. 
As a result, kernel based time functions rather than direct 
assembly calls provide a better approach to obtaining timing 
information in many of these cases. In addition, a second 
detriment to hardware specific timer calls is that it leads to 
fractured code across different architectures.  
 
3.2 Kernel Timing 
 
Traditionally, the timekeeping structure provided by the 
Linux kernel relied on a tick-based approach with limited 
granularity [14]. A tick is a periodic interrupt driven by a 
hardware timer that forms the basis for a large portion of 
kernel functionality. The tick frequency is dependent on the 
specific kernel and platform, however, 1000Hz is a typical 
value. To account for the limited granularity, the kernel 
used interpolation methods for timekeeping which allowed 
for increased clock resolution, however, inconsistencies and 
susceptibility to irregular behavior limited usability for 
profiling purposes. Recent changes kernel, however, 
address some of these timing shortcomings. 
 Hrtimers (high resolution timers) [15] tackle a number 
of issues concerning the Linux time subsystems. 
Specifically, timekeeping is addressed in a new 
timeofday [16] approach that eliminates the tick and 
interpolation based dependency. Furthermore, large portions 
of architecture specific code are replaced with a modular 
design that provides an interface allowing the best available 
clocksource to be used. Issues related to the TSC, or other 
clocksource specific handling, are addressed within the 
kernel As a result, higher resolution timekeeping for latency 
determination can be obtained through the Linux kernel 
without dealing with potentially problematic architecture 
specific code. Furthermore, by using kernel timing 
interfaces, latency testing code can to be used across 
different architectures. Responsibility still remains with the 
developer, however, to make sure that clocksources and 
drivers of sufficient reliability are available to the kernel. 
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hrtimers were merged into the mainline Linux kernel in 
version 2.6.16. 
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4. CONTRIBUTING FACTORS 

 
While it is not feasible to characterize all possible causes of 
inter-component latency in an OSSIE waveform, a number 
of significant factors can be brought forth.  
 
4.1 Scheduling 
 
The scheduler is the element of the operating system 
responsible for determining which process is to execute next 
on the CPU. The Linux scheduler [17] supports three thread 
policies, a normal policy, First In-First Out, and Round 
Robin. SCHED_OTHER is the standard Linux time-sharing 
mode that applies to processes with no real-time 
requirements. SCHED_FIFO and SCHED_RR are real-time 
policies provided for time-critical applications where a 
runnable high priority processes can immediately preempt 
currently running lower priority processes. SCHED_FIFO 
processes run without time slicing while SCHED_RR adds 
time slicing to the SCHED_FIFO scheme. 
 The scheduler is important in that OSSIE waveforms 
share resources with other running processes on the 
operating system that have large effects on component-to-
component delays. Implementing OSSIE components with 
RT priorities is done through Linux system calls. The 
required system calls, however, are platform specific and 
not supported natively by omniORB. As a result, omniORB 
servant threads are spawned with normal non-RT priorities 
even if the component is scheduled with higher RT priority. 
This is addressed using omniORB Interceptors [3] where 
platform specific code can be inserted and executed at run 
time after servant thread creation. 
 
4.2 OSSIE Standard Interfaces 
 
OSSIE Standard Interfaces is a class library created for the 
purpose of simplifying the interaction of signal processing 
code with SCA required CORBA interfaces. The library 
facilitates code reuse for many common data types and 
eases the learning curve of presenting standardized CORBA 
and IDL to students with backgrounds predominantly in 
communications and signal processing. Furthermore, 
Standard Interfaces provides support for multiple outputs in 
fan-out connection configuration. Currently supported IDL 
interfaces include basic real and complex data 
representations in 8, 16, and 32 bit sizes passed in the form 
of CORBA sequences. 
  The implementation of Standard Interfaces separates 
the bulk of CORBA handling away from the signal 
processing code. This is performed by buffering data in the 
servant code and subsequently returning the CORBA call 

without entering the signal processing code space. In a 
separate signal processing thread, the data is passed in by 
reference using non-CORBA C++ method calls built into 
Standard Interfaces. This effectively decouples the CORBA 
call sequence from signal processing code. The thread 
structure is shown in Figure 1. Thread safety is maintained 
through the use of semaphores. With regards to latency, 
Standard Interfaces minimally adds a data copy and thread 
switch to the overall latency of a CORBA invocation. 
Additional port connections will also incur an additional 
delay.   

