

LATENCY PROFILING FOR SCA SOFTWARE RADIO

Thomas Tsou (Wireless@Virginia Tech, Blacksburg, VA, USA; ttsou@vt.edu); Philip

Balister (Wireless@Virginia Tech, Blacksburg, VA, USA; balister@vt.edu); and Jeffrey
Reed (Wireless@Virginia Tech, Blacksburg, VA, USA; jhreed@vt.edu)

ABSTRACT

Timing and latency are critical design parameters in the
development of a communication system. With software
radio and packet based methods emerging as viable
replacements for traditional static solutions, different
approaches are necessary to analyze the timing
characteristics of these communication environments. This
paper presents important concepts for performing timing
and latency profiling within the OSSIE SCA software radio
framework operating on the Linux operating system.
Furthermore, relevant factors and parameters pertaining to
latency performance are measured and compared.
Specifically, the operations of inter-component
communication within a collocated environment are
explored.

1. INTRODUCTION

Time delays are an inevitable aspect of any real world
communication system. As radio applications and
underlying hardware becomes increasingly complex,
however, these latencies become more and more difficult to
predict and understand. Predictable latencies and
deterministic behavior are necessary in order to meet the
requirements of a wide range of today’s communication
needs. The advent of software defined radio and the use of
the general purpose processor (GPP) as a suitable device for
radio communications further complicates these issues.
Traditionally, timing information and latency characteristics
could be determined by examining hardware designs and
specifications. With current software radio designs,
however, operating system (OS) behavior, middleware, and
multi-threaded environments are some of the issues that
factor into latency behavior.
 The Software Communication Architecture (SCA) [1]
is a component based software specification developed for
the Joint Tactical Radio System (JTRS) that seeks to
address many design issues in developing interoperable
software radios. In order to achieve interoperability and
portability of applications, the specification defines a
number of operating environment requirements for
compliant implementations such as POSIX OS standards

and the use of Common Object Request Broker Architecture
(CORBA) as middleware. CORBA is a standard released by
the industry consortium Object Management Group (OMG)
and defines the communication between the components of
a SCA radio waveform. The SCA and its underlying
standards are specifications only and require appropriate
implementations for actual use.
 OSSIE (Open-Source Implementation::Embedded) [2]
is an implementation of the SCA created at Virginia Tech
for educational use as well as for research applications with
software defined radio. OSSIE relies on a number of other
open-source projects in order to address the standard. The
implementation runs on Linux and utilizes omniORB [3] as
the CORBA middleware implementation. Additionally,
TinyXML [4] is used for parsing the XML used in SCA
profiles. Also, OSSIE applications rely on a reusable
interface library known as Standard Interfaces that
simplifies the interaction of signal processing code portions
with the implementation details of CORBA IDL.
 This paper studies the factors that contribute to inter-
component latency in an OSSIE waveform. It is assumed
that components reside on the same processor. Distributed
radio applications that span multiple nodes present
additional factors and are not examined in this study. While
a typical Intel GPP based PC is used as a test case in this
study, an effort is made such that the general concepts
presented are applicable to other platforms. Section 2 of this
paper explores previous performed in the general area of
software radio performance evaluation and related studies
pertaining to some of the CORBA aspects of latency
evaluation. Section 3 covers issues relating to performing
time measurements in the Linux environment while section
4 introduces significant factors that contribute to the timing
characteristics of component-to-component interactions.
Timing measurements performed on a test system are shown
in section 5.

2. RELATED WORK

Available literature directly concerning latency profiling
within a component based SDR systems is currently limited.
A number of studies exist pertaining to a more general case
of software radio performance on general purpose

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

mailto:ttsou@vt.edu
mailto:balister@vt.edu
mailto:jhreed@vt.edu

computing hardware. [5] and [6] measured overall end-to-
end transmit and receive latencies including RF hardware
with another software radio framework, GNU Radio [7] and
the Universal Software Radio Peripheral (USRP). These
studies have limited application to the approach presented in
this paper where a finer level of timing granularity is used
for exploring the time delays of data transfers occurring
within a single processor space.
 The SCA defines the use of CORBA for middleware
and services as part of the operating environment.
Consequently, CORBA performance plays a key role in
characterizing the interactions between components.
Performance analysis of CORBA implementations in the
form of benchmarking has been studied more commonly in
networked settings [8-10]. Operating system issues and
communications within collocated environments were
examined in [10] and [11]. The intended application for
some of these benchmarking studies, however, is quite
different than the use of CORBA within software radio.
Specifically, many applications for SDR are comprised of
components in collocated environments where clients
invoke numerous requests transferring a large amount of
data samples on single long-lived connections. This
contrasts with many other CORBA scenarios such as a
distributed stock market application where a high number of
short requests may be coming from a large number of
network connection.

