

A WORKBENCH FOR WAVEFORM DESCRIPTION

BASED SDR IMPLEMENTATION

T. Kempf, E. M. Witte, V. Ramakrishnan, G. Ascheid
Institute for Integrated Signal Processing Systems,

RWTH Aachen University, Germany
kempf@iss.rwth-aachen.de

M. Adrat, M. Antweiler
Research Establishment for Applied Science (FGAN),

Dept. FKIE/KOM, Wachtberg, Germany,
adrat@fgan.de

ABSTRACT1
The use of multiple wireless communication standards in
today’s communication networks opens completely new
opportunities for future wireless communication, e.g.
cognitive radios. However, current support for different
standards requires implementation of redundant hardware
within one handset. To cope with this issue, research in the
field of Software Defined Radios (SDRs) aims at
implementing the waveforms in software allowing reuse of
shared hardware resources. Development of such SDRs is a
challenging task as both software and hardware have to be
developed under tough constraints of real-time processing,
architecture and energy efficiency. To enable the three key
properties of portability, interoperability and loadability, a
concept has been proposed for a seamless SDR design flow
in [1]. Key element of this concept is the orthogonalization
of the waveform description, the mapping to an arbitrary
hardware platform and the platform design. In this paper, a
realization of the concept is introduced. The efficient design
of the waveform application, hardware platform and
application-to-architecture mapping enables fast exploration
cycles during SDR development. The (semi-)automatic
generation of the software and hardware implementations
(on the basis of IP-blocks) enables designers to quickly
verify, debug and test their design decisions in simulation
models and on a prototype.

I. INTRODUCTION

Support of multiple wireless communication standards
requires multiple dedicated hardware transceivers resulting
in a significant hardware overhead. The concept of Software
Defined Radios (SDRs) offers a method to cope with this
issue by providing flexibility to support updates and/or new
standards in the field. The design of such an SDR is a highly
complex and challenging task, as the three key properties of
portability, interoperability and loadability have to be
fulfilled. The JTRS (Joint Tactical Radio System) program
of the US DoD has defined the Software Communications

1 This research project was performed under contract with the Technical
Center for Information Technology and Electronics (WTD-81), Germany

Architecture (SCA) [2] to achieve these key properties.
However, JTRS assumes that the waveform functionality is
provided in a way, which can directly be applied to any SDR
hardware platform. Constraints have neither been defined
for the description of waveforms nor for the generation of
SW- and HW-code applicable to a specific SDR hardware
platform. The SCA makes it easier to achieve portability,
interoperability and loadability, but does not guarantee
either of these properties.
In our previous works [1] and [3] a concept has been
proposed for a seamless SDR design flow from a waveform
description to the implementation of the waveform onto an
arbitrary SDR hardware platform. The key element of this
concept is the orthogonalization of the development of
waveform application, hardware platform and application-
to-architecture mapping. Portability is enabled by a separate
design of the SDR application and HW platform. As the
waveform implementation running on different SDR HW
platforms is based on a unique waveform application, an
important step towards interoperability of different SDRs is
already done. The key property of loadability is achieved by
loading software executables on a SDR in the field. These
software executables can be generated with the concept’s
waveform application and mapping. In this paper we
highlight a realization of the proposed concept by a
workbench prototype allowing fast and efficient SDR
development.
This paper is structured as follows. In Section II an
overview of the proposed concept for a seamless SDR
development is given. The main contribution of this paper, a
workbench prototype, is described in Section III. Finally, a
brief case study is presented to highlight the capabilities of
this workbench.

II. CONCEPT FOR SEAMLESS WAVEFORM
DEVELOPMENT

In [1] and [3] a concept for a seamless SDR design flow has
been proposed, starting at the waveform description and
going down to the implementation on a SDR hardware
platform. In contrast to formerly known approaches to
Waveform Development Environments (WDE) ([4–6]) it is

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

neither limited to a single aspect of the overall design
environment (e.g., the non-ambiguous waveform description
itself) nor to a specific tool (like Matlab/Simulink for the
(semi)-automatic code generation). The proposed concept’s
four key aspects, as depicted in Figure 1, are the following:

A. Description of the Waveform Application:
The waveform application, which is typically given as a
textual document, is represented in a non-ambiguous
description. In [1] an efficient description has been
proposed, based on general programming language
structures like sequential statements or parallel tasks
(existing in C/C++ and VHDL/Verilog). Tasks
(blocks/nodes) represent the subfunctionality of a waveform
application. Edges between tasks characterize the data
exchange, separating the functionality and communication.
Abstracting communication allows faster and simpler
development, as developers do not have to consider the
underlying communication scheme, like FIFO imple-
mentations. Finally, the application is summarized in a
topology graph which defines the data dependency between
tasks (Figure 2).