Figure 1 OSSIE Threading Model 

 
4.3 CORBA Transport 
 
omniORB is a compliant Object Request Broker (ORB) 
implementation of the 2.6 version of the Common Object 
Request Broker Architecture (CORBA) specification. With 
CORBA, communications between ORBS is specified by an 
abstract protocol called the General Inter-ORB Protocol 
(GIOP). The GIOP protocol, unusable in its abstract from, is 
made concrete by mapping to a specific transport. For 
example, the Internet Inter-Orb Protocol (IIOP) is a 
concrete mapping of TCP/IP to GIOP. omniORB supports 
IIOP as well as other transports through Unix domain 
sockets and SSL [18]. With current use of the OSSIE 
framework, there is limited applicable use of the SSL 
transport, however, UNIX domain sockets can provide 
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Figure 2 TCP and UNIX Domain Sockets 
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significant benefits in terms of data transport efficiency. 
 A primary detriment to the use of IIOP in a collocated 
environment is the inefficiency stemming from the fact that 
CORBA messages are passed through the TCP/IP protocol 
stack to and from the loopback driver. As an alternative 
when multiple components reside on the same Unix system, 
the Unix domain protocols provide a form of inter-process 
communication (IPC) that is similar in use to internet 
sockets. The primary benefit over TCP sockets, however, is 
simplicity in the underlying implementation. A comparison 
of the data flow is shown in Figure 2. As a result, Unix 
domain sockets require less processing which results in 
increased transfer speeds and an effective reduction in 
latency and jitter. 
 
4.4 CORBA Threading 
 

Figure 3 RT Scheduling Performance omniORB provides two modes of operation for server side 
request handling [3]. In one thread per connection mode 
[20], a new dedicated thread is created for each connection. 
It should be noted that the initial call invocation takes a 
significantly longer than subsequent calls due to the cost of 
thread creation. In thread pool mode, all incoming 
connections are watched by a single thread which assigns 
calls to a thread chosen from a pool. This mode is more 
efficient for a large number of connections when the 
number of threads becomes high; however, thread pooling 
adds an additional latency component due to thread 
switching for each call. Thread per connection is the most 
efficient form of operation when the number of connections 
is low. Thus, it is the preferable configuration for the 
majority of software radio applications  
 
4.5 Packet Size 
 
The invocation path of a remote call between two 
components in an OSSIE waveform (and CORBA based 
systems in general) can be broken down into a number of 
factors. In this paper, call latency is the minimum cost of 
sending any message at all regardless of packet size. 
Marshaling latency consists of the time spent by the ORB 
turning structured data into a buffered byte stream and vice-
versa. Transport latency refers to the time taken to move a 
number of raw bytes through some transport mechanism 
between two process spaces. Sometimes transport latency is 
included in marshalling latency [20]. Also note that call 
latency and transport latency are partially related. 
 How each of these values factor into the overall latency 
is heavily dependent on the amount of data sent. When 
sending zero length sequences, call latency dominates 
which is dependent on the transit latency and internal ORB 
processing. Call latency becomes less of a factor as packet 
lengths become long. Marshalling latency and transmit 
latency are directly related to the amount of data sent. 

 
5. SELECTED RESULTS 

 
The following results examine latencies that occur in a 
connection between two components of an OSSIE software 
radio waveform. The test platform was a basic PC with a 
Pentium 4 CPU clocked at 3.2 GHz with 2 GBytes of RAM. 
The test system uses the 2.6.22.1 kernel with rt9 version of 
the real time patch [21]. The latency from the invocation of 
the client CORBA call to the time the data is made available 
in the signal processing thread is measured with using the 
gettimeofday function. From Standard Interfaces, a 
complexShort interface is used with a sequence length 
of 512, which equates to 2048 bytes of sample data per call. 
The sequence length was chosen to be representative of a 
typical value used in a number of sample waveforms. Tests 
were run for 500,000 time samples. While this example is 
simple and only partially representative of larger signal 
processing waveforms, it allows a close examination of the 
interactions and associated latencies underlying data 
transfer between OSSIE software radio components. 
 
5.1 RT Scheduling 
 
The RT scheduling test examines the latency performance 
of a real-time process under processor load. In this case the 
latency with and without the SCHED_FIFO parameter is 
examined with a multi-threaded kernel build. Scatter plots 
are shown in Figure. It can clearly be seen that under load 
the non-RT case exhibits extremely large maximum 
latencies. This behavior is expected as CPU resources are 
shared equally with the background load. With RT 
scheduling, the measured values increase slightly but 
remain bounded compared to the non-RT case. RT 
scheduling is used for the remainder of the results.   
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5.2 Comparing CORBA Transports 
 
The use of Unix domain sockets as transport layer for 
omniORB was compared to IIOP using TCP. In this case, 
average latency and jitter were measured and compared. As 
expected, the use of Unix domain sockets provided a 
significant performance improvement with a mean latency 
of 62us compared 107us for TCP. Furthermore, the standard 
deviation decreased from 14us to 8us. The histograms for 
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5.3 Packet Size 

gure 6 shows measured mean latencies for sequence 
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6. C
 
This paper describes relevant concepts necessary for timing 
and latency analysis of an OSSIE SCA waveform operating 
on the Linux operating system. Requirements and means for 
accurate profiling of collocated components w
In

were identified. In 
e
transports were examined and measured on a test machine 
with varying packet sizes. While these measurements are 
specific to the given system, the concepts and approach can 
also be applied to other platforms.   
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