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ABSTRACT1 
The use of multiple wireless communication standards in 
today’s communication networks opens completely new 
opportunities for future wireless communication, e.g. 
cognitive radios. However, current support for different 
standards requires implementation of redundant hardware 
within one handset. To cope with this issue, research in the 
field of Software Defined Radios (SDRs) aims at 
implementing the waveforms in software allowing reuse of 
shared hardware resources. Development of such SDRs is a 
challenging task as both software and hardware have to be 
developed under tough constraints of real-time processing, 
architecture and energy efficiency. To enable the three key 
properties of portability, interoperability and loadability, a 
concept has been proposed for a seamless SDR design flow 
in [1]. Key element of this concept is the orthogonalization 
of the waveform description, the mapping to an arbitrary 
hardware platform and the platform design. In this paper, a 
realization of the concept is introduced. The efficient design 
of the waveform application, hardware platform and 
application-to-architecture mapping enables fast exploration 
cycles during SDR development. The (semi-)automatic 
generation of the software and hardware implementations 
(on the basis of IP-blocks) enables designers to quickly 
verify, debug and test their design decisions in simulation 
models and on a prototype. 
 

I. INTRODUCTION 
 

Support of multiple wireless communication standards 
requires multiple dedicated hardware transceivers resulting 
in a significant hardware overhead. The concept of Software 
Defined Radios (SDRs) offers a method to cope with this 
issue by providing flexibility to support updates and/or new 
standards in the field. The design of such an SDR is a highly 
complex and challenging task, as the three key properties of 
portability, interoperability and loadability have to be 
fulfilled. The JTRS (Joint Tactical Radio System) program 
of the US DoD has defined the Software Communications 

                                                 
1 This research project was performed under contract with the Technical 
Center for Information Technology and Electronics (WTD-81), Germany 

Architecture (SCA) [2] to achieve these key properties. 
However, JTRS assumes that the waveform functionality is 
provided in a way, which can directly be applied to any SDR 
hardware platform. Constraints have neither been defined 
for the description of waveforms nor for the generation of 
SW- and HW-code applicable to a specific SDR hardware 
platform. The SCA makes it easier to achieve portability, 
interoperability and loadability, but does not guarantee 
either of these properties. 
In our previous works [1] and [3] a concept has been 
proposed for a seamless SDR design flow from a waveform 
description to the implementation of the waveform onto an 
arbitrary SDR hardware platform. The key element of this 
concept is the orthogonalization of the development of 
waveform application, hardware platform and application-
to-architecture mapping. Portability is enabled by a separate 
design of the SDR application and HW platform. As the 
waveform implementation running on different SDR HW 
platforms is based on a unique waveform application, an 
important step towards interoperability of different SDRs is 
already done. The key property of loadability is achieved by 
loading software executables on a SDR in the field. These 
software executables can be generated with the concept’s 
waveform application and mapping. In this paper we 
highlight a realization of the proposed concept by a 
workbench prototype allowing fast and efficient SDR 
development. 
This paper is structured as follows. In Section II an 
overview of the proposed concept for a seamless SDR 
development is given. The main contribution of this paper, a 
workbench prototype, is described in Section III. Finally, a 
brief case study is presented to highlight the capabilities of 
this workbench. 
 

II. CONCEPT FOR SEAMLESS WAVEFORM 
DEVELOPMENT 

 

In [1] and [3] a concept for a seamless SDR design flow has 
been proposed, starting at the waveform description and 
going down to the implementation on a SDR hardware 
platform. In contrast to formerly known approaches to 
Waveform Development Environments (WDE) ([4–6]) it is 
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neither limited to a single aspect of the overall design 
environment (e.g., the non-ambiguous waveform description 
itself) nor to a specific tool (like Matlab/Simulink for the 
(semi)-automatic code generation). The proposed concept’s 
four key aspects, as depicted in Figure 1, are the following:  
 

A. Description of the Waveform Application: 
The waveform application, which is typically given as a 
textual document, is represented in a non-ambiguous 
description. In [1] an efficient description has been 
proposed, based on general programming language 
structures like sequential statements or parallel tasks 
(existing in C/C++ and VHDL/Verilog). Tasks 
(blocks/nodes) represent the subfunctionality of a waveform 
application. Edges between tasks characterize the data 
exchange, separating the functionality and communication. 
Abstracting communication allows faster and simpler 
development, as developers do not have to consider the 
underlying communication scheme, like FIFO imple-
mentations. Finally, the application is summarized in a 
topology graph which defines the data dependency between 
tasks (Figure 2). 
 