B. Description of the SDR Hardware Platform:
The description of the SDR HW platform groups the
elements into three classes: processing elements (PE),
communication architectures (CA), and memories (MEM).
The class of PEs executes the functionality. This class can
be divided into programmable, reconfigurable and
configurable elements. Typical candidates for
programmable elements are General Purpose Processors

(GPP) or Digital Signal Processors (DSP). Reconfigurable
elements like Field Programmable Gate Arrays (FPGA)
usually offer a higher flexibility, but a lower performance
than configurable elements like highly efficient Application
Specific Integrated Circuits (ASIC).
Communication architectures describe the data exchange
capabilities between the PEs. They are mainly described by
their type (e.g. wires, point-to-point, network-on-chip) and
their interfaces to the processing elements and memories.
The class of memories summarizes all types of storage
elements.
Both, the waveform application and hardware platform
description, which forms the basis of the application-to-
architecture mapping is discussed next.

C. Mapping:

The mapping of a waveform application onto an arbitrary
platform has to consider temporal and spatial resource
allocations. In [1] three different cases are defined (the
notation m:n denotes that m-task are mapped on n-PEs):
• Temporal Mapping – m:1 Mapping:

One single PE concurrently executes m tasks. Software
solutions typically realize the necessary scheduling
within (Real-Time) Operating Systems (RTOS/OS).
Hardware solutions are typically implemented in terms
of controllers.

• Spatial Mapping – 1:n Mapping:
Spatial mapping splits a single task into n subtasks
which are individually assigned to n different PEs.
Thus, a spatial mapping usually leads to a parallel
execution of functionality. In this case, a spatial
scheduler, which is typically implemented on the
previous adjacent node (task), becomes necessary to
dispatch the work load to the different PEs.

• Temporal and Spatial Mapping – m:n Mapping:
Here, m tasks are mapped onto n processing elements.
In some cases, the m:n mapping can be reduced to a
selection of m:1 or 1:n mappings. In other cases, it
requires both types of schedulers at the same time, a
temporal and spatial one.

D. Code Generation:
The (semi)-automatic generation of (SCA-compliant)
SW/HW implementation is based on the application, the
HW platform and the mapping. The concept foresees a
mechanism to assemble the software parts (e.g. for GPPs
and DSPs) based on the task functionalities. The main issue
to be solved is the interfacing problem for task’s
communication. The application-to-architecture mapping
along with the instantiation of communication schemes (e.g.
based on libraries) enables automatic generation of optimal
interfaces. Today’s paradigm of hardware design focuses on
IP-based design [7]. We align to this IP-based design
concept and do not focus on a generic generation of the

Figure 1: Seamless SDR design flow

Figure 2: Exemplary decomposition of a waveform application

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 3: Workbench of the proposed concept

complete hardware or hardware blocks, e.g. from C/C++ to
VHDL or Verilog. Although there is ongoing research in
this field, tools are not mature enough today and rather
limited in use.

III. WORKBENCH

The SDR design flow based on the proposed workbench is
illustrated in Figure 3. In the first two phases of the SDR
implementation, developers describe the SDR application
and HW platform. These phases can be parallelized to
reduce development time. The underlying structure of the
descriptions of waveform, HW platform and mapping are
based on the Extensible Markup Language (XML) [8]
format, allowing easy porting between different tools. For
demonstration purpose and in order to reuse the graphical
environment, we integrated the workbench exemplarily into
CoWare’s Platform Creator Tool (PCT) [9].
In the following phase the developed application, given as a
task graph, is being mapped onto the available PEs of the
underlying SDR HW platform.
The output is a mapping description, which is then passed to
the implementation generator along with the application and
hardware platform description. The implementation
generator can be configured to assemble either an Electronic
System Level (ESL) [10] model or a prototype
implementation based on Xilinx Embedded Development
Kit (EDK) [11] and its HW IP-cores. Therefore, it can be
used for verification and debugging of the SDR system.
The analysis of the simulation model and the FPGA
prototype leads to necessary design iterations, in which the
application, HW platform and/or mapping is improved. The
workbench supports developers in accomplishing those
design iteration steps by the seamless design flow. In the
following sections the proposed workbench and the different
development phases depicted in Figure 3 are highlighted.