3. MEASURING TIME

Data transfer latencies between collocated software radio
components can occur on the order of microseconds. This
differs from network latencies often examined in distributed
CORBA environments that may have duration times of
milliseconds. In order to measure and examine these
latencies, accurate clocks and precise timing procedures are
required. The methodology used for the measurement of
timing information should be able to provide mechanisms
for accurate means of measurement while maintaining
applicability to multiple platforms when possible.

3.1 Processor Clocks

Many CPU’s maintain internal timers that operate at the
processor clock rate. With today’s processors running at
frequencies in excess of 1 GHz, these internal timers are
capable of highly accurate measurements. The Time Stamp
Counter (TSC) is one such timer that exists on Intel x86
processors beginning with the original Pentium. The TSC is
a monotonically increasing time source that can be accessed
through the assembly operation RDTSC (Read Time Stamp
Counter). Timing information can be obtained in the form
of a processor clock cycle count and converted to human

units of time also known wall time by using the processor
clock speed.
 Changes in processor designs, however, have made the
TSC problematic in a number of cases. Power management
strategies that alter the processor clock frequency can skew
times calculated from cycle counts [12]. Furthermore, the
advent of dual-core and multi-core computing has made
TSC based timing measurements particularly difficult [13].
Multi-core machines maintain separate TSC for each
particular core and while each counter is guaranteed to be
monotonically increasing, clock drift among cores is a
significant issue. Consequently, successive RDTSC calls are
not guaranteed to produce monotonic values creating the
possibility of backward moving time. TSC drift and
synchronization issues are non-trivial to solve and are
currently active areas of development with the Linux kernel.
As a result, kernel based time functions rather than direct
assembly calls provide a better approach to obtaining timing
information in many of these cases. In addition, a second
detriment to hardware specific timer calls is that it leads to
fractured code across different architectures.

3.2 Kernel Timing

Traditionally, the timekeeping structure provided by the
Linux kernel relied on a tick-based approach with limited
granularity [14]. A tick is a periodic interrupt driven by a
hardware timer that forms the basis for a large portion of
kernel functionality. The tick frequency is dependent on the
specific kernel and platform, however, 1000Hz is a typical
value. To account for the limited granularity, the kernel
used interpolation methods for timekeeping which allowed
for increased clock resolution, however, inconsistencies and
susceptibility to irregular behavior limited usability for
profiling purposes. Recent changes kernel, however,
address some of these timing shortcomings.
 Hrtimers (high resolution timers) [15] tackle a number
of issues concerning the Linux time subsystems.
Specifically, timekeeping is addressed in a new
timeofday [16] approach that eliminates the tick and
interpolation based dependency. Furthermore, large portions
of architecture specific code are replaced with a modular
design that provides an interface allowing the best available
clocksource to be used. Issues related to the TSC, or other
clocksource specific handling, are addressed within the
kernel As a result, higher resolution timekeeping for latency
determination can be obtained through the Linux kernel
without dealing with potentially problematic architecture
specific code. Furthermore, by using kernel timing
interfaces, latency testing code can to be used across
different architectures. Responsibility still remains with the
developer, however, to make sure that clocksources and
drivers of sufficient reliability are available to the kernel.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

hrtimers were merged into the mainline Linux kernel in
version 2.6.16.

CORBA
Services

Standard Interfaces Signal Proc.

Servant

OSSIE Client OSSIE Server

4. CONTRIBUTING FACTORS

While it is not feasible to characterize all possible causes of
inter-component latency in an OSSIE waveform, a number
of significant factors can be brought forth.