B. Description of the SDR Hardware Platform: 
The description of the SDR HW platform groups the 
elements into three classes: processing elements (PE), 
communication architectures (CA), and memories (MEM). 
The class of PEs executes the functionality. This class can 
be divided into programmable, reconfigurable and 
configurable elements. Typical candidates for 
programmable elements are General Purpose Processors 

(GPP) or Digital Signal Processors (DSP). Reconfigurable 
elements like Field Programmable Gate Arrays (FPGA) 
usually offer a higher flexibility, but a lower performance 
than configurable elements like highly efficient Application 
Specific Integrated Circuits (ASIC). 
Communication architectures describe the data exchange 
capabilities between the PEs. They are mainly described by 
their type (e.g. wires, point-to-point, network-on-chip) and 
their interfaces to the processing elements and memories. 
The class of memories summarizes all types of storage 
elements. 
Both, the waveform application and hardware platform 
description, which forms the basis of the application-to- 
architecture mapping is discussed next. 
 

C. Mapping: 

The mapping of a waveform application onto an arbitrary 
platform has to consider temporal and spatial resource 
allocations. In [1] three different cases are defined (the 
notation m:n denotes that m-task are mapped on n-PEs): 
• Temporal Mapping – m:1 Mapping: 

One single PE concurrently executes m tasks. Software 
solutions typically realize the necessary scheduling 
within (Real-Time) Operating Systems (RTOS/OS). 
Hardware solutions are typically implemented in terms 
of controllers. 

• Spatial Mapping – 1:n Mapping: 
Spatial mapping splits a single task into n subtasks 
which are individually assigned to n different PEs. 
Thus, a spatial mapping usually leads to a parallel 
execution of functionality. In this case, a spatial 
scheduler, which is typically implemented on the 
previous adjacent node (task), becomes necessary to 
dispatch the work load to the different PEs. 

• Temporal and Spatial Mapping – m:n Mapping: 
Here, m tasks are mapped onto n processing elements. 
In some cases, the m:n mapping can be reduced to a 
selection of m:1 or 1:n mappings. In other cases, it 
requires both types of schedulers at the same time, a 
temporal and spatial one. 

 

D. Code Generation: 
The (semi)-automatic generation of (SCA-compliant) 
SW/HW implementation is based on the application, the 
HW platform and the mapping. The concept foresees a 
mechanism to assemble the software parts (e.g. for GPPs 
and DSPs) based on the task functionalities. The main issue 
to be solved is the interfacing problem for task’s 
communication. The application-to-architecture mapping 
along with the instantiation of communication schemes (e.g. 
based on libraries) enables automatic generation of optimal 
interfaces. Today’s paradigm of hardware design focuses on 
IP-based design [7]. We align to this IP-based design 
concept and do not focus on a generic generation of the 

 
 

 

Figure 1: Seamless SDR design flow 

 
Figure 2: Exemplary decomposition of a waveform application 
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Figure 3: Workbench of the proposed concept 

complete hardware or hardware blocks, e.g. from C/C++ to 
VHDL or Verilog. Although there is ongoing research in 
this field, tools are not mature enough today and rather 
limited in use. 