A. Waveform Application Development Phase:
The concept introduced in [1], defines the description of a
waveform application by three key aspects: (i) functionality
description, (ii) data exchange description and (iii) assembly

of all sub-functions into one system topology. The
implemented workbench covers these essential aspects in the
following way:
(i) Functionality:

It is essential that developers describe the waveform
application in a way that generation of both, soft- and
hardware code, becomes feasible. As presented earlier,
the waveform description is based on basic
programming concepts found in programming
languages. Currently the workbench support is limited
to C, as the programming constructs of the concept
define a subset of the C language and therefore are
completely covered by the C programming language.
Nevertheless, functionality mapped on HW can be
modeled adequately later on.

(ii) Data Types/Communication:
A key element for efficient and modular modeling is the
independence of data communication and the task’s
functionality. Communication is defined by uni-
directional edges between tasks. Bi-directional edges
can be modeled by pairs of unidirectional edges. The
workbench provides a communication interface for data
exchange over edges, which is based on the basic
principle of communication: sending and receiving of
data. Therefore, an edge element can be accessed by a
universal API defined by the methods put and receive.
It is important to note that the edge element abstracts
the communication at the conceptual phase. During the
code generation phase an optimized communication
scheme is applied such that all edge elements are
replaced by a dedicated communication for imple-
mentation.

(iii) System Topology:
The system topology describes the complete SDR
waveform application by a task graph. As depicted in
Figure 4(a) the graphical environment of the workbench
embedded into PCT allows the definition of such graphs
based on tasks and edges. Developers can specify the
parameters of each task and the location of the task’s
functionality by refering to a certain implementation.

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

B. SDR HW Platform Development Phase:
Mapping a SDR application onto a SDR HW platform
requires at least a coarse-grained model of the HW platform.
Such platforms are typically Multi-Processor System-on-
Chips (MPSoCs), which can be described with (i)
Processing Elements (ii) Communication Architectures and
(iii) Memories.
Designing such an MPSoC is a challenging task, therefore
recent research in this field has introduced a new design
paradigm called Electronic System Level (ESL) [10]. In
ESL designs complete system models (virtual prototypes)
are assembled. One prominent tool-suite for such ESL
design is CoWare’s Platform Architect (PA) [9] providing a
graphical front-end called Platform Creator Tool (PCT).
Modeling the SDR HW platform has been developed with
respect to ESL design methodology, thus the concept’s
realization can utilize the PCT as illustrated in Figure 4.
Component libraries provide different IP blocks, e.g. GPPs,
Network-on-Chips (NoCs) and Memories. Developers can
assemble those blocks within the graphical environment to a
complete system model as depicted in Figure 4(b).

C. Application-to-Platform Mapping Phase:
Mapping the application onto the HW platform is, as
previously mentioned, a temporal & spatial task mapping.
Spatial mapping denotes the assignment of a task to one or
multiple PEs, whereas a temporal mapping refers to the
allocation of a time budget on a particular PE. Mapping is
one of the highly crucial steps in the design cycle, where
different options have to be considered and an optimal or at
least near-optimal solution has to be found. Therefore, fast
exploration of different design decisions is inevitable within
the mapping phase. The workbench allows investigation of
such different mapping strategies. The mapping of tasks to
PEs is illustrated in Figure 4(c).
The description of the waveform application does not
specify the exact communication mechanism, which
developers have to take care of. The workbench allows

developers to instantiate each edge element with a dedicated
communication scheme, e.g. a shared memory or a FIFO
communication scheme. Similar to the assignment of tasks
to processing elements, developers can assign these
communication schemes to the edge elements in a graphical
manner (Figure 4(c)).
The output of the mapping phase is a description of all
relevant information for code generation of the SDR
implementation in XML format.

D. Implementation Generation Phase:
The result of the mapping phase is fed into the workbench’s
implementation generator. The generation of the SDR
implementation is separated into the generation of the
software executables, the system simulation model and the
prototype.
The generation of the software executables consists of the
following steps:
1) The functionality of all tasks, specified by the developer

in the application description phase (discussed in
Section III-A), is extended by implementations of
dedicated communication schemes.

2) Schedulers, whether temporal or spatial, are inserted as
necessary and specified.

3) Finally, the software executables are compiled for the
underlying programmable device.