4.1 Scheduling

The scheduler is the element of the operating system
responsible for determining which process is to execute next
on the CPU. The Linux scheduler [17] supports three thread
policies, a normal policy, First In-First Out, and Round
Robin. SCHED_OTHER is the standard Linux time-sharing
mode that applies to processes with no real-time
requirements. SCHED_FIFO and SCHED_RR are real-time
policies provided for time-critical applications where a
runnable high priority processes can immediately preempt
currently running lower priority processes. SCHED_FIFO
processes run without time slicing while SCHED_RR adds
time slicing to the SCHED_FIFO scheme.
 The scheduler is important in that OSSIE waveforms
share resources with other running processes on the
operating system that have large effects on component-to-
component delays. Implementing OSSIE components with
RT priorities is done through Linux system calls. The
required system calls, however, are platform specific and
not supported natively by omniORB. As a result, omniORB
servant threads are spawned with normal non-RT priorities
even if the component is scheduled with higher RT priority.
This is addressed using omniORB Interceptors [3] where
platform specific code can be inserted and executed at run
time after servant thread creation.

4.2 OSSIE Standard Interfaces

OSSIE Standard Interfaces is a class library created for the
purpose of simplifying the interaction of signal processing
code with SCA required CORBA interfaces. The library
facilitates code reuse for many common data types and
eases the learning curve of presenting standardized CORBA
and IDL to students with backgrounds predominantly in
communications and signal processing. Furthermore,
Standard Interfaces provides support for multiple outputs in
fan-out connection configuration. Currently supported IDL
interfaces include basic real and complex data
representations in 8, 16, and 32 bit sizes passed in the form
of CORBA sequences.
 The implementation of Standard Interfaces separates
the bulk of CORBA handling away from the signal
processing code. This is performed by buffering data in the
servant code and subsequently returning the CORBA call

without entering the signal processing code space. In a
separate signal processing thread, the data is passed in by
reference using non-CORBA C++ method calls built into
Standard Interfaces. This effectively decouples the CORBA
call sequence from signal processing code. The thread
structure is shown in Figure 1. Thread safety is maintained
through the use of semaphores. With regards to latency,
Standard Interfaces minimally adds a data copy and thread
switch to the overall latency of a CORBA invocation.
Additional port connections will also incur an additional
delay.

Figure 1 OSSIE Threading Model

4.3 CORBA Transport

omniORB is a compliant Object Request Broker (ORB)
implementation of the 2.6 version of the Common Object
Request Broker Architecture (CORBA) specification. With
CORBA, communications between ORBS is specified by an
abstract protocol called the General Inter-ORB Protocol
(GIOP). The GIOP protocol, unusable in its abstract from, is
made concrete by mapping to a specific transport. For
example, the Internet Inter-Orb Protocol (IIOP) is a
concrete mapping of TCP/IP to GIOP. omniORB supports
IIOP as well as other transports through Unix domain
sockets and SSL [18]. With current use of the OSSIE
framework, there is limited applicable use of the SSL
transport, however, UNIX domain sockets can provide

Client Server

TCP

IP

Loopback
Driver

Client Server

Unix Domain
Sockets

TCP Sockets

Unix Domain Sockets

Figure 2 TCP and UNIX Domain Sockets

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

significant benefits in terms of data transport efficiency.
 A primary detriment to the use of IIOP in a collocated
environment is the inefficiency stemming from the fact that
CORBA messages are passed through the TCP/IP protocol
stack to and from the loopback driver. As an alternative
when multiple components reside on the same Unix system,
the Unix domain protocols provide a form of inter-process
communication (IPC) that is similar in use to internet
sockets. The primary benefit over TCP sockets, however, is
simplicity in the underlying implementation. A comparison
of the data flow is shown in Figure 2. As a result, Unix
domain sockets require less processing which results in
increased transfer speeds and an effective reduction in
latency and jitter.