III. WORKBENCH 
 

The SDR design flow based on the proposed workbench is 
illustrated in Figure 3. In the first two phases of the SDR 
implementation, developers describe the SDR application 
and HW platform. These phases can be parallelized to 
reduce development time. The underlying structure of the 
descriptions of waveform, HW platform and mapping are 
based on the Extensible Markup Language (XML) [8] 
format, allowing easy porting between different tools. For 
demonstration purpose and in order to reuse the graphical 
environment, we integrated the workbench exemplarily into 
CoWare’s Platform Creator Tool (PCT) [9]. 
In the following phase the developed application, given as a 
task graph, is being mapped onto the available PEs of the 
underlying SDR HW platform. 
The output is a mapping description, which is then passed to 
the implementation generator along with the application and 
hardware platform description. The implementation 
generator can be configured to assemble either an Electronic 
System Level (ESL) [10] model or a prototype 
implementation based on Xilinx Embedded Development 
Kit (EDK) [11] and its HW IP-cores. Therefore, it can be 
used for verification and debugging of the SDR system. 
The analysis of the simulation model and the FPGA 
prototype leads to necessary design iterations, in which the 
application, HW platform and/or mapping is improved. The 
workbench supports developers in accomplishing those 
design iteration steps by the seamless design flow. In the 
following sections the proposed workbench and the different 
development phases depicted in Figure 3 are highlighted. 
 

A. Waveform Application Development Phase: 
The concept introduced in [1], defines the description of a 
waveform application by three key aspects: (i) functionality 
description, (ii) data exchange description and (iii) assembly 

of all sub-functions into one system topology. The 
implemented workbench covers these essential aspects in the 
following way:  
(i) Functionality: 

It is essential that developers describe the waveform 
application in a way that generation of both, soft- and 
hardware code, becomes feasible. As presented earlier, 
the waveform description is based on basic 
programming concepts found in programming 
languages. Currently the workbench support is limited 
to C, as the programming constructs of the concept 
define a subset of the C language and therefore are 
completely covered by the C programming language. 
Nevertheless, functionality mapped on HW can be 
modeled adequately later on. 

(ii)  Data Types/Communication: 
A key element for efficient and modular modeling is the 
independence of data communication and the task’s 
functionality. Communication is defined by uni-
directional edges between tasks. Bi-directional edges 
can be modeled by pairs of unidirectional edges. The 
workbench provides a communication interface for data 
exchange over edges, which is based on the basic 
principle of communication: sending and receiving of 
data. Therefore, an edge element can be accessed by a 
universal API defined by the methods put and receive. 
It is important to note that the edge element abstracts 
the communication at the conceptual phase. During the 
code generation phase an optimized communication 
scheme is applied such that all edge elements are 
replaced by a dedicated communication for imple-
mentation. 

(iii)  System Topology: 
The system topology describes the complete SDR 
waveform application by a task graph. As depicted in 
Figure 4(a) the graphical environment of the workbench 
embedded into PCT allows the definition of such graphs 
based on tasks and edges. Developers can specify the 
parameters of each task and the location of the task’s 
functionality by refering to a certain implementation. 
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B. SDR HW Platform Development Phase: 
Mapping a SDR application onto a SDR HW platform 
requires at least a coarse-grained model of the HW platform. 
Such platforms are typically Multi-Processor System-on- 
Chips (MPSoCs), which can be described with (i) 
Processing Elements (ii) Communication Architectures and 
(iii) Memories. 
Designing such an MPSoC is a challenging task, therefore 
recent research in this field has introduced a new design 
paradigm called Electronic System Level (ESL) [10]. In 
ESL designs complete system models (virtual prototypes) 
are assembled. One prominent tool-suite for such ESL 
design is CoWare’s Platform Architect (PA) [9] providing a 
graphical front-end called Platform Creator Tool (PCT). 
Modeling the SDR HW platform has been developed with 
respect to ESL design methodology, thus the concept’s 
realization can utilize the PCT as illustrated in Figure 4. 
Component libraries provide different IP blocks, e.g. GPPs, 
Network-on-Chips (NoCs) and Memories. Developers can 
assemble those blocks within the graphical environment to a 
complete system model as depicted in Figure 4(b). 
 