The advantage of the (semi-)automatic generation of the
software executables releases developers from repeating
tedious tasks, allowing more time investment in
development of the task’s functionality. This advantage
allows for faster exploration and analysis of design decisions
like different mappings.
The compiled software executables can be executed in both,
simulation and prototype, without any modifications. The
generation of software executables is followed by either the
generation of the ESL system simulation model (Section
III-E) or the prototype (Section III-F).

(a) Workbench SDR Application View (b) Workbench HW Platform View (c) Workbench SDR Mapping View

Figure 4: Workbench environment

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

Figure 5: Case study

E. Simulation Phase:
The workbench utilizes the build-in capabilities of PCT to
generate a simulation model out of the SDR HW platform
description. Processing elements, communication archi-
tectures and memories are instantiated by their
corresponding simulation model allowing simulation of the
complete system. Simulation allows developers to debug and
analyze their SDR HW platform and application. In [12] the
capabilities regarding analysis and debugging of simulation
and prototyping is discussed in detail. Typically, the
technique of Transaction Level Modeling (TLM) is utilized
for system simulation, which abstracts the communication
such that simulation of a complete system gets feasible. The
language used for system modeling is mostly SystemC [13],
which is a HW oriented extension for C++. Please note that
the workbench expects the existence of TLM simulation
models. Development of such models is not in the scope of
this paper or the workbench. The only exception is made for
hardware accelerators: As previously mentioned simulation
can make use of abstracting the system, which allows the
generation of hardware IP-blocks out of C-code for
simulation purposes. The functionality is encapsulated
within a SystemC block, which allows developers to quickly
investigate different design decisions by simulation.
However, these models can only be generated for simulation
and can not be used in the later prototyping.

F. Prototyping Phase:
Fast prototyping is essential to verify functional correctness
and to investigate real-time effects as well as interaction of
the SDR with other wireless communication devices. Today,
HW prototyping can be efficiently performed using Field
Programmable Gate Arrays (FPGAs). One of the major
vendors of FPGAs, Xilinx [14] provides a tool called
Embedded Development Kit (EDK) for IP block based
FPGA designs.
The proposed workbench bridges the gap between the ESL
design and the Xilinx EDK in an automatic manner such that

consistency is ensured1 as long as HW IP blocks and
simulation models are consistent. Figure 5 depicts the basic
principle of this step, which is split into two phases, named
the front-end and back-end phase. In the front-end phase the
description of the application, the HW platform and the
mapping is parsed and an Intermediate Representation (IR)
is generated. The back-end generates the Xilinx EDK’s
configuration applying user- and vendor-specific mapping
rules for each IP block. These rules describe the relation
between the HW IP block and the simulation model. The
generic structure of front- and back-end allows future
support for other ESL and/or FPGA tools by simply
replacing the front- and/or back-end. The output
configuration can then be used to compile the FPGAs design
and to run the system on the FPGA prototype in order to
verify the SDR system in a real-time environment.

IV. CASE STUDY

The following case study has been realized as a test case for
our workbench. A simple waveform has been selected as a
testcase to keep the design complexity reasonable while
putting the focus on the investigation of the SDR
development flow aspects. Therefore, the waveform does
not include channel coding, interleaving, pilot insertion, etc.
In this section we focus only on the receiver part.
The waveform application is depicted in the upper left part
of Figure 6 and consists of the following elements:

1 Please note that there exists an initiative called SPIRIT [15], which
defines a common data structure between IP vendors allowing exchange of
IP blocks between different tools and use cases. However, this is at the
time of this paper not mature and still in development.

Figure 6: Prototyping Phase

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

• Channel source, providing complex IQ samples at
an intermediate frequency (IF)

• Digital down conversion (DDC) from IF to the
baseband Matched filter (MF)

• Frequency error estimation
• Frequency error correction
• Channel sink

This waveform has been mapped on a SDR hardware
platform based on Xilinx ML402 FPGA [14] board. This
platform comprises:

• Signalion SRFC RF board [16]
• Xilinx Microblaze processor [14]
• Hardware accelerator for MF and DDC
• OPB bus (communication architecture)
• On-chip block memories (BRAM)
• VGA output