4.4 CORBA Threading

Figure 3 RT Scheduling Performance omniORB provides two modes of operation for server side
request handling [3]. In one thread per connection mode
[20], a new dedicated thread is created for each connection.
It should be noted that the initial call invocation takes a
significantly longer than subsequent calls due to the cost of
thread creation. In thread pool mode, all incoming
connections are watched by a single thread which assigns
calls to a thread chosen from a pool. This mode is more
efficient for a large number of connections when the
number of threads becomes high; however, thread pooling
adds an additional latency component due to thread
switching for each call. Thread per connection is the most
efficient form of operation when the number of connections
is low. Thus, it is the preferable configuration for the
majority of software radio applications

4.5 Packet Size

The invocation path of a remote call between two
components in an OSSIE waveform (and CORBA based
systems in general) can be broken down into a number of
factors. In this paper, call latency is the minimum cost of
sending any message at all regardless of packet size.
Marshaling latency consists of the time spent by the ORB
turning structured data into a buffered byte stream and vice-
versa. Transport latency refers to the time taken to move a
number of raw bytes through some transport mechanism
between two process spaces. Sometimes transport latency is
included in marshalling latency [20]. Also note that call
latency and transport latency are partially related.
 How each of these values factor into the overall latency
is heavily dependent on the amount of data sent. When
sending zero length sequences, call latency dominates
which is dependent on the transit latency and internal ORB
processing. Call latency becomes less of a factor as packet
lengths become long. Marshalling latency and transmit
latency are directly related to the amount of data sent.

5. SELECTED RESULTS

The following results examine latencies that occur in a
connection between two components of an OSSIE software
radio waveform. The test platform was a basic PC with a
Pentium 4 CPU clocked at 3.2 GHz with 2 GBytes of RAM.
The test system uses the 2.6.22.1 kernel with rt9 version of
the real time patch [21]. The latency from the invocation of
the client CORBA call to the time the data is made available
in the signal processing thread is measured with using the
gettimeofday function. From Standard Interfaces, a
complexShort interface is used with a sequence length
of 512, which equates to 2048 bytes of sample data per call.
The sequence length was chosen to be representative of a
typical value used in a number of sample waveforms. Tests
were run for 500,000 time samples. While this example is
simple and only partially representative of larger signal
processing waveforms, it allows a close examination of the
interactions and associated latencies underlying data
transfer between OSSIE software radio components.

5.1 RT Scheduling

The RT scheduling test examines the latency performance
of a real-time process under processor load. In this case the
latency with and without the SCHED_FIFO parameter is
examined with a multi-threaded kernel build. Scatter plots
are shown in Figure. It can clearly be seen that under load
the non-RT case exhibits extremely large maximum
latencies. This behavior is expected as CPU resources are
shared equally with the background load. With RT
scheduling, the measured values increase slightly but
remain bounded compared to the non-RT case. RT
scheduling is used for the remainder of the results.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

5.2 Comparing CORBA Transports

The use of Unix domain sockets as transport layer for
omniORB was compared to IIOP using TCP. In this case,
average latency and jitter were measured and compared. As
expected, the use of Unix domain sockets provided a
significant performance improvement with a mean latency
of 62us compared 107us for TCP. Furthermore, the standard
deviation decreased from 14us to 8us. The histograms for
m
 on of

 the
work

situ exist.
In ds a

Fi
le

incl and
encodi on this
system two
com
roughl P
tran creases
in a l P, the
resu to
underl

ONCLUSION

ere explored.
 addition, a number of key factors contributing to inter-

component latency efforts to improve
xisting latencies, scheduling and underlying CORBA

aterial are those of the
d do not necessarily reflect the views of the

National Scie
The authors also acknowledge support from the

Figure 4 OSSIE component latency using IIOP/TCP
CORBA transport

Figure 5 OSSIE component latency using Unix
socket transport

uding CORBA sequence metadata and GIOP header
ng overhead are 0 to 16384 Bytes. Thus,
, the minimal possible latencies between

ponents using the complexShort interface are
y 50us and 100us using Unix sockets and TC

sport respectively. With Unix sockets, latency in
inear fashion as sequence length grows. With TC

lts are more irregular and most likely related
ying TCP and IP packet size handling.

easured values are shown in Figures 4 and 5.
These results indicate that a significant porti

CORBA latency and jitter can be attributed to
underlying transport layer. This is expected in net

ations where highly variable packet transmit times
 this OSSIE case, however, the use of TCP still ad

noticeable amount of unpredictability even though packets
never leave the PC.

5.3 Packet Size

gure 6 shows measured mean latencies for sequence
ngths from 0 to 4096. The equivalent transmit sizes not

6. C

This paper describes relevant concepts necessary for timing
and latency analysis of an OSSIE SCA waveform operating
on the Linux operating system. Requirements and means for
accurate profiling of collocated components w
In

were identified. In
e
transports were examined and measured on a test machine
with varying packet sizes. While these measurements are
specific to the given system, the concepts and approach can
also be applied to other platforms.

7. ACKNOWLEDGEMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant No. 0520418.
Any opinions, findings, and conclusions or
recommendations expressed in this m
authors an

nce Foundation.

National Institute of Justice and Wireless@VT partners.

8. REFERENCES

[1] “Software Communications Architecture Specification,” Joint

Tactical Radio System (JTRS) Joint Program Office, Version
2.2.2, May 2006.

Figure 6 Latency vs complexShort sequence length. A
complexShort type consists of two 16-bit values.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

[2] Wireless@Virginia Tech, “OSSIE,”
http://ossie.wireless.vt.edu/trac/.

] D. Grisby, S. Lo, D. Riddoch, The omniORB version 4.1 [3
User’s Guide, AT&T Laboratories Cambridge, 2007.

 L. Thomason, “T[4] inyXML”,
http://www.grinninglizard.com/tinyxml/.

[5] T. Schmid, O. Sekkat, M.B. Srivastava, “An Experimental
Study of Network Performance Impact of Increased Latency
in Software Defined Radios,” in Proc. of the Second ACM

e r
aracterizati

al

re/gnuradio/

Iinternational Workshop on Wireless N
Experimental Evaluation and Ch

two k Testbeds,
on, 2007, pp. 59-

66.
[6] S. Valentin, H. Malm, H. Karl, “Evaluating the GNU

Software Radio Platform for Wireless Testbeds,” Technic
Report TR-RI-06-273, Feb. 2006.

[7] “GNURadio,” http://www.gnu.org/softwa .

[9]

.

-oriented

[15]

ew Approach to Time and Timers,” Proc. of the

[18] cols in a

[19]
omain

roc. of

 [8] marking,” Proc. of
the 2001 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS 2001), 2001.
J. Zou, D. Levy, “Evaluating Overhead and Predictability of a
Real-time CORBA System,” Proc. of the 37th Hawaii
Inter

P. Tůma, A. Buble, “Open CORBA Bench

national Conf. on System Sciences, 2004.
[10] H. Callison, D. Butler, “Real-time CORBA Trade Study,”

Boeing Phantom Works Advanced Information Systems, Doc
Num. D204-31159-1, Jan. 2000.

[11] D. Schmidt, M. Deshpande, C. O’Ryan, “Operating System
Performance in Support of Real-time Middleware,” Proc. of
the Seventh IEEE International Workshop on Object
Real-time Dependable Systems (WORDS 2002), 2002, pp.
199-206.

[12] P. Work, K. Nguyen, “Measure Code Sections Using the
Enhanced Timer,” Intel Corporation, Tech. Rep.

 R. Brunner, “TSC and Power Management Eve[13] nts on AMD
Processors,” AMD, Tech. Rep., posted to comp.unix.solaris,
Nov. 2, 2005.

[14] R. Love, Linux Kernel Development Second Edition, Novell
Press, 2005.

 T. Gleixner, D. Niehaus, “Hrtimers and Beyond:Transforming
the Linux Time Subsystems,” in Proc. of the Linux
Symposium, 2006, pp. 333-346.

[16] J. Stultz, N. Aravamudan, D. Hard, “We Are Not Getting Any
Younger: A N
Linux Symposium, 2007, pp. 219-232.

[17] “SETSCHEDULER(2)” Linux Man Pages.
 T. Nakajima, “Supporting Multiple Transport Proto
CORBA System,” Proc. of the International Conf. on
Network Protocols, 2000, pp. 220-229.

 W.R. Stevens, TCP/IP Illustrated, Volume 3: TCP for
Transactions, HTTP, NNTP, and the UNIX D
Protocols,” Addison-Wesley, 1996.

[20] M. Henning, S. Vinoski, Advanced CORBA Programming
with C++, Addison-Wesley, 1999.

[21] S. Rostedt, D.V. Hart, “Internals of the RT Patch,” in P
the Linux Symposium, 2007, pp. 162-172.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

http://www.grinninglizard.com/tinyxml
http://www.grinninglizard.com/tinyxml

	Home
	Search by Session
	Search by Author