C. Application-to-Platform Mapping Phase: 
Mapping the application onto the HW platform is, as 
previously mentioned, a temporal & spatial task mapping. 
Spatial mapping denotes the assignment of a task to one or 
multiple PEs, whereas a temporal mapping refers to the 
allocation of a time budget on a particular PE. Mapping is 
one of the highly crucial steps in the design cycle, where 
different options have to be considered and an optimal or at 
least near-optimal solution has to be found. Therefore, fast 
exploration of different design decisions is inevitable within 
the mapping phase. The workbench allows investigation of 
such different mapping strategies. The mapping of tasks to 
PEs is illustrated in Figure 4(c). 
The description of the waveform application does not 
specify the exact communication mechanism, which 
developers have to take care of. The workbench allows 

developers to instantiate each edge element with a dedicated 
communication scheme, e.g. a shared memory or a FIFO 
communication scheme. Similar to the assignment of tasks 
to processing elements, developers can assign these 
communication schemes to the edge elements in a graphical 
manner (Figure 4(c)). 
The output of the mapping phase is a description of all 
relevant information for code generation of the SDR 
implementation in XML format. 
 

D. Implementation Generation Phase: 
The result of the mapping phase is fed into the workbench’s 
implementation generator. The generation of the SDR 
implementation is separated into the generation of the 
software executables, the system simulation model and the 
prototype.  
The generation of the software executables consists of the 
following steps: 
1) The functionality of all tasks, specified by the developer 

in the application description phase (discussed in 
Section III-A), is extended by implementations of 
dedicated communication schemes. 

2) Schedulers, whether temporal or spatial, are inserted as 
necessary and specified. 

3) Finally, the software executables are compiled for the 
underlying programmable device. 

The advantage of the (semi-)automatic generation of the 
software executables releases developers from repeating 
tedious tasks, allowing more time investment in 
development of the task’s functionality. This advantage 
allows for faster exploration and analysis of design decisions 
like different mappings. 
The compiled software executables can be executed in both, 
simulation and prototype, without any modifications. The 
generation of software executables is followed by either the 
generation of the ESL system simulation model (Section 
III-E) or the prototype (Section III-F). 
 

                               
 

(a) Workbench SDR Application View  (b) Workbench HW Platform View  (c) Workbench SDR Mapping View 
 

Figure 4: Workbench environment 
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Figure 5: Case study 

E. Simulation Phase: 
The workbench utilizes the build-in capabilities of PCT to 
generate a simulation model out of the SDR HW platform 
description. Processing elements, communication archi-
tectures and memories are instantiated by their 
corresponding simulation model allowing simulation of the 
complete system. Simulation allows developers to debug and 
analyze their SDR HW platform and application. In [12] the 
capabilities regarding analysis and debugging of simulation 
and prototyping is discussed in detail. Typically, the 
technique of Transaction Level Modeling (TLM) is utilized 
for system simulation, which abstracts the communication 
such that simulation of a complete system gets feasible. The 
language used for system modeling is mostly SystemC [13], 
which is a HW oriented extension for C++. Please note that 
the workbench expects the existence of TLM simulation 
models. Development of such models is not in the scope of 
this paper or the workbench. The only exception is made for 
hardware accelerators: As previously mentioned simulation 
can make use of abstracting the system, which allows the 
generation of hardware IP-blocks out of C-code for 
simulation purposes. The functionality is encapsulated 
within a SystemC block, which allows developers to quickly 
investigate different design decisions by simulation. 
However, these models can only be generated for simulation 
and can not be used in the later prototyping. 
 

F. Prototyping Phase: 
Fast prototyping is essential to verify functional correctness 
and to investigate real-time effects as well as interaction of 
the SDR with other wireless communication devices. Today, 
HW prototyping can be efficiently performed using Field 
Programmable Gate Arrays (FPGAs). One of the major 
vendors of FPGAs, Xilinx [14] provides a tool called 
Embedded Development Kit (EDK) for IP block based 
FPGA designs. 
The proposed workbench bridges the gap between the ESL 
design and the Xilinx EDK in an automatic manner such that 

consistency is ensured1 as long as HW IP blocks and 
simulation models are consistent. Figure 5 depicts the basic 
principle of this step, which is split into two phases, named 
the front-end and back-end phase. In the front-end phase the 
description of the application, the HW platform and the 
mapping is parsed and an Intermediate Representation (IR) 
is generated. The back-end generates the Xilinx EDK’s 
configuration applying user- and vendor-specific mapping 
rules for each IP block. These rules describe the relation 
between the HW IP block and the simulation model. The 
generic structure of front- and back-end allows future 
support for other ESL and/or FPGA tools by simply 
replacing the front- and/or back-end. The output 
configuration can then be used to compile the FPGAs design 
and to run the system on the FPGA prototype in order to 
verify the SDR system in a real-time environment. 
 