In the mapping phase, frequency error estimation and
correction have been mapped to the Microblaze processor in
order to exploit the flexibility for testing different
synchronization strategies. The output (channel sink) has
been visualized on the VGA output. The MF and DDC tasks
require for the case study less flexibility and thus have been
mapped onto the hardware accelerator. This step comprised
the instantiation of the communication scheme “memory
mapped IO” to the edges between the DDC task and the
error estimation/correction tasks. This mapping process and
the resulting simulation models and prototype
implementations are depicted in Figure 6.
Previously, developers had to implement both the ESL
simulation and the FPGA model separately, which caused
high development effort and severe consistency issues. The
encounter of errors in the simulation model and/or the FPGA
prototype forces developers first to verify that both the
model and the prototype are consistent. Only afterwards,
debugging of the error can be addressed. The proposed
workbench allows developers to maintain only one HW
platform description from which both, the ESL simulation
and the FPGA prototype, can be generated. This ensures
consistency of both models and reduces development time
significantly. The workbench has been proven very helpful
during our small case-study. It will help shortening
significantly the design time of future SDR systems and
prototypes.

V. CONCLUSION

In this paper, a workbench for a design flow for Software
Defined Radios has been proposed. The contribution is the
workbench realization of a concept allowing a seamless
SDR development from the waveform’s specification down
to the implementation. Key elements of the workbench are
the description of the (i) SDR application, (ii) the SDR HW
platform and (iii) the application-to-architecture mapping.

Based on these descriptions the implementation generator
can (semi-)automatically assemble an Electronic System
Level (ESL) model and/or FPGA prototype design.
Simulation of the ESL model allows developers to debug,
verify and analyze their complete SDR. Prototyping of the
generated FPGA design in a real-time environment allows
efficient verification and debugging of the SDR. On top of a
small case study we have highlighted the capabilities of the
proposed workbench and methodology.
In future we will concentrate on applying the workbench on
larger examples with more realistic waveforms, e.g. the
MIL-STD-188-110B [17]. Additionally we will investigate
the key issue of portability for SDRs in depth.

VI. ACKNOWLEDGMENT

The authors would like to thank J. Holzer, C. Hatzig, S.
Hartmann and H. Siegmar of the WTD-81 for inspiring
discussions. Additionally the authors would like to thank J.
Reinecke, M. Rustagi and S. Wallentowitz for their valuable
contributions.

VII. REFERENCES
[1] T. Kempf, M. Adrat, E.M. Witte, et al.. A Concept for Waveform

Description based SDR Implementation. In 4th Karlsruhe Workshop on
Software Radios (WSR’06), Karlsruhe, Germany, March 2006.

[2] JTRS. Software Communications Architecture (SCA) Specifications V2.2.
http://jtrs.army.mil/.

[3] T. Kempf, et al. An SDR Implementation Concept based on Waveform
Description. FREQUENZ: Journal of RF-Engineering and
Telecommunications, Berlin, (9-10), 2006.

[4] E. D. Willink. Waveform Description Language: Moving from
Implementation to Specification. IEEE Military Communications
Conference (MILCOM 2001), Oct. 2001.

[5] R. S. Prill. E2e reconfigurability using osi layered wdl canonical radio
model. E2R Workshop on Reconfigurable Mobile Systems and Networks
Beyond 3G, Sept. 2004.

[6] M.S. Gudaitis and R.D. Hinman. Practical Considerations for a Waveform
Development Environment. IEEE Military Communications Conference
(MILCOM2001), October 2001.

[7] Wander O.Cesario, et al. Multiprocessor SoC Platforms: A component-
based design approach. IEEE Des. Test, 19(6):52–63, 2002.

[8] Extensible Markup Language (XML) http://www.w3.org/xml
[9] CoWare inc. http://www.coware.com/.
[10] Martin Grant, et al. Electronic System Level Design and Verification.

Morgan Kaufmann, Feb. 2007.
[11] Xilinx. Platform Studio and the EDK.
 http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm/
[12] E.M. Witte, T. Kempf, et al. Waveform and Prototype Debugging in a

Seamless SDR Development Flow. In Military CIS Conference 2007
(MCC2007), Bonn, Germany, September 2007.

[13] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[14] Xilinx inc. http://www.xilinx.com/.
[15] The SPIRIT Consortium. http://www.spiritconsortium.org/.
[16] Signalion GmbH. Prototyping the Wireless Future.
 http://www.signalion.de.
[17] MIL-STD-188-110B DoD Interface Standard. April 2000

SDR Forum Technical Conference 2007
Proceeding of the SDR 07 Technical Conference and Product Exposition. Copyright © 2007 SDR Forum. All Rights Reserved

	Home
	Search by Session
	Search by Author