IV. CASE STUDY 
 

The following case study has been realized as a test case for 
our workbench. A simple waveform has been selected as a 
testcase to keep the design complexity reasonable while 
putting the focus on the investigation of the SDR 
development flow aspects. Therefore, the waveform does 
not include channel coding, interleaving, pilot insertion, etc. 
In this section we focus only on the receiver part. 
The waveform application is depicted in the upper left part 
of Figure 6 and consists of the following elements: 

                                                 
1 Please note that there exists an initiative called SPIRIT [15], which 
defines a common data structure between IP vendors allowing exchange of 
IP blocks between different tools and use cases. However, this is at the 
time of this paper not mature and still in development. 

 
 

Figure 6: Prototyping Phase 
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• Channel source, providing complex IQ samples at 
an intermediate frequency (IF) 

• Digital down conversion (DDC) from IF to the 
baseband Matched filter (MF) 

• Frequency error estimation 
• Frequency error correction 
• Channel sink 

This waveform has been mapped on a SDR hardware 
platform based on Xilinx ML402 FPGA [14] board. This 
platform comprises: 

• Signalion SRFC RF board [16] 
• Xilinx Microblaze processor [14] 
• Hardware accelerator for MF and DDC 
• OPB bus (communication architecture) 
• On-chip block memories (BRAM) 
• VGA output 

In the mapping phase, frequency error estimation and 
correction have been mapped to the Microblaze processor in 
order to exploit the flexibility for testing different 
synchronization strategies. The output (channel sink) has 
been visualized on the VGA output. The MF and DDC tasks 
require for the case study less flexibility and thus have been 
mapped onto the hardware accelerator. This step comprised 
the instantiation of the communication scheme “memory 
mapped IO” to the edges between the DDC task and the 
error estimation/correction tasks. This mapping process and 
the resulting simulation models and prototype 
implementations are depicted in Figure 6. 
Previously, developers had to implement both the ESL 
simulation and the FPGA model separately, which caused 
high development effort and severe consistency issues. The 
encounter of errors in the simulation model and/or the FPGA 
prototype forces developers first to verify that both the 
model and the prototype are consistent. Only afterwards, 
debugging of the error can be addressed. The proposed 
workbench allows developers to maintain only one HW 
platform description from which both, the ESL simulation 
and the FPGA prototype, can be generated. This ensures 
consistency of both models and reduces development time 
significantly. The workbench has been proven very helpful 
during our small case-study. It will help shortening 
significantly the design time of future SDR systems and 
prototypes. 
 

V. CONCLUSION 
 

In this paper, a workbench for a design flow for Software 
Defined Radios has been proposed. The contribution is the 
workbench realization of a concept allowing a seamless 
SDR development from the waveform’s specification down 
to the implementation. Key elements of the workbench are 
the description of the (i) SDR application, (ii) the SDR HW 
platform and (iii) the application-to-architecture mapping. 

Based on these descriptions the implementation generator 
can (semi-)automatically assemble an Electronic System 
Level (ESL) model and/or FPGA prototype design. 
Simulation of the ESL model allows developers to debug, 
verify and analyze their complete SDR. Prototyping of the 
generated FPGA design in a real-time environment allows 
efficient verification and debugging of the SDR. On top of a 
small case study we have highlighted the capabilities of the 
proposed workbench and methodology. 
In future we will concentrate on applying the workbench on 
larger examples with more realistic waveforms, e.g. the 
MIL-STD-188-110B [17]. Additionally we will investigate 
the key issue of portability for SDRs in depth. 
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